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A. Proofs of theorems of Section 3 —(VfU))ijs (Z1)ji = —(Vf(U)) i » and(Zy) i = 0 for

all other coordinateék, 7).
Below we use a slightly modified definition of Algorithm &, 1)

1. The difference lies only in the sampling procedure, andrhe sequence of tangent vectdfsc Ty, O, is easily seen
is essentially a technical difference to ensure that each c#0 be gradient relatedim sup k — oo(V f(U;), Z;) < 0
ordinate step indeed improves the objective or lies at an og- This follows fromZ; being equal to exactly two coordi-
timum, so that the proofs could be stated more succinctly. nates ofV f(U;), with all other coordinates being 0.

y . _ _ S— Using the optimal step size as we do assures at least as

Algorlt_hm 4 Rlemanman coordinate minimization @, large an increasg(U;) — f(Us+1) as using the Armijo

sampling variant step size ruleArmijo, 1966 Bertsekas1999. Using the

Input:  Differentiable objective functiory, initial matrix  fact that the manifold?, is compact, we obtain by the-
Uo € Oq orem 4.3.1 and corollary 4.3.2 dfbsil et al. (2009 that

t=0 limg o0 ||V (U] = 0
while not convergedio ) ) .
1. Sample coordinate paits(t), j(t)) such thatl < (b) Since Algorithm4 produces a monotonically decreas-

i(t) < j(t) < d uniformly at random without replace- ing sequencg (U,), and since the manifol@, is compact,

ment, until the objective function can improve we are in the conditions of Theorems 4.4.1 and 4.4.2 of
2.Upy1 = argmin f (U, - G(4, §,0)). Absil et al.(2009. These imply that the only critical points
0 which are local minima are asymptotically stable.
.t=t+1.
end while O

Definition 1. A pointU, € O, is asymptotically stable We now provide a rate of convergence proof. This proof
with respect to Algorithnd if it has a neighborhood of IS @ Riemannian version of the proof for the rate of con-
U, such that all sequences generated by Algorithmith ~ vergence of Euclidean random coordinate descent for non-

starting pointU, € V converge tdJ,. convex functions given biPatrascu & Necoar@013.
Definition 2. For an iterationt of Algorithm4, and a set of

Theorem 1. Convergence to local optimum indices(i(t), j(t)), we define the auxiliary single variable

(a) The sequence of iteratés of Algorithm 4 satisfies: functiong,” :

lim; o ||V f(U¢)|| = 0. This means that the accumula- B

tion points of the sequend@/; } 32, are critical points off. 9/ (0) = f (U - G(3,4,0)) , 1)

(b) Assume the critical points of are isolated. LeU, be

a critical point of f. ThenU, is a local minimum off  Note thatg)’ are differentiable and periodic with a period
if and only if it is asymptotically stable with regard to the of 2. Since, is compact andf is differentiable there
sequence generated by Algoritiin exists a single Lipschitz constaht ) > 0 for all g;”.

. . . . . To obtain a rigorous proof we slightly complicated the sam-
Proof. (a) Algorithm 4 is obtained by taking a step in pling procedure in line 1 of Algorithm 1, such that coordinates

each iteratiort in the direction of the tangent vectdf;,  with 0 gradient are not resampled until a non-zero gradient is sam-
such that for the coordinat€g(t), j(t)) we have(Z;);; =  pled.



Supplemental material of Coordinate-descent for learning orthgonal matrices

Theorem 2. Rate of convergence
Let f be a continuous function withL-Lipschitz direc-

tional derivatives’. Let U, be the sequence generated by
Algorithm 4. For the sequence of Riemannian gradient

Vi(U) € Ty,O4 we have:
L. d2 (f(UO) - fmzn)
T+1

Lemma 1. Letg : R — R be a periodic differentiable
function, with period27, and L—Lipschitz derivativey'.
Then there for alp € [~ 7]: g(6) < g(0)+0g'(0)+ %62

. ()

max E [[|Vf(Uy)]3] <

0<t<T

Proof. We have for alb,

9'(0) — ¢'(0)] < LIBl. We now have:g(0) — g(0) —
0 ’ -6 ’

09'(0) = [y 9'(1) — ¢'(0)dr < [y 1g'(7) — ¢'(0)]dr <

foe Lir|dr = £62. O

1

Corollary 1. Letg = g;(t+1)j(t+1

of Algorithm4, we have:

f(U) = f(Ues1) = 57 Vi, f(Up)? for the same constarit

defined inl.

) Under the conditions

Proof. By the definition of ¢ we have f(U;+1) =
mein g(0), and we also have(0) = f(U;). Finally, by
Eq. 1 of the main paper we ha¥g; f(U;) = ¢’(0). From
Lemmal, we haveg() — g(0) < 0¢'(0) + £62. Mini-
mizing the right-hand side with respect @ip we see that
min {9(0) — g(6)} > 7(¢/(0))*. Substitutingf (Us1) =
min 9(0) .f(U;) = g(0), and5-Vi; f(U;) = ¢'(0) com-
pletes the result.

Proof of Theorem 2By Corollary 1, we have f(U;) —
f(Uis1) = 55 Vi; f(Up)?. Recall that+V;; f(Uy) is the

S

B. Proofs of theorems of Section 5

Definition 4. AtensorT is orthogonally decomposabig
there exists an orthonormal set of vectors. .. vy € RY,
and positive scalars;, ... \; > 0 such that:

d
T = Z)\i(vi Rv; ® ’Ui).

i=1

(®)

Theorem 3. LetT € R4*4*d have an orthogonal decom-
position as in Definition 4, and consider the optimization
problem

(6)

UeOy4

d
max f(U) = ZT(UmUmUi)a
i=1

whereU = [uj us ... ug]. The stable stationary points of
the problem are exactly orthogonal matridéssuch that
u; = vy (; for a permutationr on [d]. The maximum value

they attain iy, \;.

Proof. For a tensor7’ denote vetl”) € R% the
vectorization of 77 using some fixed order of indices.
SetT(U) = Y% (u; ® w; ® w;), With T(U)ape =
Z?Zl UjaUipUic. The sum of trilinear forms in Eq6 is
equivalent to the inner product iR?’ between?'(U) and
T: Z;i=1 T(uz,uzauz) - Zle Zabc Tabcuiauibuic -
Zabc Tape (Z?:l uiauibuic) - Zabc ZLbcT(U)abc -
vedT) -vedT'(U)). Consider the following two facts:

1) T(W)ape < 1 Va,b,c = 1...d: since the vectors
u; are orthogonal, all their components, < 1. Thus
T(U)abc = 2?21 Uiq UipWUie < 2?21 UiqUip =< 1, where
the last inequality is because the sum is the inner product
of two rows of an orthogonal matrix.

(2,9) and(j,z’) entry of VF(Uy). If we take the expecta’gion (2) |IvedT(U))||2 = d. This is easily checked by forming
of both sides with respect to a uniform random choice ofgt the sum of squares explicitly, using the orthonormality

indicesi, j such thatl < i < j < d, we have:

1

Ef(U) ~ fU1)] = 7 VAU,

TRE) 3

of the rows and columns of the matiix

Assume without loss of generality th&t = ;. This is
because we may replace the terfig.;, u;, u;) in the ob-
jective with T (VT u;, VTu;, VTu;), and because the man-

Summing the left-hand side gives a telescopic sum whictifold V7O is identical toO4. Thus we have thal is a

can be bounded by(Uy) — Unél(g FU) = f(Uo) = fmin-

Summing the right-hand side and using this bound, we o

tain
T
STE[|IVHUIE] < L-d*(f(U0) = fmin) (4
t=0
. . 2 <
This means that OglgTE IV f(U)]]3] <
L-d?>(f(Uo)— frmin
(o) fimin) L

’Because?, is compact, any functiorf with a continuous
second-derivative will obey this condition.

b-

diagonal tensor, witll,,, = Ay > 0,a = 1...d. Con-
sidering facts (1) and (2) above, we have the following in-
equality:

d
T(ui, ui, u;) = vedT(U))-T < 7
5%8&1:1 (wi, ui; u;) Jnax oqT'(U)) )

max vedT)-T s.t.
T

IveaT)lloe <1 A |IvedT)|[3 = d.
@)

T is diagonal by assumption, with exactynon-zero en-
tries. Thus the maximum obJ is attained if and only if
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Algorithm 5 Riemannian coordinate minimization for
streaming sparse PCA

Input: Data streanmu; € R¢, number of sparse principal
componentsn, initial matrix Uy € O,,,, sparsity param-
etery > 0, number of inner iterations.

AU = [aras . ..an] - Uy . AU is of sized x m
while not stoppedio
fort=1...Ldo

1. Sample uniformly at random a pdii(t), j(t))
such thatl <i(t) < j(t) <m.
2.0;41 = argmax
0
ziﬂ(‘ncos(e)<AU>ki<t>+sm(9)(AU>kj<t>|— M3
+[| = 5in(0) (AU ) kigr) + cos(0) (AU )| — 713 )-

3.AU = AU - G(i(t),
end for
A Qi = argm1n||(AU)

3(8)), Or11).

5 Sample new / data point,cq, .
6. (AU),
end while
Z = solveForZ(AU,~) Il Algorithm 6 of
Jourree et al(2010.
Output: Z € Réx™

: -,'an,‘n, anew

Tooa = 1,a = 1...d, and all other entries df are0. The
value at the maximum is theﬁjf:1 A

The diagonal ones tensdf can be decomposed into
Zle e; Qe ® e

tensors iguniqueupto permutation of the factor&fuskal
1977 Kolda & Bader 2009. Thus, the only solutions
which attain the maximum of are those where; = e, (;,
i=1,...d. O

C. Algorithm for streaming sparse PCA

Following are the details for the streaming sparse PCA ver-
sion of our algorithm used in the experiments of section

4. The algorithm itself is brought in Algorithrb. The

algorithm starts with running the original coordinate mini
mization procedure on the first samples. It then chooses
the column with the leagt and replaces it with a new data

Interestingly, in the tensor case, un-
like in the matrix case, the decomposition of orthogonal

D. Alternate version of orthogonal tensor
decomposition algorithm - lazy tensor
evaluation

Algorithm 3 in the main text is “Riemannian coordinate
maximization for orthogonal tensor decomposition”. The
version presented there assumes that theifulld x d ten-
sor 7' is given as input to the algorithm. Typically in the
applications we consider here, this tensor is formed as a
third order moment from a given dataset. Létc R*"

be the data matrix, consisting ef observation withd di-
mensions. In the simplest case we will have thigl, =
ooy AiAji Ay More complex cases (for example when
applying the method to fit an LDA model) still require sim-
ple vector operations which coSk(n) computations to ob-
tain each valu€;y,.

We can therefore adopt a lazy computation model, and re-
frain from constructing the entire moment ten§oin ad-
vance. Instead we may calculate the entiigg only on
demand, and on each step apply the Givens rotation to the
data matrixinstead of the tensor. This requir@%n) oper-
ations, as we will be rotating theand; dimensions (rows)

of the data matrix4. See Algorithmg below.

Overall the computational cost of each step of this version
of the algorithm isD(n) wheren is the number of data sam-
ples. This is compared 0 (d?) operations for the version
presented in the main text, whetés typically not the orig-
inal data dimension, but the number of latent variables such
as latent topics in LDA or mixture components in a GMM.
SeeAnandkumar et al2012 for more details.

Algorithm 6 Riemannian coordinate maximization for or-
thogonal tensor decomposition with lazy tensor evaluation

Input: Data matrixA € R4*". ProcedureS(A) for ob-
taining single tensor entries from with computational
costO(n).
Initialize ¢t = 0, 121() =AUy =1,
while not convergedio
1. Sample uniformly at random a p&ict),
thatl <i(t) < j(t) < d.
2. ObtainT};;, Tm, Ty, Tjii from A, by S(A,).
3.6, = argmax g, (#), whereg,” is defined as in Eq.

j(t)) such

6
9 of the main text.

4. At+1 = G(l,j, Qt)TAt.
5. Ut+1 = UtG(i7j, 975)
6.t=1t+1.

end while

sample, and then re-optimizes on the new set of samplesutput: Utinai-

There is no need for it to converge in the inner iterations;

and in practice we found that order steps after each new
sample are enough for good results.
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