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Abstract

We study two problems of online learning un-
der restricted information access. In the first
problem, prediction with limited advice, we con-
sider a game of prediction with expert advice,
where on each round of the game we query
the advice of a subset of M out of N ex-
perts. We present an algorithm that achieves

O
(√

N
M T lnN

)
regret on T rounds of this

game. The second problem, the multiarmed ban-
dit with paid observations, is a variant of the ad-
versarial N -armed bandit game, where on round
t of the game we can observe the reward of
any number of arms, but each observation has
a cost c. We present an algorithm that achieves
O
(

(cN lnN)
1/3

T 2/3 +
√
T lnN

)
regret on T

rounds of this game in the worst case. Further-
more, we present a number of refinements that
treat arm- and time-dependent observation costs
and achieve lower regret under benign condi-
tions. We present lower bounds that show that,
apart from the logarithmic factors, the worst-case
regret bounds cannot be improved.

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

1. Introduction
We study two problems of online learning under restricted
information access. The first problem is a variation of the
game of prediction with expert advice (see, for example,
(Cesa-Bianchi & Lugosi, 2006)), which we call prediction
with limited advice. In this game, the player has access
to a set of N experts, but on each round of the game is al-
lowed to query the advice of onlyM of theN experts. This
game corresponds, for example, to a situation where each
expert is a computationally-expensive function and there
is a constraint on the response time. Because of the con-
straint, it may be possible to compute only a subset of M
of the N functions. We provide an algorithm for this set-

ting that achievesO
(√

N
M T lnN

)
regret on T rounds and

a matching lower bound (up to logarithmic factors).

We note that there is a tight connection between prediction
with limited advice and multiarmed bandits. In particular,
if we ask for the advice of just one expert on every round
(meaning that M = 1), the problem of prediction with lim-
ited advice becomes equivalent to anN -armed bandit prob-
lem (we can treat each expert as an arm). Furthermore, if
M > 1 and we restrict the algorithm to follow the advice of
one of the M experts (rather than playing some function of
the advice) the problem is equivalent to an N -armed ban-
dit where we play one arm and are allowed to observe the
reward of M − 1 additional arms. As M grows from 1 to
N the game of prediction with limited advice interpolates
between a limited-feedback game and a full-information
game. Our regret bound provides an interpolation between
the O

(√
T lnN

)
regret bound for full-information games
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and the O
(√

NT
)

regret bound for bandit games (Cesa-
Bianchi & Lugosi, 2006; Audibert & Bubeck, 2010).

The second question studied in this work considers a dif-
ferent type of restriction on information acquisition. We
define a variation of the adversarial N -armed bandit game,
which we call the multiarmed bandit with paid observa-
tions. On each round of this game, the player pulls one
arm and suffers the loss of that arm, but that loss is not
necessarily observed. The player has the option to request
to observe the loss of any number of arms, but the cost of
each observation is c and it is added to the loss of the player.
As a motivational example, we can think about a problem
of signing annual contracts with service providers. For in-
stance, imagine a medical insurance company that every
year signs an annual contract with a hospital for some set
of medical services. The insurance company can choose to
order a follow-up survey of service quality in any number
of hospitals from an independent inspection body, but each
inspection will be associated with inspection cost c. The
goal is, of course, to maximize service quality and mini-
mize the cost of inspections. We derive an algorithm for
this setting that ensures that the regret (that is, the observa-
tion costs plus the excess loss over the loss of the best fixed
arm in hindsight) is O

(
(cN lnN)

1/3
T 2/3 +

√
T lnN

)
.

Note that we achieve a smooth transition between predic-
tion with expert advice (which corresponds to zero obser-
vations cost, c = 0, since when the cost is zero we can ob-
serve all arms for free) and the harder game with c > 0. For
c > 0 sublinear regret is achieved by gradual decrease of
exploration (the number of observations made), eventually
getting into a regime where no observations are made on
some rounds. We also provide a matching lower bound (up
to logarithmic factors). Furthermore, we present a refined
algorithm that handles arm- and time-dependent observa-
tions costs and reduces the regret under benign conditions.

1.1. Related Work

Our work is not the first attempt to investigate what
happens between full-information and limited-feedback
games. Mannor & Shamir (2011) provided an alternative
approach. Specifically, they considered an N -armed ban-
dit game, where at each round there is a graph and the ac-
tions correspond to the nodes of this graph. When playing
a node in the graph the player observes the reward of the
node played and the rewards of all adjacent nodes in the
graph. The work of Mannor and Shamir was further simpli-
fied, improved, and generalized by Alon et al. (2013). The
main difference between this line of work and our work is
that we allow complete freedom in the choice of observa-
tions to make (in prediction with limited advice the only
restriction is the number of observations and in multiarmed
bandits with paid observations there are no restrictions at

all).

Other related work is that of Avner et al. (2012) on “decou-
pling exploration and exploitation”. Avner et. al. studied a
multiarmed bandit game, where on each round the player is
allowed to play one arm and to observe the reward of one
arm, but not necessarily the same arm that was played. Al-
though coming from a different motivation, our work (es-
pecially Theorem 3) can be seen as a generalization of the
work of Avner et. al. along two dimensions. First, we al-
low any number of observations on every round (including
none) rather than making exactly one observation and, sec-
ond, we take the cost of observations into account. Our
work can also be seen as a generalization of label-efficient
prediction (Cesa-Bianchi et al., 2005) and label-efficient
bandits (Ottucsák & György, 2006; Audibert & Bubeck,
2010). In label-efficient prediction the player can choose to
observe the loss of all arms or nothing and in label-efficient
bandits the player can choose to observe the loss of the arm
played or nothing and learning is done under a constraint on
the total number of observations that can be made through-
out the game. In our formulation the observed arm(s) does
not have to be the one played and there may be any num-
ber of observations per round, which allows to improve the
exploration strategy.

The effect of an information acquisition cost appears
implicitly in locally non-observable partial monitoring
games (Bartók et al., 2011; Foster & Rakhlin, 2012).
Roughly speaking, local non-observability means that two
desirable actions differ in their loss but are identical in their
feedback, so that it is necessary to play a third action with
higher loss in order to obtain information. Similarly to the
results in locally non-observable partial monitoring games,
our regret bound for the multiarmed bandit with paid ob-
servations scales as T 2/3. We note that casting multiarmed
bandit with paid observations game as a partial monitoring
game leads to an exponential increase of the size of the ac-
tion set (since we have to consider all possible subsets of
actions for the observation requests) and, as a result, sub-
optimal regret bounds.

Zolghadr et al. (2013) have recently introduced the online
probing game. In online probing the learner has to predict
labels of feature vectors when there is a cost for observing
entries of the feature vectors and for observing the labels
at the end of each prediction round. This game shares with
our work the spirit of an online game with restricted infor-
mation access. We believe that it will be possible to make
mutual transfer of ideas in future work.

2. Main Results
In this section, we provide formal definitions of the games
and present our main results. We start with prediction with
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limited advice in Section 2.1 and then present multiarmed
bandits with paid observations in Section 2.2. More illu-
minating proofs are provided in Section 3, whereas more
technical results are provided in the appendix.

2.1. Prediction with Limited Advice

The definition of this game is based on the setting of pre-
diction with expert advice described in Cesa-Bianchi & Lu-
gosi (2006). We denote the action space by X , the outcome
space by Y , and the loss function by ` : X × Y → [0, 1]
(for our analysis there is no need to assume that the loss is
convex in the first parameter). The number of experts is de-
noted byN and the experts are indexed by h ∈ {1, . . . , N}.
On each round t of the game, each expert h produces a
piece of advice ξht ∈ X , which is not necessarily observed
by the player. The player gets a budget 1 ≤ Mt ≤ N
and picks a subset Ot ⊆ {1, . . . , N} of Mt experts and
observes their advice. The player then plays an action
Xt ∈ X , the environment reveals an outcome yt ∈ Y , the
player suffers a loss Lt = `(Xt, yt), and the experts suffer
losses `ht = `(ξht , yt). The player observes the losses of all
experts in Ot, but gets no information on the losses of ex-
perts that are not in Ot. We study the problem in a slightly
restricted setting, where the player has to follow the advice
of one of the experts (rather than playing some function of
the experts advice).

Prediction with Limited Advice Game

For t = 1, 2, . . . :

1. The algorithm gets Mt and plays (Ht,Ot), such that
Ot ⊆ {1, . . . , N} and |Ot| = Mt and Ht ∈ Ot.

2. The environment reveals `ht for h ∈ Ot and the algo-
rithm suffers the loss `Htt .

We emphasize that in this game the number of observations
Mt is provided externally to the algorithm and it is assumed
that Mt ≥ 1. We evaluate the performance of algorithms
by their regret defined as

RT = E

[
T∑
t=1

Lt

]
−min

h

{
T∑
t=1

`ht

}
.

Our first result is an anytime (i.e., independent of the time
horizon) algorithm for prediction with limited advice (see
Algorithm 1) and a corresponding bound on its regret in
Theorem 1. We note that for M = N the algorithm re-
covers the exponentially weighted average forecaster algo-
rithm for prediction with expert advice (Cesa-Bianchi &
Lugosi, 2006) (with the restriction that we have to follow
the advice of one expert rather than a linear combination of
expert advice) and for M = 1 it recovers the EXP3 algo-

Algorithm 1 Prediction with limited advice.
Remark: ηt is defined in Theorem 1.
Input: M1,M2, . . . , such that Mt ∈ {1, . . . , N}.
∀h: L̂0(h) = 0.
for t = 1, 2, ... do

Let

qt(h) =
e−ηtL̂t−1(h)∑
h′ e
−ηtL̂t−1(h′)

.

Draw one expert Ht according to qt. Get advice ξHtt .
Sample Mt − 1 additional experts uniformly without
replacement. Denote byOt the set of sampled experts
(we have Ht ∈ Ot and the cardinality of Ot is Mt)
and let 1ht = 1{h∈Ot}.

Play Xt = ξHtt .
Observe outcome yt and suffer loss Lt = `(Xt, yt).

∀h : Lht =
`ht

qt(h) + (1− qt(h))Mt−1
N−1

1ht . (1)

∀h : L̂t(h) =

t∑
s=1

Lhs .

end for

rithm for multiarmed bandits (Auer et al., 2002a; Bubeck &
Cesa-Bianchi, 2012). The proof of the theorem is provided
in Section 3.

Theorem 1. For any non-increasing positive sequence
η1 ≥ η2 ≥ · · · > 0 the expected regret of Algorithm 1
against an oblivious adversary satisfies:

RT ≤
N

2

T∑
t=1

ηt
Mt

+
lnN

η
T

.

In particular, for ηt =
√

lnN
N

∑t
s=1

1
Ms

we have:

RT ≤ 2

√√√√N

(
T∑
t=1

1

Mt

)
lnN.

If Mt = M is constant and ηt =
√

M lnN
tN then:

RT ≤ 2

√
N

M
T lnN.

The “price” that we pay for observing the advice of M

rather than all N experts is the multiplicative
√

N
M term.

In Theorem 2 we provide a matching lower bound, show-
ing that this price is inevitable without additional assump-
tions. For convenience, Theorem 2 is stated for N -armed
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bandits, where we are allowed to make arbitrary observa-
tions. Theorem 2 holds for any algorithm that makes MT
observations throughout the game, no matter how they are
distributed. In particular, the number of observations can
depend on the past observations and the number of obser-
vations on some rounds can be zero. We note that M in
Theorem 2 does not have to be an integer, it is only the
product MT that is assumed to be integer. The proof of the
theorem is provided in the appendix.

Theorem 2. For the N -armed bandit game with MT ob-
served rewards and T ≥ 3

16
N
M ,

inf supRT ≥ 0.03

√
N

M
T,

where the infimum is over all playing strategies and the
supremum is over all oblivious adversaries.

2.2. Multiarmed Bandits with Paid Observations

In order to stress the relation with the game of prediction
with limited advice, we useN to denote the number of arms
in the multiarmed bandit and h ∈ {1, . . . , N} to index the
arms. On every round of the game, the algorithm gets a
vector of non-negative costs ct(1), . . . , ct(N) for observ-
ing the outcomes of the arms. The algorithm then plays
one arm, denoted by Ht, and can request to observe the re-
wards of any subset of armsOt ⊆ {1, . . . , N}. The cost of
observations

∑
h∈Ot ct(h) is added to the regret of the al-

gorithm. The set of observed arms Ot can be empty. Even
when Ot is not empty, Ht does not have to be in Ot (in
other words, even when we make observations we are not
obliged to observe the outcome of the arm that we played).
Formally, the game proceeds as follows.

Multiarmed Bandits with Paid Observations Game

For t = 1, 2, . . . :

1. The algorithm observes ct(1), . . . , ct(N).

2. The algorithm plays (Ht,Ot), such that Ht ∈
{1, . . . , N} and Ot ⊆ {1, . . . , N}.

3. The environment reveals `ht for h ∈ Ot and the algo-
rithm suffers the loss `Htt +

∑
h∈Ot ct(h), where `Htt

is not necessarily observed.

We emphasize that in this game the number of observations
is chosen by the algorithm and it may be equal to zero. In
Algorithm 2 box we present an algorithm for this problem,
which is analyzed in Theorem 3 (the proof is proved in Sec-
tion 3). We use

RcT = E

[
T∑
t=1

Lt

]
+E

[
T∑
t=1

∑
h∈Ot

ct(h)

]
−min

h

{
T∑
t=1

`ht

}

Algorithm 2 Multiarmed Bandits with Paid Observations.
Remark: ηt is defined in Theorem 3.
∀h: L̂0(h) = 0.
for t = 1, 2, ... do

∀h : qt(h) =
e−ηtL̂t−1(h)∑
h′ e
−ηtL̂t−1(h′)

.

Draw action Ht according to qt and play it.

∀h : pt(h) = min

{
1,

√
ηtqt(h)

2ct(h)

}
.

For each h query the loss of h with probability pt(h).
Let 1ht = 1 if the loss of h was observed and 1ht = 0
otherwise.

∀h : Lht =
`ht
pt(h)

1ht .

∀h : L̂t(h) =

t∑
s=1

Lhs .

end for

to denote cost-sensitive regret.

Theorem 3. For any non-increasing positive sequence
η1 ≥ η2 ≥ · · · > 0 the regret of Algorithm 2 against an
oblivious adversary satisfies:

RcT ≤
T∑
t=1

(
ηt
2

+
√

2ηt

N∑
h=1

√
qt(h)ct(h)

)
+

lnN

η
T

.

In particular, if

ηt =
1(√∑N

h=1 ct(h)+
∑t−1
s=1

∑N
h=1

√
qs(h)cs(h)

√
2

3 lnN

)2/3

+
√

t
lnN

is a non-increasing sequence we have:

RcT

≤ (32 lnN)
1/3


√√√√ N∑
h=1

c
T

(h) +

T−1∑
t=1

N∑
h=1

√
qt(h)ct(h)

2/3

+ 2
√
T lnN. (2)

For

ηt =
1(∑t

s=1

√∑N
h=1 cs(h)√

2
3 lnN

)2/3

+
√

t
lnN
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(which is always a non-increasing sequence) we have:

RcT ≤ (32 lnN)
1/3

 T∑
t=1

√√√√ N∑
h=1

ct(h)

2/3

+ 2
√
T lnN.

(3)
Finally, if the cost of observations is uniform over the arms
and game rounds (ct(h) = c for all t and h) the first regret
bound simplifies to

RcT ≤ (32c lnN)
1/3

(
√
N +

T−1∑
t=1

N∑
h=1

√
qt(h)

)2/3

+ 2
√
T lnN (4)

(in this case ηt is always a non-increasing sequence) and
the second regret bound simplifies to

RcT ≤ (32cN lnN)
1/3

T 2/3 + 2
√
T lnN. (5)

The constant in the regret bounds satisfies (32)1/3 < 3.2.
Note that by Jensen’s inequality

∑N
h=1

√
qt(h)ct(h) ≤√∑N

h=1 ct(h), and so bound (2) (when it holds) is tighter
than (3) and bound (4) is tighter than (5). If some arm
h∗ dominates all other arms, asymptotically the distri-
bution qt converges to a delta distribution on h∗ and∑T
t=1

∑N
h=1

√
qt(h)ct(h) converges to

∑T
t=1

√
ct(h∗)

and for the uniform costs
∑T
t=1

√
qt(h) converges to T . In

such case bound (2) improves the dependence on the cost
of observations of suboptimal arms and (4) improves the
dependence on the number of arms (compared to (3) and
(5), respectively).

In general, the first term of the regret bounds in Theo-
rem 3 is dominating, unless the cost of observations is very
small. When the cost of observations is very small the sec-
ond term of the regret bounds dominates. For the uniform
cost setting in Eq. (5) the domination switchover occurs at

c = 2
9N

√
lnN
T . At the extreme of zero cost of observations

the algorithm and the regret bound match the prediction
with expert advice setting, where all arms are observed on
all rounds.

Another interesting observation is the decrease rate in the
number of observations made by the algorithm. For the
uniform costs setting the number of observations per round
decreases as Θ

(
(N lnN)1/3

c2/3t1/3

)
. When the cost of observa-

tions is relatively small compared to the time horizon, the
regime when the algorithm queries more than one observa-
tion per round has significant interest.

The last result of Theorem 3 is accompanied by a match-
ing (up to logarithmic terms) lower bound. The proof of
Theorem 4 is provided in Section 3.

Theorem 4. In the N -armed bandit game with uniform
cost of observations c

inf supRcT ≥ max
{

0.19 (cN)
1/3

T 2/3, 0.03
√
T
}
,

where the infimum is over all playing strategies and the
supremum is over all oblivious adversaries.

We note that there is no contradiction between Theorem 4
and the data-dependent improvement achieved in Eq. (4),
since Theorem 4 considers the worst case and the improve-
ment is achieved under benign conditions.

3. Proofs
The analysis of both our algorithms is based on the follow-
ing lemma, which represents an intermediate step in the
analysis of EXP3 by Bubeck (2010).

Lemma 5. For any N sequences of random variables
Lh1 , L

h
2 , . . . indexed by h ∈ {1, . . . , N}, such that Lht ≥ 0,

and any non-increasing positive sequence η1, η2, . . . , for

qt(h) =
exp(−ηt

∑t−1
s=1 L

h
s )∑

h′ exp(−ηt
∑t−1
s=1 L

h′
s )

(assuming for t = 1 the

sum in the exponent is zero) we have:

T∑
t=1

∑
h

qt(h)Lht −min
h

(
T∑
t=1

Lht

)

≤
T∑
t=1

ηt
2

∑
h

qt(h)
(
Lht
)2

+
lnN

η
T

. (6)

More precisely, we are using the following corollary, which
follows by taking expectations of the two sides of (6) and
using the fact that E [min [·]] ≤ min [E [·]]. We decompose
expectations of incremental sums into sums of conditional
expectations and use Et [·] to denote expectations condi-
tioned on observations up to round t.

Corollary 6. Under the definitions of Lemma 5:

E

[
T∑
t=1

Et

[∑
h

qt(h)Lht

]]
−min

h

(
E

[
T∑
t=1

Et
[
Lht
]])

≤ E

[
T∑
t=1

Et

[
ηt
2

∑
h

qt(h)
(
Lht
)2]]

+
lnN

η
T

.

(7)

We also use the following two technical lemmas. The
proofs of the lemmas are provided in the appendix.

Lemma 7. For any probability distribution q on
{1, . . . , N} and any m ∈ [1, N ]:

N∑
h=1

q(h)(N − 1)

q(h)(N −m) +m− 1
≤ N

m
. (8)
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Lemma 8. For any sequence of non-negative numbers
a1, a2, . . . , such that a1 > 0, and any power γ ∈ (0, 1)
we have:

T∑
t=1

at(∑t
s=1 as

)γ ≤ 1

1− γ

(
T∑
t=1

at

)1−γ

.

Lemma 8 is a generalization of Auer et al. (2002b, Lemma
3.5) from γ = 1/2 to arbitrary γ.

Now we are ready to present the proofs of the theorems.

3.1. Proof of Theorem 1

Proof. We study Et
[
Lht
]
, Et

[∑
h qt(h)Lht

]
, and

Et
[∑

h qt(h)
(
Lht
)2]

for the case of our algorithm.
We have:

Et
[
Lht
]

= `ht . (9)

And we have:

Et

[∑
h

qt(h)Lht

]
= Et

[∑
h

`ht 1
h
t

]
= Et [Lt] . (10)

We also have:

Et

[∑
h

qt(h)
(
Lht
)2]

= Et

∑
h

qt(h)

(
`ht

qt(h) + (1− qt(h))Mt−1
N−1

1ht

)2


= Et

∑
h

qt(h)

(
`ht
)2(

qt(h) + (1− qt(h))Mt−1
N−1

)21ht


≤ Et

∑
h

qt(h)
1(

qt(h) + (1− qt(h))Mt−1
N−1

)21ht


=
∑
h

qt(h)
1(

qt(h) + (1− qt(h))Mt−1
N−1

)2Et [1ht ]
=
∑
h

qt(h)
1

qt(h) + (1− qt(h))Mt−1
N−1

=
∑
h

qt(h)(N − 1)

qt(h)(N −Mt) +Mt − 1

≤ N

Mt
, (11)

where the last inequality is by Lemma 7. By substituting
(9), (10), and (11) into (7) we obtain for all h:

E

[
T∑
t=1

Lt

]
−min

h

(
T∑
t=1

`ht

)
≤ N

2

T∑
t=1

ηt
Mt

+
lnN

η
T

.

This proves the first inequality in Theorem 1. The second
inequality follows by the choice of ηt and Lemma 8 (for
γ = 1/2) and the last inequality follows from the identity∑T
t=1

1
Mt

= T
M when Mt = M is constant.

3.2. Proof of Theorem 3

Proof. Similar to the previous proof, it is easy to ver-
ify that Et

[
Lht
]

= `ht , that Et
[∑N

h=1 qt(h)Lht

]
=

Et [Lt], and that Et
[∑

h∈Ot ct(h)
]

=
∑N
h=1 pt(h)ct(h).

Furthermore, we have Et
[(
Lht
)2] ≤ 1

pt(h)
and thus

Et
[∑N

h=1 qt(h)
(
Lht
)2] ≤ ∑N

h=1
qt(h)
pt(h)

. By substituting
this into (7) and adding the cost of observations we obtain:

RcT = E

[
T∑
t=1

Lt

]
+ E

[
T∑
t=1

N∑
h=1

1ht ct(h)

]
−min

h

(
T∑
t=1

`ht

)

≤
T∑
t=1

N∑
h=1

(
ηtqt(h)

2pt(h)
+ ct(h)pt(h)

)
+

lnN

η
T

, (12)

where ηt has to be a non-increasing sequence.

Our first goal is to minimize the instantaneous contribu-
tions

∑N
h=1

ηtqt(h)
2pt(h)

+ ct(h)pt(h). This leads to the follow-
ing optimization problem

min
pt

N∑
h=1

ηtqt(h)

2pt(h)
+ ct(h)pt(h)

s.t. ∀h : 0 ≤ pt(h) ≤ 1, (13)

which is solved by p∗t (h) = min
{

1,
√

ηtqt(h)
2ct(h)

}
. We note

that if p∗t (h) = 1 it means that ηtqt(h)2ct(h)
≥ 1, which in turn

means that ct(h) =
√
ct(h)

√
ct(h) ≤

√
1
2ηtqt(h)ct(h).

By substituting p∗t into the minimization problem (13) we
obtain:

N∑
h=1

ηtqt(h)

2p∗t (h)
+ ct(h)pt(h)

=

N∑
h=1

1{p∗t (h)=1}

(
ηtqt(h)

2
+ ct(h)

)
+
(
1{p∗t (h)<1}

)√
2ηtqt(h)ct(h)

≤ ηt
2

+
√

2ηt

N∑
h=1

√
qt(h)ct(h).

By substituting this result back into (12) we obtain the first
claim of the theorem:

RcT ≤
T∑
t=1

(
ηt
2

+
√

2ηt

N∑
h=1

√
qt(h)ct(h)

)
+

lnN

η
T

.

(14)
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Now we have to tune the learning rate ηt. We
note that by Jensen’s inequality

∑N
h=1

√
qt(h)ct(h) =∑N

h=1 qt(h)
√

ct(h)
qt(h)

≤
√∑N

h=1 ct(h). We set:

ηt =
1(√∑N

h=1 ct(h)+
∑t−1
s=1

∑N
h=1

√
qs(h)cs(h)

√
2

3 lnN

)2/3

+
√

t
lnN

,

where
√∑N

h=1 ct(h) should be seen as an upper bound

on
∑N
h=1

√
qt(h)ct(h). For a moment assume that∑N

h=1

√
qt(h)ct(h) > 0 for all t. Then we have:

T∑
t=1

√
2ηt

N∑
h=1

√
qt(h)ct(h)

≤
T∑
t=1

(
4
3 lnN

)1/3∑N
h=1

√
qt(h)ct(h)(√∑N

h=1 ct(h) +
∑t−1
s=1

∑N
h=1

√
qs(h)cs(h)

)1/3

≤
(

4

3
lnN

)1/3 T∑
t=1

∑N
h=1

√
qt(h)ct(h)(∑t

s=1

∑N
h=1

√
qs(h)cs(h)

)1/3
≤
(

9

2
lnN

)1/3
(

T∑
t=1

N∑
h=1

√
qt(h)ct(h)

)2/3

,

where in the last inequality we used Lemma 8. Note that
if for some t we have

∑N
h=1

√
qt(h)ct(h) = 0 the corre-

sponding game round makes no contribution to both sides
of the inequality and so the result holds irrespective of the
assumption that

∑N
h=1

√
qt(h)ct(h) > 0 for all t. By sub-

stituting the selected ηt into (14) we obtain bound (2):

RcT

≤ (32 lnN)
1/3


√√√√ N∑
h=1

c
T

(h) +

T−1∑
t=1

N∑
h=1

√
qt(h)ct(h)

2/3

+ 2
√
T lnN.

Inequality (3) follows in a similar way after applying∑N
h=1

√
qt(h)ct(h) ≤

√∑N
h=1 ct(h) in (14).

3.3. Proof of Theorem 4

Proof. By Theorem 2 we know that without taking the cost
of the queries into account the regret of any algorithm that
makes MT observations is lower bounded as:

inf supRT ≥ 0.03

√
N

M
T.

Adding the cost of observations we have that the regret
of any algorithm that makes MT observations is lower

bounded by:

RcT = RT + cMT ≥ 0.03

√
N

M
T + cMT

≥ max
{

0.19c1/3N1/3T 2/3, 0.03
√
T
}
,

where the last inequality follows by the fact that the expres-
sion is minimized by M = 0.032/3c−2/3N1/3T−1/3 and
that M is upper bounded by N .

4. Discussion
We defined the games of prediction with limited advice and
multiarmed bandits with paid observations and provided
algorithms and matching (up to logarithmic factors) up-
per and lower bounds for the two games. Our algorithm
for multiarmed bandits with paid observations treats arm-
and time-dependent observation costs and reduces the re-
gret below the worst-case lower bound under benign con-
ditions.

Our work opens multiple directions for future research.
The multiarmed bandits with paid observations game can
serve as a basic model for learning under restricted in-
formation access in more general reinforcement learning
problems. At the same time, prediction with limited ad-
vice game poses interesting questions about learning under
constraints on the resources, for example, whether it is pos-
sible to achieve sub-polynomial dependence on the number
of experts with a sub-polynomial amount of advice, under
some assumptions on the loss function and/or the experts
class. (Due to the lower bounds we know that without addi-
tional assumptions this is impossible.) It would also be in-
teresting to extend both games to continuous domains and
to stochastic environments.
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A. Proof of Theorem 2
Proof. The proof follows the standard steps in deriving
lower bounds for adversarial bandit problems (Auer et al.,
2002a; Cesa-Bianchi & Lugosi, 2006; Audibert & Bubeck,
2010). The main difference comes in the third step of the
proof. We assume that the forecaster is deterministic. See
(Cesa-Bianchi & Lugosi, 2006) for the standard way of
showing that the lower bound for deterministic forecasters
implies an identical lower bound for stochastic forecasters.

FIRST STEP: DEFINITIONS

We define N games, so that in the h-th game (h ∈
{1, . . . , N}) the loss of action h on round t has Bernoulli
distribution with bias 1+ε

2 and the loss for playing action
h′ for h′ 6= h has Bernoulli distribution with bias 1−ε

2 .
Further, we define the ∅-th game, where all losses have
Bernoulli distribution with bias 1−ε

2 . Denote the losses
by `ht , where h indexes the arms and t indexes the game
rounds.

Let Ht be the arm played by the algorithm on round t. Let
q̂ = (q̂1, . . . , q̂K) be the marginal distribution over arms
played, defined as q̂h = 1

T

∑T
t=1 1{Ht=h}. Let J be a

random variable distributed according to q̂. Denote by Ph
the law of J when the forecaster plays game number h and
let Eh [·] denote expectations in game h. Note that Ph(J =

h) = Eh
[
1
T

∑T
t=1 1{Ht=h}

]
and, therefore, the regret in

the h-th game is:

RT = Eh

[
T∑
t=1

(
`ht − `

Ht
t

)]
= εT

∑
h′ 6=h

Ph(J = h′)

= εT (1− Ph(J = h)) ,

which implies

supRT ≥ εT

(
1− 1

N

∑
h

Ph(J = h)

)
. (15)

SECOND STEP: PINSKER’S INEQUALITY

By Pinsker’s inequality we have:

Ph(J = h) ≤ P∅(J = h) +

√
1

2
KL (P∅‖Ph)

and by the concavity of the square root

1

N

∑
h

Ph(J = h) ≤ 1

N
+

√√√√ 1

2N

N∑
h=1

KL (P∅‖Ph).

THIRD STEP: COMPUTATION OF KL (P∅‖Ph)

Let Ot ⊆ {1, . . . , N} be the subset of arms observed on
round t and let Ot1 = O1, . . . ,Ot. Let Pth be the law of
Ot1 in game h. Note that the sequence of observations
OT1 deterministically determines the sequence of actions
played by the algorithm H1, . . . ,HT and, as a result, the
law of J . By the data processing inequality, KL (P∅‖Ph) ≤
KL
(
PT∅
∥∥PTh ). We apply the chain rule for KL-divergence
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to bound the right hand side of this inequality.

KL
(
PT∅
∥∥PTh )

=

T∑
t=1

∑
ot−1
1

Pt−1∅ (ot−11 )KL
(
Pt∅(·|o

t−1
1 )

∥∥Pth(·|ot−11 )
)

=

T∑
t=1

∑
ot−1
1

Pt−1∅ (ot−11 )1{h∈Ot|ot−1
1 }KL

(
1− ε

2

∥∥∥∥1 + ε

2

)

= KL

(
1− ε

2

∥∥∥∥1 + ε

2

)
E∅

[
T∑
t=1

1{h∈Ot}

]
.

Summing over the actions and applying the inequality

KL (p‖q) ≤ (p− q)2

q(1− q)

we obtain∑
h

KL
(
PT∅
∥∥PTh )

= KL

(
1− ε

2

∥∥∥∥1 + ε

2

)∑
h

E∅

[
T∑
t=1

1{h∈Ot}

]

= KL

(
1− ε

2

∥∥∥∥1 + ε

2

)
E∅

[
T∑
t=1

∑
h

1{h∈Ot}

]

≤ 4ε2

1− ε2
MT.

FOURTH STEP: ε-TUNING

Substituting the above into (15) and taking ε ≤ 1
2 we ob-

tain:

supRT ≥ εT

(
1− 1

N
− 4ε

√
M

6N
T

)

Taking ε = α
√

N
MT we have:

supRT ≥ α
√
NT

M
− α

√
T

NM
− 4α2

√
NT

6M

≥ α
√
NT

M

(
1− 1

2
− 4α√

6

)
= α

√
NT

M

(
1

2
− 4α√

6

)
.

For α =
√
3
8 we get:

supRT ≥
√

3

16

(
1− 1√

2

)√
N

M
T ≥ 0.03

√
N

M
T.

B. Proof of Lemma 7
Proof. First, we show that the maximum of (8) is attained
by the uniform distribution q(h) = 1/N . The Lagrangian
corresponding to minimization of (8) subject to

∑
h q(h) =

1 is:

L(q) =

N∑
h=1

q(h)(N − 1)

q(h)(N −m) +m− 1
+λ

(
1−

∑
h

q(h)

)
.

The first derivative of the Langrangian is:

∂L
∂q(h)

=
(N − 1) ((q(h)(N −m) +m− 1)− q(h)(N −m))

(q(h)(N −m) +m− 1)
2 − λ

=
(N − 1)(m− 1)

(q(h)(N −m) +m− 1)
2 − λ.

The important point is that the derivative depends on h
only through the single term q(h) and, therefore, when
we equate the derivative to zero the extremum is achieved
when all q(h) are either zero or identical. It is easy to check
that solutions, where some elements of q are zero are not
maximal, and so the only candidate for the maximum is
q(h) = 1/N for all h. The second derivative at this point
is:

∂2L
∂q(h)2

= −2(N −m)(N − 1)(m− 1)

(q(h)(N −m) +m− 1)
3 ≤ 0

(note that for m > 1 and N > m the inequality is strict;
and for m = 1 or N = m it is easy to check that (8)
holds) and the mixed partial derivatives ∂2L

∂q(h)∂q(h′) = 0.
Therefore, q(h) = 1/N is the maximum point (for 1 <
m < N ). Substituting q(h) = 1/N into (8) we get:

N∑
h=1

1
N (N − 1)

1
N (N −m) +m− 1

=
N(N − 1)

N −m+N(m− 1)

=
N(N − 1)

m(N − 1)
=
N

m
.

C. Proof of Lemma 8
Proof. The proof generalizes the proof of Auer et al.
(2002b, Lemma 3.5), which is a special case of Lemma 8
for γ = 2. We use the fact that for any x ∈ [0, 1] and
γ ∈ (0, 1) we have

(1− γ)x ≤ 1− (1− x)1−γ .

Taking x = at
(
∑t
s=1 as)

γ we obtain

(1− γ)
at∑t
s=1 as

≤ 1−

(
1− at∑t

s=1 as

)1−γ

.
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Multiplying both sides by
(∑t

s=1 as

)1−γ
we have

(1− γ)
at(∑t

s=1 as

)γ ≤
(

t∑
s=1

as

)1−γ

−

(
t−1∑
s=1

as

)1−γ

.

Finally, by summing the two sides over t and normalizing
by 1− γ we obtain the result.


