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A. Proofs of theorems of Section 3

Below we use a slightly modified definition of Algorithm
1. The difference lies only in the sampling procedure, and
is essentially a technical difference to ensure that each co-
ordinate step indeed improves the objective or lies at an op-
timum, so that the proofs could be stated more succinctly.

Algorithm 4 Riemannian coordinate minimization onOd,
sampling variant
Input: Differentiable objective functionf , initial matrix

U0 ∈ Od

t = 0
while not convergeddo

1. Sample coordinate pairs(i(t), j(t)) such that1 ≤
i(t) < j(t) ≤ d uniformly at random without replace-
ment, until the objective function can improve
2. Ut+1 = argmin

θ

f (Ut ·G(i, j, θ)).

3. t = t+ 1.
end while

Definition 1. A point U∗ ∈ Od is asymptotically stable
with respect to Algorithm4 if it has a neighborhoodV of
U∗ such that all sequences generated by Algorithm4 with
starting pointU0 ∈ V converge toU∗.

Theorem 1. Convergence to local optimum
(a) The sequence of iteratesUt of Algorithm 4 satisfies:
limt→∞ ||∇f(Ut)|| = 0. This means that the accumula-
tion points of the sequence{Ut}

∞
t=1 are critical points off .

(b) Assume the critical points off are isolated. LetU∗ be
a critical point off . ThenU∗ is a local minimum off
if and only if it is asymptotically stable with regard to the
sequence generated by Algorithm4.

Proof. (a) Algorithm 4 is obtained by taking a step in
each iterationt in the direction of the tangent vectorZt,
such that for the coordinates(i(t), j(t)) we have(Zt)ij =

−(∇f(Ut))ij , (Zt)ji = −(∇f(Ut))ji , and(Zt)kl = 0 for
all other coordinates(k, l).

The sequence of tangent vectorsZt ∈ TUt
Od is easily seen

to be gradient related:lim sup k → ∞〈∇f(Ut), Zt〉 < 0
1. This follows fromZt being equal to exactly two coordi-
nates of∇f(Ut), with all other coordinates being 0.

Using the optimal step size as we do assures at least as
large an increasef(Ut) − f(Ut+1) as using the Armijo
step size rule (Armijo, 1966; Bertsekas, 1999). Using the
fact that the manifoldOd is compact, we obtain by the-
orem 4.3.1 and corollary 4.3.2 ofAbsil et al. (2009) that
limt→∞ ||∇f(Ut)|| = 0

(b) Since Algorithm4 produces a monotonically decreas-
ing sequencef(Ut), and since the manifoldOd is compact,
we are in the conditions of Theorems 4.4.1 and 4.4.2 of
Absil et al.(2009). These imply that the only critical points
which are local minima are asymptotically stable.

We now provide a rate of convergence proof. This proof
is a Riemannian version of the proof for the rate of con-
vergence of Euclidean random coordinate descent for non-
convex functions given byPatrascu & Necoara(2013).

Definition 2. For an iterationt of Algorithm4, and a set of
indices(i(t), j(t)), we define the auxiliary single variable
functiongijt :

g
ij
t (θ) = f (Ut ·G(i, j, θ)) , (1)

Note thatgijt are differentiable and periodic with a period
of 2π. SinceOd is compact andf is differentiable there
exists a single Lipschitz constantL(f) > 0 for all gijt .

1To obtain a rigorous proof we slightly complicated the sam-
pling procedure in line 1 of Algorithm 1, such that coordinates
with 0 gradient are not resampled until a non-zero gradient is sam-
pled.
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Theorem 2. Rate of convergence
Let f be a continuous function withL-Lipschitz direc-
tional derivatives2. Let Ut be the sequence generated by
Algorithm 4. For the sequence of Riemannian gradients
∇f(Ut) ∈ TUt

Od we have:

max
0≤t≤T

E
[

||∇f(Ut)||
2
2

]

≤
L · d2 (f(U0)− fmin)

T + 1
. (2)

Lemma 1. Let g : R → R be a periodic differentiable
function, with period2π, and L−Lipschitz derivativeg′.
Then there for allθ ∈ [−π π]: g(θ) ≤ g(0)+θg′(0)+ L

2 θ
2.

Proof. We have for allθ,
|g′(θ) − g′(0)| ≤ L|θ|. We now have:g(θ) − g(0) −

θg′(0) =
∫ θ

0
g′(τ) − g′(0)dτ ≤

∫ θ

0
|g′(τ) − g′(0)|dτ ≤

∫ θ

0
L|τ |dτ = L

2 θ
2.

Corollary 1. Let g = gt+1
i(t+1)j(t+1). Under the conditions

of Algorithm4, we have:
f(Ut)− f(Ut+1) ≥

1
2L∇ijf(Ut)

2 for the same constantL
defined in1.

Proof. By the definition of g we have f(Ut+1) =
min
θ

g(θ), and we also haveg(0) = f(Ut). Finally, by

Eq. 1 of the main paper we have∇ijf(Ut) = g′(0). From
Lemma1, we haveg(θ) − g(0) ≤ θg′(0) + L

2 θ
2. Mini-

mizing the right-hand side with respect toθ, we see that
min
θ

{g(0)−g(θ)} ≥ 1
2L (g

′(0))2. Substitutingf(Ut+1) =

min
θ

g(θ) ,f(Ut) = g(0), and 1
2L∇ijf(Ut) = g′(0) com-

pletes the result.

Proof of Theorem 2.By Corollary 1, we havef(Ut) −
f(Ut+1) ≥ 1

2L∇ijf(Ut)
2. Recall that±∇ijf(Ut) is the

(i, j) and(j, i) entry of∇f(Ut). If we take the expectation
of both sides with respect to a uniform random choice of
indicesi, j such that1 ≤ i < j ≤ d, we have:

E [f(Ut)− f(Ut+1)] ≥
1

L · d2)
||∇f(Ut)||

2, (3)

Summing the left-hand side gives a telescopic sum which
can be bounded byf(U0) − min

U∈Od

f(U) = f(U0) − fmin.

Summing the right-hand side and using this bound, we ob-
tain

T
∑

t=0

E
[

||∇f(Ut)||
2
2

]

≤ L · d2(f(U0)− fmin) (4)

This means that min
0≤t≤T

E
[

||∇f(Ut)||
2
2

]

≤

L·d2(f(U0)−fmin)
T+1 .

2BecauseOd is compact, any functionf with a continuous
second-derivative will obey this condition.

B. Proofs of theorems of Section 5

Definition 4. A tensorT is orthogonally decomposableif
there exists an orthonormal set of vectorsv1, . . . vd ∈ R

d,
and positive scalarsλ1, . . . λd > 0 such that:

T =

d
∑

i=1

λi(vi ⊗ vi ⊗ vi). (5)

Theorem 3. Let T ∈ Rd×d×d have an orthogonal decom-
position as in Definition 4, and consider the optimization
problem

max
U∈Od

f(U) =

d
∑

i=1

T (ui, ui, ui), (6)

whereU = [u1 u2 . . . ud]. The stable stationary points of
the problem are exactly orthogonal matricesU such that
ui = vπ(i) for a permutationπ on [d]. The maximum value

they attain is
∑d

i=1 λi.

Proof. For a tensorT ′ denote vec(T ′) ∈ R
d3

the
vectorization ofT ′ using some fixed order of indices.
Set T̂ (U) =

∑d

i=1(ui ⊗ ui ⊗ ui), with T̂ (U)abc =
∑d

i=1 uiauibuic. The sum of trilinear forms in Eq.6 is
equivalent to the inner product inRd3

betweenT̂ (U) and
T :

∑d

i=1 T (ui, ui, ui) =
∑d

i=1

∑

abc Tabcuiauibuic =
∑

abc Tabc

(

∑d

i=1 uiauibuic

)

=
∑

abc TabcT̂ (U)abc =

vec(T ) · vec(T̂ (U)). Consider the following two facts:
(1) T̂ (U)abc ≤ 1 ∀a, b, c = 1 . . . d: since the vectors
ui are orthogonal, all their componentsuia ≤ 1. Thus
T̂ (U)abc =

∑d

i=1 uiauibuic ≤
∑d

i=1 uiauib =≤ 1, where
the last inequality is because the sum is the inner product
of two rows of an orthogonal matrix.
(2) ||vec(T̂ (U))||22 = d. This is easily checked by forming
out the sum of squares explicitly, using the orthonormality
of the rows and columns of the matrixU .
Assume without loss of generality thatV = Id. This is
because we may replace the termsT (ui, ui, ui) in the ob-
jective withT (V Tui, V

Tui, V
Tui), and because the man-

ifold V TOd is identical toOd. Thus we have thatT is a
diagonal tensor, withTaaa = λa > 0, a = 1 . . . d. Con-
sidering facts (1) and (2) above, we have the following in-
equality:

max
U∈Od

d
∑

i=1

T (ui, ui, ui) = max
U∈Od

vec(T̂ (U)) · T ≤ (7)

max
T̂

vec(T̂ ) · T s.t. ||vec(T̂ )||∞ ≤ 1 ∧ ||vec(T̂ )||22 = d.

(8)

T is diagonal by assumption, with exactlyd non-zero en-
tries. Thus the maximum of (5) is attained if and only if
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Algorithm 5 Riemannian coordinate minimization for
streaming sparse PCA

Input: Data streamai ∈ R
d, number of sparse principal

componentsm, initial matrixU0 ∈ Om, sparsity param-
eterγ ≥ 0, number of inner iterationsL.
AU = [a1a2 . . . am] · U0 . //AU is of sized×m

while not stoppeddo
for t = 1 . . . L do

1. Sample uniformly at random a pair(i(t), j(t))
such that1 ≤ i(t) < j(t) ≤ m.
2. θt+1 = argmax

θ
∑d

k=1([|cos(θ)(AU)ki(t)+sin(θ)(AU)kj(t)|−γ]2+
+[| − sin(θ)(AU)ki(t) + cos(θ)(AU)kj(t)| − γ]2+).
3.AU = AU ·G(i(t), j(t)), θt+1).

end for
4. imin = argmin

i=1...m
||(AU):,i||2.

5. Sample new data pointanew.
6. (AU):,imin

= anew.
end while
Z = solveForZ(AU, γ) // Algorithm 6 of

Jourńee et al.(2010).
Output: Z ∈ R

d×m

T̂aaa = 1, a = 1 . . . d, and all other entries of̂T are0. The
value at the maximum is then

∑d

i=1 λi.

The diagonal ones tensor̂T can be decomposed into
∑d

i=1 ei ⊗ ei ⊗ ei. Interestingly, in the tensor case, un-
like in the matrix case, the decomposition of orthogonal
tensors isuniqueupto permutation of the factors (Kruskal,
1977; Kolda & Bader, 2009). Thus, the only solutions
which attain the maximum of7 are those whereui = eπ(i),
i = 1, . . . d.

C. Algorithm for streaming sparse PCA

Following are the details for the streaming sparse PCA ver-
sion of our algorithm used in the experiments of section
4. The algorithm itself is brought in Algorithm5. The
algorithm starts with running the original coordinate mini-
mization procedure on the firstm samples. It then chooses
the column with the leastl2 and replaces it with a new data
sample, and then re-optimizes on the new set of samples.
There is no need for it to converge in the inner iterations,
and in practice we found that orderm steps after each new
sample are enough for good results.

D. Alternate version of orthogonal tensor
decomposition algorithm - lazy tensor
evaluation

Algorithm 3 in the main text is “Riemannian coordinate
maximization for orthogonal tensor decomposition”. The
version presented there assumes that the fulld× d× d ten-
sorT is given as input to the algorithm. Typically in the
applications we consider here, this tensor is formed as a
third order moment from a given dataset. LetA ∈ R

d×n

be the data matrix, consisting ofn observation withd di-
mensions. In the simplest case we will have thatTijk =
∑n

l=1 AilAjlAkl. More complex cases (for example when
applying the method to fit an LDA model) still require sim-
ple vector operations which costO(n) computations to ob-
tain each valueTijk.

We can therefore adopt a lazy computation model, and re-
frain from constructing the entire moment tensorT in ad-
vance. Instead we may calculate the entriesTijk only on
demand, and on each step apply the Givens rotation to the
data matrixinstead of the tensor. This requiresO(n) oper-
ations, as we will be rotating thei andj dimensions (rows)
of the data matrixA. See Algorithm6 below.

Overall the computational cost of each step of this version
of the algorithm isO(n) wheren is the number of data sam-
ples. This is compared toO(d2) operations for the version
presented in the main text, whered is typically not the orig-
inal data dimension, but the number of latent variables such
as latent topics in LDA or mixture components in a GMM.
SeeAnandkumar et al.(2012) for more details.

Algorithm 6 Riemannian coordinate maximization for or-
thogonal tensor decomposition with lazy tensor evaluation

Input: Data matrixA ∈ Rd×n. ProcedureS(A) for ob-
taining single tensor entries fromA with computational
costO(n).
Initialize t = 0, Ã0 = A, U0 = Id.
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ d.
2. ObtainTiii, Tjjj , Tijj , Tjii from Ãt by S(Ãt).
3. θt = argmax

θ

g
ij
t (θ), wheregijt is defined as in Eq.

9 of the main text.
4. Ãt+1 = G(i, j, θt)

T Ãt.
5. Ut+1 = UtG(i, j, θt).
6. t = t+ 1.

end while
Output: Ufinal.
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