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Abstract
We present an algorithm for multiarmed bandits
that achieves almost optimal performance in both
stochastic and adversarial regimes without prior
knowledge about the nature of the environment.
Our algorithm is based on augmentation of the
EXP3 algorithm with a new control lever in the
form of exploration parameters that are tailored
individually for each arm. The algorithm si-
multaneously applies the “old” control lever, the
learning rate, to control the regret in the adver-
sarial regime and the new control lever to detect
and exploit gaps between the arm losses. This
secures problem-dependent “logarithmic” regret
when gaps are present without compromising on
the worst-case performance guarantee in the ad-
versarial regime. We show that the algorithm can
exploit both the usual expected gaps between the
arm losses in the stochastic regime and determin-
istic gaps between the arm losses in the adver-
sarial regime. The algorithm retains “logarith-
mic” regret guarantee in the stochastic regime
even when some observations are contaminated
by an adversary, as long as on average the con-
tamination does not reduce the gap by more than
a half. Our results for the stochastic regime are
supported by experimental validation.

1. Introduction
Stochastic multiarmed bandits (Thompson, 1933; Robbins,
1952; Lai & Robbins, 1985; Auer et al., 2002a) and adver-
sarial multiarmed bandits (Auer et al., 1995; 2002b) have
co-existed in parallel for almost two decades by now, in
the sense that no algorithm for stochastic multiarmed ban-
dits is applicable to adversarial multiarmed bandits and al-
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gorithms for adversarial bandits are unable to exploit the
simpler regime of stochastic bandits. The recent attempt of
Bubeck & Slivkins (2012) to bring them together did not
make it in the full sense of unification, since the algorithm
of Bubeck and Slivkins relies on the knowledge of time
horizon and makes a one-time irreversible switch between
stochastic and adversarial operation modes if the beginning
of the game is estimated to exhibit adversarial behavior.

We present an algorithm that treats both stochastic and ad-
versarial multiarmed bandit problems without distinguish-
ing between them. Our algorithm “just runs”, as most other
bandit algorithms, without knowledge of time horizon and
without making any hard statements about the nature of the
environment. We show that if the environment happens to
be adversarial the performance of the algorithm is just a
factor of 2 worse than the performance of the EXP3 algo-
rithm (with the best constants, as described in Bubeck &
Cesa-Bianchi (2012)) and if the environment happens to be
stochastic the performance of our algorithm is comparable
to the performance of UCB1 of Auer et al. (2002a). Thus,
we cover the full range and achieve almost optimal perfor-
mance at the extreme points.

Furthermore, we show that the new algorithm can exploit
both the usual expected gaps between the arm losses in
the stochastic regime and deterministic gaps between the
arm losses in the adversarial regime. We also show that
the algorithm retains “logarithmic” regret guarantee in the
stochastic regime even when some observations are adver-
sarially contaminated, as long as on average the contam-
ination does not reduce the gap by more than a half. To
the best of our knowledge, no other algorithm has been yet
shown to be able to exploit gaps in the adversarial or ad-
versarially contaminated stochastic regimes. The contami-
nated stochastic regime is a very practical model, since in
many real-life situations we are dealing with stochastic en-
vironments with occasional disturbances.

Since the introduction of Thompson’s sampling (Thomp-
son, 1933) (which was analyzed only after 80 years (Kauf-
mann et al., 2012; Agrawal & Goyal, 2013)) a variety of al-
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gorithms were invented for the stochastic multiarmed ban-
dit problem. The most powerful for today are KL-UCB
(Cappé et al., 2013), EwS (Maillard, 2011), and the afore-
mentioned Thompson’s sampling. It is easy to show that
any deterministic algorithm can potentially suffer linear re-
gret in the adversarial regime (see the supplementary mate-
rial for a proof). Although nothing is known about the per-
formance of randomized algorithms for stochastic bandits
in the adversarial regimes, empirically they are extremely
sensitive to deviations from the stochastic assumption.

In the adversarial world the most powerful algorithm for
today is INF (Audibert & Bubeck, 2009; Bubeck & Cesa-
Bianchi, 2012). Nevertheless, the EXP3 algorithm of Auer
et al. (2002b) still retains an important place, mainly due to
its simplicity and wide applicability, which covers combi-
natorial bandits, partial monitoring games, and many other
adversarial problems. Since any stochastic problem can be
seen as an instance of an adversarial problem, both INF and
EXP3 have the worst-case “root-t” regret guarantee in the
stochastic regime, but it is not known whether they can do
better. Empirically in the stochastic regime EXP3 is inferior
to all other known algorithms for this setting, including the
simplest UCB1 algorithm.

It is interesting to take a brief look into the development
of EXP3. The algorithm was first suggested in Auer et al.
(1995) and its parametrization and analysis were improved
in Auer et al. (2002b). The EXP3 of Auer et. al. was de-
signed for the multiarmed bandit game with rewards and
its playing strategy is based on mixing Gibbs distribution
(also known as “exponential weights”) with a uniform ex-
ploration distribution in proportion to the learning rate. The
uniform exploration leaves no hope for achieving “logarith-
mic” regret in the stochastic regime simultaneously with
the “root-t” regret in the adversarial regime, since each arm
is played at least Ω(

√
t) times in t rounds of the game. By

changing the learning rate Cesa-Bianchi & Fischer (1998)
managed to derive a different parametrization of the algo-
rithm that was shown to achieve “logarithmic” regret in
the stochastic regime, but it had no regret guarantees in
the adversarial regime. Stoltz (2005) has observed that in
the game with losses the “root-t” regret guarantee in the
adversarial regime can be achieved without mixing in the
uniform distribution (and even lead to better constants).1

However, mixing in any distribution that element-wise does
not exceed the learning rate does not break the worst-case
performance of the algorithm in the game with losses. We
exploit this emerged freedom in order to derive a modifi-
cation of the EXP3 algorithm that achieves almost optimal
regret in both adversarial and stochastic regimes without
prior knowledge about the nature of the environment.

1Rewards can be transformed into losses by taking ` = 1 − r.

2. Problem Setting
We study the multiarmed bandit (MAB) game with losses.
In each round t of the game the algorithm chooses one ac-
tion At among K possible actions, a.k.a. arms, and ob-
serves the corresponding loss `At

t . The losses of other arms
are not observed. There is a large number of loss generation
models, four of which are considered below. In this work
we restrict ourselves to loss sequences {`at }t,a that are gen-
erated independently of the algorithm’s actions. Under this
assumption we can assume that the loss sequences are writ-
ten down before the game starts (but not revealed to the
algorithm). We also make a standard assumption that the
losses are bounded in the [0, 1] interval.

The performance of the algorithm is quantified by regret,
defined as the difference between the expected loss of the
algorithm up to round t and the expected loss of the best
arm up to round t:

R(t) =

t∑
s=1

E
[
`As
s

]
−min

a

{
E

[
t∑

s=1

`as

]}
.

The expectation is taken over the possible randomness of
the algorithm and loss generation model. The goal of the
algorithm is to minimize the regret.

We consider two standard loss generation models, the ad-
versarial regime and the stochastic regime and two inter-
mediate regimes, the contaminated stochastic regime and
the adversarial regime with a gap.

Adversarial regime. In this regime the loss sequences are
generated by an unrestricted adversary (who is oblivious to
the algorithm’s actions). This is the most general setting
and the other three regimes can be seen as special cases of
the adversarial regime. An arm a ∈ arg mina′

(∑t
s=1 `

a′

s

)
is known as a best arm in hindsight for the first t rounds.

Stochastic regime. In this regime the losses `at are sam-
pled independently from an unknown distribution that de-
pends on a, but not on t. We use µ(a) = E [`at ] to de-
note the expected loss of arm a. Arm a is called a best
arm if µ(a) = mina′ {µ(a′)} and suboptimal otherwise;
let a∗ denote some best arm. For each arm a, define the
gap ∆(a) = µ(a)− µ(a∗). Let ∆ = mina:∆(a)>0 {∆(a)}
denote the minimal gap.

Letting Nt(a) be the number of times arm a was played up
to (and including) round t, the regret can be rewritten as

R(t) =
∑
a

E [Nt(a)] ∆(a). (1)

Contaminated stochastic regime. In this regime the ad-
versary picks some round-arm pairs (t, a) (“locations”) be-
fore the game starts and assigns the loss values there in an
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arbitrary way. The remaining losses are generated accord-
ing to the stochastic regime.

We call a contaminated stochastic regime moderately con-
taminated after τ rounds if for all t ≥ τ the total number of
contaminated locations of each suboptimal arm up to time
t is at most t∆(a)/4 and the number of contaminated loca-
tions of each best arm is at most t∆/4. By this definition,
for all t ≥ τ on average (over stochasticity of the loss se-
quences) the adversary can reduce the gap of every arm by
at most a half.

Adversarial regime with a gap. An adversarial regime
is named by us an adversarial regime with a gap if there
exists a round τ and an arm a∗τ that persists to be the best
arm in hindsight for all rounds t ≥ τ . We name such arm
a consistently best arm after round τ . If no such arm exists
then a∗τ is undefined. Note that if a∗τ is defined for some τ
then a∗τ ′ is defined for all τ ′ > τ .

We use λt(a) =
∑t
s=1 `

a
s to denote the cumulative loss of

arm a. Whenever a∗τ is defined we define a deterministic
gap of arm a on round τ as:

∆(τ, a) = min
t≥τ

{
1

t
(λt(a)− λt(a∗τ ))

}
.

If a∗τ is undefined, ∆(τ, a) is defined as zero.

Notation. We use 1{E} to denote the indicator function of
eventE and 1at = 1{At=a} to denote the indicator function
of the event that arm a was played on round t.

3. Main Results
Our main results include a new algorithm, which we name
EXP3++, and its analysis in the four regimes defined in the
previous section. The EXP3++ algorithm, provided in Al-
gorithm 1 box, is a generalization of the EXP3 algorithm
with losses.

Algorithm 1 Algorithm EXP3++.
Remark: See text for definition of ηt and ξt(a).
∀a: L̃0(a) = 0.
for t = 1, 2, ... do
βt = 1

2

√
lnK
tK .

∀a: εt(a) = min
{

1
2K , βt, ξt(a)

}
.

∀a: ρt(a) = e−ηtL̃t−1(a)
/∑

a′ e
−ηtL̃t−1(a′).

∀a: ρ̃t(a) = (1−
∑
a′ εt(a

′)) ρt(a) + εt(a).
Draw action At according to ρ̃t and play it.
Observe and suffer the loss `At

t .

∀a : ˜̀a
t =

`
At
t

ρ̃t(a)1
a
t .

∀a : L̃t(a) = L̃t−1(a) + ˜̀a
t .

end for

The EXP3++ algorithm has two control levers: the learn-

ing rate ηt and the exploration parameters ξt(a). The
EXP3 with losses (as described in Bubeck & Cesa-Bianchi
(2012)) is a special case of the EXP3++ with ηt = 2βt and
ξt(a) = 0.

The crucial innovation in EXP3++ is the introduction of ex-
ploration parameters ξt(a), which are tuned individually
for each arm depending on the past observations. In the
sequel we show that tuning only the learning rate ηt suf-
fices to control the regret of EXP3++ in the adversarial
regime, irrespective of the choice of the exploration pa-
rameters ξt(a). Then we show that tuning only the ex-
ploration parameters ξt(a) suffices to control the regret of
EXP3++ in the stochastic regime irrespective of the choice
of ηt, as long as ηt ≥ βt. Applying the two control
levers simultaneously we obtain an algorithm that achieves
the optimal “root-t” regret in the adversarial regime (up
to logarithmic factors) and almost optimal “logarithmic”
regret in the stochastic regime (though with a suboptimal
power in the logarithm). Then show that the new control
lever is even more powerful and allows to detect and ex-
ploit the gap in even more challenging situations, including
moderately contaminated stochastic regime and adversarial
regime with a gap.

Adversarial Regime

First, we show tuning ηt is sufficient to control the regret
of EXP3++ in the adversarial regime.

Theorem 1. For ηt = βt and any ξt(a) ≥ 0 the regret of
EXP3++ for any t satisfies:

R(t) ≤ 4
√
Kt lnK.

Note that the regret bound in Theorem 1 is just a factor
of 2 worse than the regret of EXP3 with losses (Bubeck &
Cesa-Bianchi, 2012).

Stochastic Regime

Now we show that for any ηt ≥ βt tuning the exploration
parameters ξt(a) suffices to control the regret of the algo-
rithm in the stochastic regime. By choosing ηt = βt we
obtain algorithms that have both the optimal “root-t” regret
scaling in the adversarial regime and “logarithmic” regret
scaling in the stochastic regime.

We consider a number of different ways of tuning the
exploration parameters ξt(a), which lead to different
parametrizations of EXP3++. We start with an idealistic
assumption that the gap is known, just to give an idea of
what is the best result we can hope for.

Theorem 2. Assume that the gaps ∆(a) are known. For
any choice of ηt ≥ βt and any c ≥ 18, the regret of
EXP3++ with ξt(a) = c ln(t∆(a)2)

t∆(a)2 in the stochastic regime
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satisfies:

R(t) ≤
∑
a

O

(
ln(t)2

∆(a)

)
+
∑
a

Õ

(
K

∆(a)3

)
.

The constants in this theorem are small and are provided
explicitly in the analysis. We also show that c can be made
almost as small as 2.

Next we show that using the empirical gap as an estimate
of the true gap

∆̂t(a) = min

{
1,

1

t

(
L̃t(a)−min

a′

(
L̃t(a

′)
))}

(2)

we can also achieve polylogarithmic regret guarantee. We
call this algorithm EXP3++AVG.
Theorem 3. Let c ≥ 18 and ηt ≥ βt. Let t∗ be the
minimal integer that satisfies t∗ ≥ 4c2K ln(t∗)4

ln(K) and let

t∗(a) = max
{
t∗,
⌈
e1/∆(a)2

⌉}
. The regret of EXP3++

with ξt(a) = c(ln t)2

t∆̂t−1(a)2
(termed EXP3++AVG) in the

stochastic regime satisfies:

R(t) ≤
∑
a

O

(
ln(t)3

∆(a)

)
+
∑
a

∆(a)t∗(a).

Although the additive constants t∗(a) in this theorem are
very large, in the experimental section we show that a mi-
nor modification of this algorithm performs comparably to
UCB1 in the stochastic regime (and has the adversarial re-
gret guarantee in addition).

In the following theorem we show that if we assume a
known time horizon T , then we can eliminate the additive
term e1/∆(a)2

in the regret bound. The algorithm in The-
orem 4 replaces the empirical gap estimate (2) in the def-
inition of ξt(a) with a lower confidence bound on the gap
and slightly adjusts other terms. We name this algorithm
EXP3++LCBT.
Theorem 4. Consider the stochastic regime with a known
time horizon T . The EXP3++LCBT algorithm with any ηt ≥
βt and appropriately defined ξt(a) achieves regretR(T ) ≤
O(log3 T )

∆3 .

The precise definition of EXP3++LCBT and the proof of The-
orem 4 are provided in the supplementary material. It
seems that simultaneous elimination of the assumption on
the known time horizon and the exponentially large addi-
tive term is a very challenging problem and we defer it for
future work.

Contaminated Stochastic Regime

Next we show that EXP3++AVG can sustain moderate con-
tamination in the stochastic regime without a significant
deterioration in performance.

Theorem 5. Under the parametrization given in Theorem
3, for t∗(a) = max

{
t∗,
⌈
e4/∆(a)2

⌉}
, where t∗ is defined

as before, the regret of EXP3++AVG in the stochastic regime
that is moderately contaminated after τ rounds satisfies:

R(t) ≤
∑
a

O

(
ln(t)3

∆(a)

)
+
∑
a

max {t∗(a), τ} .

The price that is paid for moderate contamination after τ
rounds is the scaling of ∆(a) by a factor of 1/2 and the
additive factor of τ . (The scaling of ∆ affects the definition
of t∗ and the constant in O

(
ln(t)3

∆(a)

)
.) As before, the regret

guarantee of Theorem 5 comes in addition to the guarantee
of Theorem 1.

Adversarial Regime with a Gap

Finally, we show that EXP3++AVG can also take advantage
of deterministic gap in the adversarial regime.

Theorem 6. Under the parametrization given in Theorem
3, the regret of EXP3++AVG in the adversarial regime satis-
fies:

R(t) ≤∑
a

min
τ

{
max

{
t∗, τ, e1/(∆(τ,a))2

}
+O

(
ln(t)3

∆(τ, a)

)}
.

We remind the reader that in the absence of consistently
best arm ∆(τ, a) is defined as zero and the regret bound
is vacuous (but the regret bound of Theorem 1 still holds).
We also note that ∆(τ, a) is a non-decreasing function of
τ . Therefore, there is a trade-off: increasing τ increases
∆(τ, a), but loses the regret guarantee on the rounds be-
fore τ (for simplicity, we assume that we have no guaran-
tees before τ ). Theorem 6 allows to pick τ that minimizes
this trade-off. An important implication of the theorem is
that if the deterministic gap is growing with time the regret
guarantee improves too.

4. Proofs
We prove the theorems from the previous section in the or-
der they were presented.

The Adversarial Regime

The proof of Theorem 1 relies on the following lemma,
which is an intermediate step in the analysis of EXP3 by
Bubeck (2010) (see also Bubeck & Cesa-Bianchi (2012)).

Lemma 7. For any K sequences of non-negative num-
bers Xa

1 , X
a
2 , . . . indexed by a ∈ {1, . . . ,K} and any

non-increasing positive sequence η1, η2, . . . , for ρt(a) =



One Practical Algorithm for Both Stochastic and Adversarial Bandits

exp(−ηt
∑t−1

s=1 X
a
s )∑

h′ exp(−ηt
∑t−1

s=1 X
a
s )

(assuming for t = 1 the sum in the

exponent is zero) we have:∑T
t=1

∑
a ρt(a)Xa

t −mina

(∑T
t=1X

a
t

)
≤ 1

2

T∑
t=1

ηt
∑
a

ρt(a) (Xa
t )

2
+

lnK

η
T

. (3)

More precisely, we are using the following corollary, which
follows by allowing Xa

t -s to be random variables and tak-
ing expectations of the two sides of (3) and using the fact
that E [min[·]] ≤ min [E [·]]. We decompose expectations
of incremental sums into incremental sums of conditional
expectations and use Et [·] to denote expectations condi-
tioned on realization of all random variables up to round
t.

Corollary 8. Let Xa
1 , X

a
2 , . . . for a ∈ {1, . . . ,K} be non-

negative random variables and let ηt and ρt as defined in
Lemma 7. Then:

E

[
T∑
t=1

Et

[∑
a

ρt(a)Xa
t

]]
−min

a

(
E

[
T∑
t=1

Et [Xa
t ]

])

≤ E

[
T∑
t=1

ηt
2
Et

[∑
a

ρt(a) (Xa
t )

2

]]
+

lnK

η
T

.

Proof of Theorem 1. We associate Xa
t in (3) with ˜̀a

t in the
EXP3++ algorithm. We have Et

[
˜̀a
t

]
= `at and since

ρt(a) =
1

1−
∑
a′ εt(a

′)
(ρ̃t(a)− εt(a)) ≥ ρ̃t(a)− εt(a)

and `at ∈ [0, 1] we also have:

Et

[∑
a

ρt(a)˜̀a
t

]
≥ Et

[∑
a

(ρ̃t(a)− εt(a)) `at

]
≥ Et

[
`At
t

]
−
∑
a

εt(a).

As well, we have:

Et

[∑
a

ρt(a)
(

˜̀a
t

)2
]

= Et

∑
a

ρt(a)

(
`At
t

ρ̃t(a)
1at

)2


≤ Et

[∑
a

ρt(a)

ρ̃t(a)2
1at

]
=
∑
a

ρt(a)

ρ̃t(a)

=
∑
a

ρt(a)

(1−
∑
a′ εt(a

′)) ρt(a) + εt(a)
≤ 2K,

where the last inequality follows by the fact that
(1−

∑
a′ εt(a

′)) ≥ 1
2 by the definition of εt(a). Substi-

tution of the above calculations into Corollary 8 yields:

R(t) = E

[
T∑
t=1

`At
t

]
−min

a
E

[
T∑
t=1

`at

]

≤ K
T∑
t=1

ηt +
lnK

η
T

+
∑
a

εt(a) ≤ 2K

T∑
t=1

ηt +
lnK

η
T

.

The result of the theorem follows by the choice of ηt.

The Stochastic Regime

Our proofs are based on the following form of Bern-
stein’s inequality, which is a minor improvement over
Cesa-Bianchi & Lugosi (2006, Lemma A.8) based on the
ideas from Boucheron et al. (2013, Theorem 2.10).
Theorem 9 (Bernstein’s inequality for martingales). Let
X1, . . . , Xn be a martingale difference sequence with re-
spect to filtration F = (Fi)1≤i≤n and let Si =

∑i
j=1Xj

be the associated martingale. Assume that there exist posi-
tive numbers ν and c, such that Xj ≤ c for all j with prob-

ability 1 and
∑n
i=1 E

[
(Xi)

2
∣∣∣Fi−1

]
≤ ν with probability

1. Then for all b > 0:

P
[
Sn >

√
2νb+

cb

3

]
≤ e−b.

We are also using the following technical lemma, which is
proved in the supplementary material.

Lemma 10. For any c > 0:
∑∞
t=0 e

−c
√
t = O

(
2
c2

)
.

The proof of Theorems 2 and 3 is based on the following
lemma.
Lemma 11. Let {εt(a)}∞t=1 be non-increasing determin-
istic sequences, such that εt(a) ≤ εt(a) with probability
1 and εt(a) ≤ εt(a

∗) for all t and a. Define νt(a) =∑t
s=1

1
εs(a) and define the event Eat

t∆(a)−
(
L̃t(a)− L̃t(a∗)

)
≤
√

2 (νt(a) + νt(a∗)) bt +
1.25bt
3εt(a

∗)
. (Eat )

Then for any positive sequence b1, b2, . . . and any t∗ ≥ 2
the number of times arm a is played by EXP3++ up to round
t is bounded as:

E [Nt(a)] ≤ (t∗ − 1) +

t∑
s=t∗

e−bs +

t∑
s=t∗

εs(a)1{Ea
t }

+

t∑
s=t∗

e−ηsgs−1(a),

where

gt(a) = t∆(a)−

√
2tbt

(
1

εt(a)
+

1

εt(a
∗)

)
− 1.25bt

3εt(a
∗)
.
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Proof. Note that elements of the martingale difference se-

quence
{

∆(a)−
(

˜̀a
t − ˜̀a∗

t

)}∞
t=1

are upper bounded by
1

εt(a
∗) + 1. Since εt(a

∗) ≤ εt(a
∗) ≤ 1/(2K) ≤ 1/4 we

can simplify the upper bound by using 1
εt(a

∗) + 1 ≤ 1.25
εt(a

∗) .
Further note that

t∑
s=1

Es
[(

∆(a)−
(

˜̀a
s − ˜̀a∗

s

))2
]

≤
t∑

s=1

Es
[(

˜̀a
s − ˜̀a∗

s

)2
]

=

t∑
s=1

(
Es
[(

˜̀a
s

)2
]

+ Es
[(

˜̀a∗
s

)2
])

≤
t∑

s=1

(
1

p̃s(a)
+

1

p̃s(a∗)

)
≤

t∑
s=1

(
1

εs(a)
+

1

εs(a∗)

)

≤
t∑

s=1

(
1

εs(a)
+

1

εs(a
∗)

)
= νt(a) + νt(a

∗)

with probability 1. Let E denote the complement of event
E. Then by Bernstein’s inequality P

[
Eat
]
≤ bt. The num-

ber of times arm a is played up to round t is bounded as:

E [Nt(a)] =

t∑
s=1

P [As = a]

=

t∑
s=1

P
[
As = a

∣∣Eas−1

]
P
[
Eas−1

]
+ P

[
As = a

∣∣Eas−1

]
P
[
Eas−1

]
≤

t∑
s=1

P
[
As = a

∣∣Eas−1

]
1{Ea

s−1} + P
[
Eas−1

]
≤

t∑
s=1

P
[
As = a

∣∣Eas−1

]
1{Ea

s−1} + e−bs−1 .

For the terms of the sum above we have:

P
[
At = a

∣∣Eat−1

]
1{Ea

s−1} = ρ̃t(a)1{Ea
s−1}

≤ (ρt(a) + εt(a))1{Ea
s−1}

=

(
εt(a) +

e−ηtL̃t−1(a)∑
a′ e
−ηtL̃t−1(a′)

)
1{Ea

s−1}

≤
(
εt(a) + e−ηt(L̃t−1(a)−L̃t−1(a∗))

)
1{Ea

s−1}
≤ εt(a)1{Ea

s−1} + e−ηtgt−1(a),

Where in the last inequality we used the facts that event
Eat holds and that since εt(a) is a non-increasing sequence
νt(a) ≤ t

εt(a) . Substitution of this result back into the com-
putation of E [Nt(a)] completes the proof.

Proof of Theorem 2. The proof is based on Lemma 11. Let
bt = ln(t∆(a)2) and εt(a) = εt(a). For any c ≥ 18
and any t ≥ t∗, where t∗ is the minimal integer for which
t∗ ≥ 4c2K ln(t∗∆(a)2)2

∆(a)4 ln(K) , we have:

gt(a) = t∆(a)−

√
2tbt

(
1

εt(a)
+

1

εt(a∗)

)
− 1.25bt

3εt(a∗)

≥ t∆(a)− 2

√
tbt
εt(a)

− 1.25bt
3εt(a)

= t∆(a)

(
1− 2√

c
− 1.25

3c

)
≥ 1

2
t∆(a).

(The choice of t∗ ensures that for all suboptimal actions a
we have εt(a) = ξt(a), which slightly simplifies the cal-
culations. Also note that since εt(a∗) = min

{
1

2K , βt
}

,
asymptotically 1/εt(a) term in gt(a) dominates 1/εt(a

∗)
term and with a bit more careful bounding c can be made
almost as small as 2.) By substitution of the lower bound
on gt(a) into Lemma 11 we have:

E [Nt(a)] ≤ t∗ +
ln(t)

∆(a)2
+
c ln(t)2

∆(a)2

+

t∑
s=1

(
e−

∆(a)
4

√
(s−1) ln(K)

K

)
≤ c ln(t)2

∆(a)2
+

ln(t)

∆(a)2
+O

(
K

∆(a)2

)
+ t∗,

where we used Lemma 10 to bound the sum of the expo-
nents. Note that t∗ is of order Õ

(
K

∆(a)4

)
.

Proof of Theorem 3. Note that since by our defi-
nition ∆̂t(a) ≤ 1 the sequence εt(a) = εt =

min
{

1
2K , βt,

c ln(t)2

t

}
satisfies the condition of

Lemma 11. Also note that for t large enough, so
that t ≥ 4c2K ln(t)4

lnK , we have εt = c ln(t)2

t . Let bt = ln(t)
and let t∗ be large enough, so that for all t ≥ t∗ we
have t ≥ 4c2K ln(t)4

lnK and t ≥ e
1

∆(a)2 . We are going
to bound the three terms in the bound on E [Nt(a)] in
Lemma 11. Bounding

∑t
s=t∗ e

−bs is easy. For bounding∑t
s=t∗ εs(a)1{Ea

s−1} we note that when Eat holds and
c ≥ 18 we have:

∆̂t(a) ≥ 1

t

(
L̃t(a)−min

a′
L̃t(a

′)
)
≥ 1

t

(
L̃t(a)− L̃t(a∗)

)
≥ 1

t
gt(a) =

1

t

(
t∆(a)− 2

√
tbt
εt
− 1.25bt

3εt

)
(4)

=
1

t

(
t∆(a)− 2t√

c ln(t)
− 1.25t

3c ln t

)

≥ ∆(a)

(
1− 2√

c
− 1.25

3c

)
≥ 1

2∆(a),
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where in (4) we used the fact that Eat holds and in the last
line we used the fact that for t ≥ t∗ we have

√
ln t ≥

1/∆(a). Thus

εt1{Ea
s−1} ≤

c(ln t)2

t∆̂t(a)2
≤ 4c2(ln t)2

t∆(a)2

and
∑t
s=t∗ εs1{Ea

s−1} = O
(

ln(t)3

∆(a)2

)
. Finally, for the last

term in Lemma 11 we have already shown as an interme-
diate step in the calculation of the bound on ∆̂t(a) that for
t ≥ t∗ we have gt(a) ≥ 1

2∆(a). Therefore, the last term

is of order O
(

K
∆(a)2

)
. By taking all these calculations to-

gether we obtain the result of the theorem. Note that the
result holds for any ηt ≥ βt.

The Contaminated Stochastic Regime

Proof of Theorem 5. The key element of the previous proof
was a high-probability lower bound on L̃t(a) − L̃t(a

∗).
We show that we can obtain a similar lower bound in the
contaminated setting too. Let 1×t,a denote the indicator
function of contamination in “location” (t, a) (1×t,a takes
value 1 if contamination occurred and 0 otherwise). Let
ma
t = 1×t,a`

a
t +

(
1− 1×t,a

)
µ(a), in other words, if either

a was contaminated on round t then ma
t is the adversar-

ially assigned value of the loss of arm a on round t and
otherwise it is the expected loss. Let Mt(a) =

∑t
s=1m

a
s

then (Mt(a)−Mt(a
∗)) −

(
L̃t(a)− L̃t(a∗)

)
is a martin-

gale. By definition of moderately contaminated after τ
rounds process, for t ≥ τ and any suboptimal action
a the total number of rounds up to t where either a it-
self or a∗ were contaminated is at most t∆(a)/2. There-
fore, Mt(a) −Mt(a

∗) ≥ (t− t∆(a)/2) ∆(a) − t∆/2 ≥
t∆(a)/2. Define event Bat :

t∆(a)

2
−
(
L̃t(a)− L̃t(a∗)

)
≤ 2
√
νtbt +

1.25bt
3εt

, (Bat )

where εt is defined in the proof of Theorem 3 and νt =∑t
s=1

1
εs

. Then by Bernstein’s inequality P
[
Bat
]
≤ bt.

The remainder of the proof is identical to the proof of The-
orem 3 with ∆(a) replaced by ∆(a)/2.

The Adversarial Regime with a Gap

The proof of Theorem 6 is based on the following lemma,
which is an analogue of Theorems 3 and 5.

Lemma 12. Under the parametrization given in Theorem
3, the number of times a suboptimal arm a is played by
EXP3++AVG in an adversarial regime with a gap satisfies:

E [Nt(a)] ≤ max
{
t∗, τ, e1/(∆(τ,a))2

}
+O

(
ln(t)3

∆(τ, a)2

)
.

Proof. Again, the only modification we need is a high-
probability lower bound on L̃t(a) − L̃t(a∗τ ). We note that
(λt(a)− λt(a∗τ ))−

(
L̃t(a)− L̃t(a∗τ )

)
is a martingale and

that by definition for t ≥ τ we have (λt(a)− λt(a∗τ )) ≥
t∆(τ, a). Define the events W a

t :

t∆(τ, a)−
(
L̃t(a)− L̃t(a∗τ )

)
≤ 2
√
νtbt+

1.25bt
3εt

, (W a
t )

where εt and νt are as in the proof of Theorem 5. By Bern-
stein’s inequality P

[
W a
t

]
≤ bt. The remainder of the proof

is identical to the proof of Theorem 3.

Proof of Theorem 6. Note that by definition ∆(τ, a) is a
non-decreasing sequence of τ . Since Lemma 12 is a de-
terministic result it holds for all τ simultaneously and we
are free to choose the one that minimizes the bound.

5. Empirical Evaluation: Stochastic Regime
We consider the stochastic multiarmed bandit problem with
Bernoulli rewards. For all the suboptimal arms the rewards
are Bernoulli with bias 0.5 and for the single best arm the
reward is Bernoulli with bias 0.5 + ∆. We run the experi-
ments with K = 2, K = 10, and K = 100, and ∆ = 0.1
and ∆ = 0.01 (in total, six combinations of K and ∆). We
run each game for 107 rounds and make ten repetitions of
each experiment. The solid lines in the graphs in Figure 1
represent the mean performance over the experiments and
the dashed lines represent the mean plus one standard de-
viation (std) over the ten repetitions of the corresponding
experiment.

In the experiments EXP3++ is parametrized by ξt(a) =
ln(t∆̂t(a)2)

32t∆̂t(a)2
, where ∆̂t(a) is the empirical estimate of ∆(a)

defined in (2). In order to demonstrate that in the stochastic
regime the exploration parameters are in full control of the
performance we run the EXP3++ algorithm with two dif-
ferent learning rates. EXP3++EMP corresponds to ηt = βt
and EXP3++ACC corresponds to ηt = 1. Note that only the
EXP3++EMP has a performance guarantee in the adversarial
regime.

We compare EXP3++ algorithm with the EXP3 algorithm
(as described in Bubeck & Cesa-Bianchi (2012)), the UCB1
algorithm of Auer et al. (2002a), and Thompson’s sam-
pling. Since it was demonstrated empirically in Seldin et al.
(2013) that in the above experiments the performance of
Thompson sampling is comparable or superior to the per-
formance of EwS and KL-UCB, the latter two algorithms are
excluded from the comparison. For the EXP3++ and the
EXP3 algorithms we transform the rewards into losses via
`at = 1 − rat transformation, other algorithms operate di-
rectly on the rewards.
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(f) K = 100, ∆ = 0.01

Figure 1. Comparison of UCB1, Thompson sampling (“Thom”), EXP3, and EXP3++ algorithms in the stochastic regime. The legend
in figure (f) corresponds to all the figures. EXP3++EMP is the Empirical EXP3++ algorithm and EXP3++ACC is an Accelerated Empirical
EXP3++, where we take ηt = 1. Solid lines correspond to means over 10 repetitions of the corresponding experiments and dashed lines
correspond to the means plus one standard deviation.

The results are presented in Figure 1. We see that in all the
experiments the performance of EXP3++EMP is almost iden-
tical to the performance of UCB1. However, unlike UCB1

and Thompson’s sampling, EXP3++EMP is secured against
the possibility that the game is controlled by an adversary.
In the supplementary material we show that any determin-
istic algorithm is vulnerable against an adversary.

The EXP3++ACC algorithm can be seen as a teaser for future
work. It performs better than EXP3++EMP, but it does not
have the adversarial regime performance guarantee. How-
ever, we do not exclude the possibility that by some more
sophisticated simultaneous control of ηt and εt(a)-s it may
be possible to design an algorithm that will have both better
performance in the stochastic regime and a regret guaran-
tee in the adversarial regime. An example of such sophis-
ticated control of the learning rate in the full information
games can be found in de Rooij et al. (2014).

6. Discussion
We presented a generalization of the EXP3 algorithm, the
EXP3++ algorithm, which augments the EXP3 algorithm
with a new control lever in the form exploration parame-
ters εt(a) that are tuned individually for each arm. We have

shown that the new control lever is extremely useful in de-
tecting and exploiting the gap in a wide range of regimes,
while the old control lever always keeps the worst-case per-
formance of the algorithm under control. Due to the cen-
tral role of the EXP3 algorithm in the adversarial analysis
that stretches far beyond the adversarial bandits and due
to the simplicity of our generalization we believe that our
result will lead to a multitude of new algorithms for other
problems that exploit the gaps without compromising on
the worst-case performance guarantees. There is also room
for further improvement of the presented technique that we
plan to pursue in future work.
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