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Abstract

Optimizing over the set of orthogonal matrices
is a central component in problems like sparse-
PCA or tensor decomposition. Unfortunately,
such optimization is hard since simple operations
on orthogonal matrices easily break orthogonal-
ity, and correcting orthogonality usually costs a
large amount of computation.

Here we propose a framework for optimiz-
ing orthogonal matrices, that is the parallel of
coordinate-descent in Euclidean spaces. It is
based onGivens-rotations, a fast-to-compute op-
eration that affects a small number of entries in
the learned matrix, and preserves orthogonality.

We show two applications of this approach: an al-
gorithm for tensor decompositions used in learn-
ing mixture models, and an algorithm for sparse-
PCA. We study the parameter regime where a
Givens rotation approach converges faster and
achieves a superior model on a genome-wide
brain-wide mRNA expression dataset.

1. Introduction

Optimization over orthogonal matrices – matrices whose
rows and columns form an orthonormal basis ofR

d – is
central to many machine learning optimization problems.
Prominent examples includePrincipal Component Analy-
sis(PCA),Sparse PCA, andIndependent Component Anal-
ysis (ICA). In addition, many new applications of tensor or-
thogonal decompositions were introduced recently, includ-
ing Gaussian Mixture Models, Multi-view Models and La-
tent Dirichlet Allocation (e.g.,Anandkumar et al.(2012a);
Hsu & Kakade(2013)).
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A major challenge when optimizing over the set of orthog-
onal matrices is that simple updates such as matrix addi-
tion usually break orthonormality. Correcting by orthonor-
malizing a matrixV ∈ R

d×d is typically a costly pro-
cedure: even a change to a single element of the matrix,
may requireO(d3) operations in the general case for re-
orthogonalization.

In this paper, we present a new approach for optimization
over the manifold of orthogonal matrices, that is based on
a series of sparse and efficient-to-compute updates that op-
eratewithin the set of orthonormal matrices, thus saving
the need for costly orthonormalization. The approach can
be seen as the equivalent of coordinate descent in the mani-
fold of orthonormal matrices. Coordinate descent methods
are particularly relevant for problems that are too big to fit
in memory, for problems where one might be satisfied with
a partial answer, or in problems where not all the data is
available at one time (Richt́arik & Takáč, 2012).

We start by showing that the orthogonal-matrix equivalent
of a single coordinate update is applying a singleGivens
rotation to the matrix. In section3 we prove that for a
differentiable objective the procedure converges to a local
optimum under minimal conditions, and prove anO(1/T )
convergence rate for the norm of the gradient. Sections4
and5 describe two applications: (1) sparse PCA, including
a variant for streaming data; (2) a new method for orthogo-
nal tensor decomposition. We study how the performance
of the method depends on the problems hyperparameters
using synthetic data, and demonstrate that it achieves supe-
rior accuracy on an application of sparse-PCA for analyz-
ing gene expression data.

2. Coordinate descent on the orthogonal
matrix manifold

Coordinate descent (CD) is an efficient alternative to gra-
dient descent when the cost of computing and applying a
gradient step at a single coordinate is small relative to com-
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puting the full gradient. In these cases, convergence can be
achieved with a smaller number of computing operations,
although using a larger number of (faster) steps.

Applying coordinate descent to optimize a function in-
volves choosing a coordinate basis, usually the standard
basis. Then calculating a directional derivative in the di-
rection of one of the coordinates. And finally, updating the
iterate in the direction of the chosen coordinate. To gener-
alize CD to operate over the set of orthogonal matrices, we
need to generalize these ideas of directional derivatives and
updating the orthogonal matrix in a “straight direction”.

In the remaining of this section, we introduce the set of
orthogonal matrices,Od, as a Riemannian manifold. We
then show that applying coordinate descent to the Rieman-
nian gradient amounts to multiplying by Givens rotations.
Throughout this section and the next, the objective function
is assumed to be a differentiable functionf : Od → R.

2.1. The orthogonal manifold and Riemannian gradient

The orthogonal matrix manifoldOd is the set ofd×d matri-
cesU such thatUUT = UTU = Id. It is a d(d+1)

2 dimen-
sional smooth manifold, and is an embedded submanifold
of the Euclidean spaceRd×d (Absil et al., 2009).

Each pointU ∈ Od has a tangent space associated with it,
a d(d−1)

2 dimensional vector space, that we will use below
in order to capture the notion of ’direction’ on the man-
ifold. The tangent space is denotedTUOd, and defined
by TUOd = {Z ∈ R

d×d, Z = UΩ : Ω = −ΩT } =
USkew(d), whereSkew(d) is the set of skew-symmetric
d× d matrices.

2.1.1. GEODESIC DIRECTIONS

The natural generalization of straight lines to the manifold
context aregeodesic curves. A geodesic curve is locally
the shortest curve between two points on the manifold, or
equivalently, a curve with no acceleration tangent to the
manifold (Absil et al., 2009). For a pointU ∈ Od and a
“direction” UΩ ∈ TUOd there exists a single geodesic line
that passes throughU in directionΩ. Fortunately, while
computing a geodesic curve in the general case might be
hard, computing it forOd has a closed form expression:
γ : (−1, 1) → Od, γ(θ) = UExpm(θΩ), whereγ(θ) with
θ ∈ (−1, 1) is the parameterization of the curve, and Expm
is the matrix exponential function.

In the special case where the operatorExpm(Ω) is applied
to a skew-symmetric matrixΩ, it mapsΩ into an orthogo-
nal matrix1. As a result,γ(θ) = UExpm(θΩ) is also an
orthogonal matrix for allθ.

1Because Expm(Ω)Expm(Ω)T = Expm(Ω)Expm(ΩT ) =
Expm(Ω)Expm(−Ω) = I

2.1.2. THE DIRECTIONAL DERIVATIVE

In analogy to the Euclidean case, the Riemannian direc-
tional derivative off in the direction of a vectorUΩ ∈
TUOd is defined as the derivative of a single variable
function which involves looking atf along a single curve
(Absil et al., 2009):

∇Ωf(U) ≡
d
dθ

f(γ(θ))
∣

∣

∣

θ=0
=

d
dθ

f(UExpm(θΩ))
∣

∣

∣

θ=0
.

(1)
Note that∇Ωf(U) is a scalar. The definition means that the
directional derivative isf ′ with f restricted to the geodesic
curve going throughU in the directionUΩ.

2.1.3. THE DIRECTIONAL UPDATE

Since the Riemannian equivalent of walking in a straight
line is walking along the geodesic curve, taking a step of
sizeη > 0 from a pointU ∈ Od in directionUΩ ∈ TUOd

amounts to:
Unext = UExpm(ηΩ) , (2)

We also have to define the orthogonal basis forSkew(d).
Here we use{eieTj − eje

T
i : 1 ≤ i < j ≤ d}. We denote

each basis vector asHij = eie
T
j − eje

T
i , 1 ≤ i < j ≤ d.

2.2. Givens rotations as coordinate descent

Coordinate descent is a popular method of optimization in
Euclidean spaces. It can be more efficient than computing
full gradient steps when it is possible to (1) compute effi-
ciently the coordinate directional derivative, and (2) apply
the update efficiently. We will now show that in the case of
the orthogonal manifold, applying the update (step 2) can
be achieved efficiently. The cost of computing the coordi-
nate derivative (step 1) depends on the specific nature of the
objective functionf , and we we show below several cases
where that can be achieved efficiently.

Let Hij be a coordinate direction, let∇Hij
f(U) be the

corresponding directional derivative, and choose step size
η > 0. A straightforward calculation based on Eq.2
shows that the updateUnext = UExpm(−ηHij) obeys

Expm(−ηHij) =

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This matrix is known as a Givens rotation
(Golub & Van Loan, 2012) and is denotedG(i, j,−η). It
hascos(η) at the(i, i) and (j, j) entries, and±sin(η) at
the (j, i) and (i, j) entries. It is a simple and sparse or-
thogonal matrix. For a dense matrixA ∈ R

d×d, the linear
operationA 7→ AG(i, j, η) rotates theith andjth columns
of A by an angleη in the plane they span. Computing
this operation costs6d multiplications and additions. As
a result, computing Givens rotations successively for all
d(d−1)

2 coordinatesHij takesO(d3) operations, the same
order as ordinary matrix multiplication. Therefore the
relation between the cost of a single Givens relative to a
full gradient update is the same as the relation between
the cost of a single coordinate update and a full update
is in Euclidean space. We note that any determinant-1
orthogonal matrix can be decomposed into at mostd(d−1)

2
Givens rotations.

2.3. The Givens rotation coordinate descent algorithm

Based on the definition of Givens rotation, a natural algo-
rithm for optimizing over orthogonal matrices is to perform
a sequence of rotations, where each rotation is equivalent to
a coordinate-step in CD.

To fully specify the algorithm we need two more ingredi-
ents: (1) Selecting a schedule for going over the coordi-
nates and (2) Selecting a step size. For scheduling, we
chose here to use a random order of coordinates, following
many recent coordinate descent papers (Richt́arik & Takáč,
2012; Nesterov, 2012; Patrascu & Necoara, 2013).

For choosing the step sizeη we use exact minimization,
since we found that for the problems we aim to solve, using
exact minimization was usually the same order of complex-
ity as performing approximate minimization (like using an
Armijo step ruleBertsekas(1999); Absil et al.(2009)).

Based on these two decisions, Algorithm (1) is a random
coordinate minimization technique.

Algorithm 1 Riemannian coordinate minimization onOd

Input: Differentiable objective functionf , initial matrix
U0 ∈ Od

t = 0
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ d.
2. θt+1 = argmin

θ

f (Ut ·G(i, j, θ)).

3. Ut+1 = Ut ·G(i, j, θt+1).
4. t = t+ 1.

end while
Output: Ufinal.

3. Convergence rate for Givens coordinate
minimization

In this section, we show that under the assumption that
the objective functionf is differentiable Algorithm 1 con-
verges to critical point of the functionf , and the only stable
convergence points are local minima. We further show that
the expectation w.r.t. the random choice of coordinates of
the squaredl2-norm of the Riemannian gradient converges
to 0 with a rate ofO( 1

T
) whereT is the number of itera-

tions. The proofs, including some auxiliary lemmas, are
provided in the supplemental material. Overall we pro-
vide the same convergence guarantees as provided in stan-
dard non-convex optimization (e.g.,Nemirovski (1999);
Bertsekas(1999)).

Definition 1. Riemannian gradient
The Riemannian gradient∇f(U) of f at point U ∈
Od is the matrixUΩ, where Ω ∈ Skew(d), Ωji =
−Ωij = ∇ijf(U), 1 ≤ i < j ≤ d is defined to be
the directional derivative as given in Eq.1, andΩii =
0. The norm of the Riemannian gradient||∇f(U)||2 =
Tr(∇f(U)∇f(U)T ) = ||Ω||2fro.

Definition 2. A point U∗ ∈ Od is asymptotically stable
with respect to Algorithm (1) if it has a neighborhoodV of
U∗ such that all sequences generated by Algorithm (1) with
starting pointU0 ∈ V converge toU∗.

Theorem 1. Convergence to local optimum
(a) The sequence of iteratesUt of Algorithm (1) satisfies:
limt→∞ ||∇f(Ut)|| = 0. This means that the accumula-
tion points of the sequence{Ut}

∞
t=1 are critical points of

f .
(b) Assume the critical points off are isolated. LetU∗ be
a critical point of f . ThenU∗ is a local minimum off if
and only if it is asymptotically stable with regard to the se-
quence generated by Algorithm (1).

Definition 3. For an iterationt of Algorithm (1), and a set
of indices(i(t), j(t)), we define the auxiliary single vari-
able functiongijt :

gijt (θ) = f (Ut ·G(i, j, θ)) , (3)

Note thatgijt are differentiable and periodic with a period
of 2π. SinceOd is compact andf is differentiable there
exists a single Lipschitz constantL(f) > 0 for all gijt .

Theorem 2. Rate of convergence
Letf be a continuous function withL-Lipschitz directional
derivatives2. Let Ut be the sequence generated by Al-
gorithm 1. For the sequence of Riemannian gradients
∇f(Ut) ∈ TUt

Od we have:

max
0≤t≤T

E
[

||∇f(Ut)||
2
2

]

≤
L · d2 (f(U0)− fmin)

T + 1
. (4)

2BecauseOd is compact, any functionf with a continuous
second-derivative will obey this condition.
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The proof is a Riemannian version of the proof for the rate
of convergence of Euclidean random coordinate descent for
non-convex functions (Patrascu & Necoara, 2013) and is
provided as supplemental material.

4. Sparse PCA
Principal component analysis (PCA) is a basic dimen-
sionality reducing technique used throughout the sciences.
Given a data setA ∈ R

d×n of n observations ind di-
mensions, the principal components are a set of orthogo-
nal vectorsz1, z2, . . . , zm ∈ R

d, such that the variance
∑m

i=1 z
T
i AA

T zi is maximized. The data is then repre-
sented in a new coordinate system̂A = ZTA where
Z = [z1, z2, . . . , zm] ∈ R

d×m.

One drawback of ordinary PCA is lack of interpretabil-
ity. In the original dataA, each dimension usually has
an understandable meaning, such as the level of expres-
sion of a certain gene. The dimensions ofÂ however are
typically linear combinations of all gene expression lev-
els, and as such are much more difficult to interpret. A
common approach to the problem of findinginterpretable
principal components is Sparse PCA (Zou et al., 2006;
Jourńee et al., 2010; d’Aspremont et al., 2007; Zhang et al.,
2012; Zhang & Ghaoui, 2012). SPCA aims to find vec-
tors zi as in PCA, but which are also sparse. In the gene-
expression example, the non-zero components ofzi might
correspond to a few genes that explain well the structure of
the dataA.

One of the most popular approaches for solving the prob-
lem of finding sparse principal components is the work
by Jourńee et al.(2010). In their paper, they formalize
the problem as finding the optimum of the following con-
strained optimization problem to find the sparse basis vec-
torsZ:

argmax
U∈Rn×m,Z∈Rd×m

Tr(ZTAU)− γ
∑

ij

|Zij | (5)

s.t. UTU = Im,
d

∑

i=1

Z2
ij = 1 ∀j = 1 . . .m .

Jourńee et al. provide an algorithm to solve Eq.5 that has
two parts: The first and more time consuming part finds
an optimalU , from which optimalZ is then found. We
focus here on the problem of finding the matrixU . Note
that whenm = n, the constraintUTU = Im implies that
U is an orthogonal matrix.

We use a second formulation of the optimization problem,
also given by Jourńee et al. in section 2.5.1 of their paper:

argmax
U∈Rn×m

m
∑

j=1

d
∑

i=1

[|(A · U)ij | − γ]2+

s.t. UTU = Im,

wheren is the number of samples,d is the input dimension-
ality andm is the number of PCA components computed.
This objective is once-differentiable and the objective ma-
trix U grows with the number of samplesn.

4.1. Givens rotation algorithm for the full casem = n

If we choose the number of principal componentsm to be
equal to the number of samplesn we can apply Algorithm
((1)) directly to solve the optimization problem of Eq.6.
Explicitly, at each roundt, for choice of coordinates(i, j)
and a matrixUt ∈ Od, the resulting coordinate minimiza-
tion problem is:

argmin
θ

−

m
∑

j=1

d
∑

i=1

[|(AUtG(i, j, θ))ij | − γ]2+ =

argmin
θ

−

d
∑

k=1

[|cos(θ)(AUt)ki + sin(θ)(AUt)kj | − γ]2++

[| − sin(θ)(AUt)ki + cos(θ)(AUt)kj | − γ]2+
(6)

Algorithm 2 Riemannian coordinate minimization for
sparse PCA

Input: Data matrixA ∈ R
d×n, initial matrix U0 ∈ On,

sparsity parameterγ ≥ 0
t = 0
AU = A · U0 .
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ n.
2. θt+1 = argmax

θ
∑d

k=1([|cos(θ)(AU)ki(t) + sin(θ)(AU)kj(t)| − γ]2+
+[| − sin(θ)(AU)ki(t) + cos(θ)(AU)kj(t)| − γ]2+).
3.AU = AU ·G(i(t), j(t)), θt+1).
4. t = t+ 1.

end while
5. Z = solveForZ(AU, γ) // Algorithm 6 of

Jourńee et al.(2010).
Output: Z ∈ R

d×n

See Algorithm (2) for the full procedure. In practice, there
is no need to store the matricesUt in memory, and one
can work directly with the matrixAUt. Evaluating the ex-
pression in Eq.6 for a givenθ requiresO(d) operations,
whered is the dimension of the data. We found in practice
that optimizing Eq.6 required an order of 5-10 evaluations.
Overall each iteration of Algorithm (2) requiresO(d) oper-
ations.

4.2. Givens rotation algorithm for the casem < n

The major drawback of Algorithm (2) is that it requires the
number of principal componentsm to be equal to the num-
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ber of samplesn. This kind of “full dimensional sparse
PCA” may not be necessary when researchers are interested
to obtain a small number of components. We therefore de-
velop a streaming version of Algorithm (2). For a small
given m, we treat the data as if onlym samples exist at
any time, giving an intermediate modelAU ∈ R

d×m. Af-
ter a few rounds of optimizing over this subset of samples,
we use a heuristic to drop one of the previous samples and
incorporate a new sample. This gives us a streaming ver-
sion of the algorithm because in every phase we need only
m samples of the data in memory. The full details of the
algorithm are given in the supplemental material.

4.3. Experiments

Sparse PCA attempts to trade-off two variables: the frac-
tion of data variance that is explained by the model’s com-
ponents, and the level of sparsity of the components. In our
experiment, we monitor a third important parameter, the
number of floating point operations (FLOPS) performed
to achieve a certain solution. To compute the number of
FLOPS we counted the number of additions and multipli-
cations computed on each iteration. This does not include
pointer arithmetic.

We first examined Algorithm2 for the case wherem =
n. We used the prostate cancer gene expression data by
Singh et al.(2002). This dataset consists of the gene ex-
pression levels for 52 tumor and 50 normal samples over
12,600 genes, resulting in a12, 600× 102 data matrix.

We compared the performance of our approach with that of
theGeneralized Power Methodof Jourńee et al.(2010). We
focus on this method for comparisons because both meth-
ods optimize the same objective function, which allows to
characterize the relative strengths and weaknesses of the
two approaches.

As can be seen in Figure1, the Givens coordinate mini-
mization method finds a sparser solution with better ex-
plained variance, and does so faster than the generalized
power method.

We tested the streaming version of the coordinate descent
algorithm for sparse PCA (Algorithm 5, supp. material)
on a recent large gene expression data set collected from of
six human brains (Hawrylycz et al., 2012). Overall, each of
the 20K human genes was measured at 3702 different brain
locations, and this data can be used to study the spatial pat-
terns of mRNA expression across the human brain. We
again compared the performance of our approach with that
of theGeneralized Power Methodof Jourńee et al.(2010).

We split the data into 5 train/test partitions, with each train
set including 2962 examples and each test set including 740
examples. We evaluated the amount of variance explained
by the model on the test set. We use the adjusted vari-
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(a) explained variance (b) number of non-zeros

Figure 1.(a) The explained variance as function of FLOPS of the
coordinate minimization method from Algorithm2 and of the gen-
eralized power method byJourńee et al.(2010), on a prostate can-
cer gene expression dataset. (b) The number of non-zeros in the
sparse PCA matrix as function of FLOPS of the coordinate mini-
mization method from Algorithm2 and of the generalized power
method byJourńee et al.(2010), on a prostate cancer gene expres-
sion dataset. The size of the sparse PCA matrix is12, 600× 102.

ance procedure suggested in this case byZou et al.(2006),
which takes into account the fact that the sparse principal
components are not orthogonal.

For the Generalized Power Method we use the greedyl1
version ofJourńee et al.(2010), with the parameterµ set
to 1. We found the greedy version to be more stable and
to be able to produce sparse solutions when the number of
components wasm > 1. We used values ofγ ranging from
0.01 to 0.2, and two stopping conditions: “convergence”,
where the algorithm was run until its objective converged
within a relative tolerance level of10−4, and “early stop”
where we stopped the algorithm after 14% of the iterations
required for convergence. For our algorithm we used the
same range ofγ values, and an early-stop condition where
the algorithm was stopped after using 14% of the samples.

Figure2 demonstrates the tradeoff between floating point
operations and explained variance for SPCA with 3, 5 and
10 components and with 3 sparsity levels: 5%, 10% and
20%. Using low dimensions is often useful for visual ex-
ploration of the data. Each dot represents one instance of
the algorithm, run with a certain value ofγ and stopping cri-
terion. To avoid clutter we only show instances which per-
formed best in terms of explained variance or few FLOPS.

When strong sparsity is required (5% or 10% sparsity),
the Givens-rotation coordinate descent algorithm finds so-
lutions faster (blue rectangles are more to the left in Figure
2), and these solutions are similar or better in terms of ex-
plained variance. For low-dimensional less sparse solutions
(20% sparsity) we find that the generalized power method
finds comparable or better solutions using the same compu-
tational cost, but only when the number of components is
small, as seen in Figure2.c,f,i.
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(b) max. sparsity 10% (e) max. sparsity 10% (h) max. sparsity10%
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(c) max. sparsity 20% (f) max. sparsity 20% (i) max. sparsity20%
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Figure 2.The tradeoff between explained variance and computational cost for 3, 5 and 10-component sparse PCA models applied to
human gene expression data. The models are constrained for maximumsparsity of 5% (a), (d) & (g), 10% (b), (e) & (h) and 20% (c), (f)
& (i). Red pluses indicate the Generalized Power method (Jourńee et al., 2010); blue squares represent the Givens coordinate procedure.
See Subsection4.3for experimental conditions. Explained variance was adjusted followingZou et al.(2006).

5. Orthogonal tensor decomposition
Recently it has been shown that many classic ma-
chine learning problem such as Gaussian Mixture Mod-
els and Latent Dirichlet Allocation can be solved effi-
ciently by using 3rd order moments (Anandkumar et al.,
2012a; Hsu & Kakade, 2013; Anandkumar et al., 2012b;c;
Chaganty & Liang, 2013). These methods ultimately rely
on finding an orthogonal decomposition of 3-way tensors
T ∈ R

d×d×d, and reconstructing the solution from this de-
composition. Here we show that the problem of finding an
orthogonal decomposition for a tensorT ∈ R

d×d×d can
be naturally cast as an optimization problem over the or-
thogonal matrix manifold. We apply Algorithm1 to this
problem, and compare its performance on a task of find-
ing a Gaussian Mixture Model with a state-of-the-art tensor
decomposition method, the robust Tensor Power Method
(Anandkumar et al., 2012a). We find that the Givens coor-
dinate method consistently finds better solutions when the
number of mixture components is large.

5.1. Orthogonal tensor decomposition
The problem of tensor decomposition is very hard in gen-
eral (Kolda & Bader, 2009). However, a certain class of
tensors known asorthogonally decomposabletensors are
easier to decompose, as has been discussed recently by
Anandkumar et al.(2012a); Hsu & Kakade(2013) and oth-
ers. Here we introduce the problem of orthogonal tensor
decomposition, and provide a new characterization of the
solutions to the decomposition problem as extrema of an
optimization problem on the orthogonal matrix manifold.

The resulting algorithm is similar to one recently proposed
by Ishteva et al.(2013). However, we aim for full diago-
nalization, while they focus on finding a good low-rank ap-
proximation. This results in different objective functions:
ours involves third-order polynomials onOd, while Ishteva
et al.’s results in sixth-order polynomials on the low-rank
compact Stiefel manifold. Diagonalizing the tensorT is
attainable in our case thanks to the strong assumption that
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it is orthogonally decomposable. Nonetheless, both meth-
ods are extensions of Jacobi’s eigenvalue algorithm to the
tensor case, in different setups.

We start with preliminary notations and definitions. We fo-
cus here on symmetric tensorsT ∈ Rd×d×d. A third-order
tensor is symmetric if its values are identical for any per-
mutationσ of the indices: withTi1i2i3 = Tiσ(1)iσ(2)iσ(3)

.

We also view a tensorT as a trilinear map.
T : R

d × R
d × R

d → R: T (v1, v2, v3) =
∑d

a,b,c=1 Tabcv1av2bv3c.

Finally, we also use the three-form tensor product of a
vector u ∈ R

d with itself: u ⊗ u ⊗ u ∈ R
d×d×d,

(u ⊗ u ⊗ u)abc = ua · ub · uc. Such a tensor is called a
rank-onetensor.

Definition 4. A symmetric tensorT is orthogonally decom-
posable if there exists an orthonormal setv1, . . . vd ∈ R

d,
and positive scalarsλ1, . . . λd > 0 such that:

T =

d
∑

i=1

λi(vi ⊗ vi ⊗ vi). (7)

Unlike matrices, most symmetric tensors are not or-
thogonally decomposable. However, as shown by
Anandkumar et al. (2012a); Hsu & Kakade (2013);
Anandkumar et al.(2013), several problems of interest,
notably Gaussian Mixture Models and Latent Dirichlet
Allocation do give rise to third-order moments which are
orthogonally decomposable in the limit of infinite data.

The goal of orthogonal tensor decomposition is, given an
orthogonally decomposable tensorT , to find the orthogonal
vector setv1, . . . vd ∈ R

d and the scalarsλ1, . . . λd > 0.

We now show that finding an orthogonal decomposition can
be stated as an optimization problem overOd:

Theorem 3. LetT ∈ Rd×d×d have an orthogonal decom-
position as in Definition4, and consider the optimization
problem

max
U∈Od

f(U) =

d
∑

i=1

T (ui, ui, ui), (8)

whereU = [u1 u2 . . . ud]. The stable stationary points of
the problem are exactly orthogonal matricesU such that
ui = vπ(i) for a permutationπ on [d]. The maximum value

they attain is
∑d

i=1 λi.

The proof is given in the supplemental material.

5.2. Coordinate minimization algorithm for orthogonal
tensor decomposition

We now adapt Algorithm1 for solving the problem of or-
thogonal tensor decomposition of a tensorT , by maximiz-
ing the objective function8, f(U) =

∑d

i=1 T (ui, ui, ui).

For this we need to calculate the form of the function
gijt (θ) = f (U ·G(i, j, θ)). We have:

gijt (θ) = f (U ·G(i, j, θ)) =

d
∑

k 6=i,j

T (uk, uk, uk) + T (ũi, ũi, ũi) + T (ũj , ũj , ũj) .

where we used̃ui = cos(θ)ui + sin(θ)uj and ũj =
cos(θ)uj − sin(θ)ui.

Denote byT̃ the tensor such that:̃Tijk = T (ui, uj , uk).
We will abuse notation and denotẽT = T (U,U,U). The
tensorT̃ is the three-way multiplication ofT by the ma-
trix U . This is the lifting of the matrix operatioñM =
M(U,U) = UMUT to the tensor domain.

Collecting terms, using the symmetry ofT and some basic
trigonometric identities, we then have:

gijt (θ) =cos3(θ)
(

T̃iii + T̃jjj − 3T̃ijj − 3T̃jii

)

(9)

+sin3(θ)
(

T̃iii − T̃jjj − 3T̃ijj + 3T̃jii

)

+cos(θ)
(

3T̃ijj + 3T̃jii

)

+sin(θ)
(

3T̃ijj − 3T̃jii

)

.

In each step of the algorithm, we maximizegijt (θ) over
−π ≤ θ < π. The scalar functiongijt has at most 3 max-
ima that can be obtained in closed form solution, and thus
can be maximized in constant time.

Algorithm 3 Riemannian coordinate maximization for or-
thogonal tensor decomposition

Input: Symmetric tensorT ∈ Rd×d×d.
Initialize t = 0, T̃ 0 = T , U0 = Id.
while not convergeddo

1. Sample uniformly at random a pair(i(t), j(t)) such
that1 ≤ i(t) < j(t) ≤ d.
2. ObtainT̃ t

iii, T̃
t
jjj , T̃

t
ijj , T̃

t
jii.

3. θt = argmax
θ

gijt (θ), wheregijt is defined as in9.

4. T̃ t+1 = T̃ t (G(i, j, θt), G(i, j, θt), G(i, j, θt)).
// Three way multiplication of̃T t by G(i, j, θt).
5. Ut+1 = UtG(i, j, θt).
6. t = t+ 1.

end while
Output: Ufinal.

The most computationally intensive part of Algorithm3 is
line 4. Multiplying a tensor by the Givens rotationG(i, j, θ)
only affects tensor entries on thei-th andj-th slice. This
requiresO(d2) operations per iteration. In Section D of the
supplemental material we provide a different version of this
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Figure 3.Clustering performance in terms of normalized MI
of the Givens algorithm vs. the tensor power method of
Anandkumar et al.(2012a). Clustering by fitting a GMM from
samples drawn from a 20-component GMM with varying dimen-
sion, using 3rd order moments. Reconstruction is performed from
(a) 10K and (b) 200K samples. Blue line with triangles marks the
Givens coordinate method. Red line with circles marks the tensor
power method, and the black line is the optimal performance if all
GMM parameters are known.

algorithm which does not require calculating the tensorT .
Instead, it operates directly on the data points, calculating
cross products on demand. This version of the algorithm
has complexity per step ofO(#samples) instead.

5.3. Experiments

Hsu & Kakade(2013) andAnandkumar et al.(2012a) have
recently shown how fitting a Gaussian Mixture Model
(GMM) with common spherical covariance can be reduced
to orthogonally decomposing a third moment tensor. We
evaluate the Givens coordinate minimization algorithm us-
ing this problem. We compare with a state of the art tensor
decomposition method, the robust tensor power method, as
given inAnandkumar et al.(2012a).
We generated GMMs with the following parameters: num-
ber of dimensions in{10, 20, 50, 100, 200}, number of
samples in{10K, 30K, 50K, 100K, 200K}. We used 20
components, each with a spherical variance of 2. The
centers were sampled from a Gaussian distribution with
an inverse-Wishart distributed covariance matrix. Given
the samples, we constructed the 3rd order moment, de-
composed it, and reconstructed the model following the
procedure inAnandkumar et al.(2012a). We then clus-
tered the samples according to the reconstructed model,
and measured thenormalized mutual information(NMI)
(Manning et al., 2008) between the learned clustering and
the true clusters.

Figure 3 compares the performance of the two methods
with the optimal NMI across dimensions. The coordi-
nate minimization method outperforms the tensor power
method for the large sample size (200K), whereas for small
sample size (10K) the tensor power method performs bet-
ter for the intermediate dimensions. In Figure4 we see the
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Figure 4.Same task as Figure3, but for fixed dimensiond = 100
and varying number of samples.

performance of both algorithms across all sample sizes for
dimension= 100. We see that the coordinate minimization
method again performs better for larger sample sizes. We
observed this phenomenon for 50 components as well, and
for mixture models with larger variance.

6. Conclusion

We described a framework to efficiently optimize differen-
tiable functions over the manifold of orthogonal matrices.
The approach is based on Givens rotations, which we show
can be viewed as the parallel of coordinate updates in Eu-
clidean spaces. We prove the procedure’s convergence to
a local optimum. Using this framework, we developed al-
gorithms for two unsupervised learning problems: Finding
sparse principal components; and learning a Gaussian mix-
ture model through orthogonal tensor decomposition. Our
method poses an alternative to the tensor power method for
orthogonal tensor decompositions. Our alternative extends
the way the Jacobi eigenvalue algorithm is an alternative to
the matrix power method for matrix decompositions.

We expect that the proposed framework can be further ex-
tended to other problems requiring learning over orthogo-
nal matrices including ICA. Moreover, coordinate descent
approaches have some inherent advantages and are some-
times better amenable to parallelization. Developing dis-
tributed Givens-rotation algorithms would be an interesting
future research direction.
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