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Abstract

Optimizing over the set of orthogonal matrices

is a central component in problems like sparse-
PCA or tensor decomposition. Unfortunately,

such optimization is hard since simple operations
on orthogonal matrices easily break orthogonal-
ity, and correcting orthogonality usually costs a

large amount of computation.

Here we propose a framework for optimiz-
ing orthogonal matrices, that is the parallel of
coordinate-descent in Euclidean spaces. It is
based orGivens-rotationsa fast-to-compute op-
eration that affects a small number of entries in
the learned matrix, and preserves orthogonality.

We show two applications of this approach: an al-
gorithm for tensor decompositions used in learn-
ing mixture models, and an algorithm for sparse-
PCA. We study the parameter regime where a
Givens rotation approach converges faster and
achieves a superior model on a genome-wide
brain-wide mRNA expression dataset.

A major challenge when optimizing over the set of orthog-
onal matrices is that simple updates such as matrix addi-
tion usually break orthonormality. Correcting by orthonor
malizing a matrixV € R?*¢ is typically a costly pro-
cedure: even a change to a single element of the matrix,
may requireO(d®) operations in the general case for re-
orthogonalization.

In this paper, we present a new approach for optimization
over the manifold of orthogonal matrices, that is based on
a series of sparse and efficient-to-compute updates that op-
eratewithin the set of orthonormal matrices, thus saving

the need for costly orthonormalization. The approach can
be seen as the equivalent of coordinate descent in the mani-
fold of orthonormal matrices. Coordinate descent methods
are particularly relevant for problems that are too big to fit
in memory, for problems where one might be satisfied with

a partial answer, or in problems where not all the data is
available at one timeRichtarik & Takac, 2012).

We start by showing that the orthogonal-matrix equivalent
of a single coordinate update is applying a sinGleens
rotation to the matrix. In sectior8 we prove that for a
differentiable objective the procedure converges to alloca
optimum under minimal conditions, and prove @1 /T)
convergence rate for the norm of the gradient. Sectibns

1. Introduction and>5 describe two applications: (1) sparse PCA, including

Optimization over orthogonal matrices — matrices whosea variant for streaming data; (2) a new method for orthogo-

rows and columns form an orthonormal basisRsf— is  nal tensor decomposition. We study how the performance

central to many machine learning optimization problemsof the method depends on the problems hyperparameters
Prominent examples includerincipal Component Analy- using synthetic data, and demonstrate that it achieves supe
sis(PCA), Sparse PCAandIindependent Component Anal- rior accuracy on an application of sparse-PCA for analyz-

ysis (ICA) In addition, many new applications of tensor or-ing gene expression data.

thogonal decompositions were introduced recently, includ

ing Gaussian Mixture Models, Multi-view Models and La- 2 Coordinate descent on the orthogonal

tent Dirichlet Allocation (e.g.Anandkumar et al(20123; : :

Hsu & Kakade(2013). matrix manifold

T Coordinate descent (CD) is an efficient alternative to gra-

Proceedings of the37°" International Conference on Machine dient descent when the cost of computing and applying a

Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- . . - . .
right 2014 by the author(s). gradient step at a single coordinate is small relative to-com
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puting the full gradient. In these cases, convergence can li2.1.2. THE DIRECTIONAL DERIVATIVE
achieved with a smaller number of computing operations

although using a larger number of (faster) steps. In analogy to the Euclidean case, the Riemannian direc-

tional derivative off in the direction of a vectot/) €
Applying coordinate descent to optimize a function in-T,; 0, is defined as the derivative of a single variable
volves choosing a coordinate basis, usually the standarflinction which involves looking af along a single curve
basis. Then calculating a directional derivative in the di{Absil et al, 2009:

rection of one of the coordinates. And finally, updating the

iterate in the direction of the chosen coordinate. To gener-

alize CD to operate over the set of orthogonal matrices, we _d _d
need to generalize these ideas of directional derivatinds a VaflU) = do (v(#)) o=0 df (UExpm(6%2)) 0=0
updating the orthogonal matrix in a “straight direction”. @)

Note thatV, f(U) is a scalar. The definition means that the
In the remaining of this section, we introduce the set ofdjrectional derivative i’ with f restricted to the geodesic
orthogonal matricesQ,, as a Riemannian manifold. We curve going througft/ in the directionl<.
then show that applying coordinate descent to the Rieman-
nian gradient amounts to multiplying by Givens rotations.2 1.3. THE DIRECTIONAL UPDATE

Throughout this section and the next, the objective fumctio . . ) o .
is assumed to be a differentiable functipn 0, — R. Since the Riemannian equivalent of walking in a straight
line is walking along the geodesic curve, taking a step of

sizen > 0 from a pointU € Oy in directionUS2 € Ty Oy

amounts to:

The orthogonal matrix manifol@, is the set ofl x d matri- Unext = UEXpm(nQ2) , (2

cesU such that/UT = UTU = I,. Itis a ““F) dimen-

sional smooth manifold, and is an embedded submanifoldVe also have to define the orthogonal basisS&ew(d).

of the Euclidean spacg?*? (Absil et al, 2009. Here we usgle;e] —ejef : 1 <i < j < d}. We denote

. . .. ..each basis vector d$;; = e;el —ejel, 1 <i< j<d.
Each point/ € O4 has a tangent space associated with it, i = Cifj T e LSS TS

a %1 dimensional vector space, that we will use below

in order to capture the notion of 'direction’ on the man-
ifold. The tangent space is denot&d 0,4, and defined Coordinate descent is a popular method of optimization in

2.1. The orthogonal manifold and Riemannian gradient

2.2. Givens rotations as coordinate descent

by TyOy = {Z € R Z = UQ : Q = -QT} = Euclidean spaces. It can be more efficient than computing
USkew(d), whereSkew(d) is the set of skew-symmetric full gradient steps when it is possible to (1) compute effi-
d x d matrices. ciently the coordinate directional derivative, and (2) lsipp
the update efficiently. We will now show that in the case of
2.1.1. GEODESIC DIRECTIONS the orthogonal manifold, applying the update (step 2) can

o . . .., be achieved efficiently. The cost of computing the coordi-
The natural generalization of straight lines to the madifol o o
. . . nate derivative (step 1) depends on the specific nature of the
context aregeodesic curvesA geodesic curve is locally o .
. : objective functionf, and we we show below several cases
the shortest curve between two points on the manifold, or : .
; . X where that can be achieved efficiently.
equivalently, a curve with no acceleration tangent to the
manifold (Absil et al, 2009. For a pointU € Oy and a  Let H;; be a coordinate direction, 167y, f(U) be the
“direction” U2 € Ty O4 there exists a single geodesic line corresponding directional derivative, and choose step siz
that passes throughi in direction). Fortunately, while 7 > 0. A straightforward calculation based on EQ.
computing a geodesic curve in the general case might bshows that the updaté, ... = UExpm(—nH,;) obeys
hard, computing it forO,; has a closed form expression:
v (=1,1) = O4, v(0) = UExpm(6Q), wherey() with Expm(—nH,,) =
0 € (—1,1) is the parameterization of the curve, and Expm PI(=n i) =
is the matrix exponential function. 1 .- 0 0 0 0

In the special case where the operdiapm () is applied : : : :
to a skew-symmetric matri®, it maps(2 into an orthogo- 0 -+ cos(n) --- =sin(n) -+ 0
nal matrix®. As a result;y(§) = UExpm(6Q) is also an
orthogonal matrix for alb. 0 - sin(g) - cos(n) - 0O

'Because Expiff2)Expm(Q)” = Expm(Q)Expm(QY) = : : : -
Expm(Q)Expm(—Q) =1
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This matrix is known as a Givens rotation 3. Convergence rate for Givens coordinate
(Golub & Van Loan 2012 and is denoted(z, j, —n). It minimization

hascos(n) at the(i, i) and (g, j) entries, andtsin(n) at

the (],’L) and (27]) entries. It is a Simp'e and sparse or_ln this Section, we show that under the assumption that
thogona| matrix. For a dense matWe RdXd, the linear the ObjeCtiVe fUnCtiorf is differentiable Algonthm 1 con-
operationA — AG(i, j, n) rotates the'" and ;" columns  Verges to critical point of the functiofy and the only stable

of A by an anglen in the plane they span. Computing convergence points are local minima. We further show that
this operation costéd multiplications and additions. As the expectation w.r.t. the random choice of coordinates of
a result, computing Givens rotations successively for althe squared,-norm oflthe Riemannian gradient converges
d(<12—1> coordinatest;; takesO(d?) operations, the same to 0 with a rate ofO_(T) whereT is the pgmber of itera-
order as ordinary matrix multiplication. Therefore the iOnS- The proofs, including some auxiliary lemmas, are
relation between the cost of a single Givens relative to @rovided in the supplemental material. Overall we pro-
full gradient update is the same as the relation betweel{!d€ the same convergence guarantees as provided in stan-
the cost of a single coordinate update and a full updatg@rd non-convex optimization (e.gNemirovski (1999;

is in Euclidean space. We note that any determinant-Bertsekas1999).

orthogonal matrix can be decomposed into at n#&t. ~ Definition 1. Riemannian gradient

Givens rotations. The Riemannian gradienV f(U) of f at point U €
Oy is the matrixUSQ2, whereQ € Skew(d), Q;; =
2.3. The Givens rotation coordinate descent algorithm ~ —$%; = Vi;f(U),1 < i < j < dis defined to be

the directional derivative as given in Eql, and Q;; =
Based on the definition of Givens rotation, a natural algof. The norm of the Riemannian gradieny f(U)||? =
rithm for optimizing over orthogonal matrices is to perform Tr(VAUO)VFU)T) =9 |?m,
a sequence of rotations, where each rotation is equivaent thyofinition 2. A pointU, € O, is asymptotically stable
a coordinate-step in CD. with respect to Algorithmi) if it has a neighborhood of
To fully specify the algorithm we need two more ingredi- Ux such that all sequences generated by Algoritijm(th
ents: (1) Selecting a schedule for going over the coordistarting pointt; € V converge td’..
nates and (2) Selecting a step size. For scheduling, w&heorem 1. Convergence to local optimum
chose here to use a random order of coordinates, followin¢a) The sequence of iteratég of Algorithm () satisfies:
many recent coordinate descent papRisltitarik & Také€,  lim; ... ||Vf(U;)|| = 0. This means that the accumula-
2012 Nesteroy 2012 Patrascu & Necoar2013). tion points of the sequendé/; }7, are critical points of

For choosing the step sizgwe use exact minimization, /- . . .
since we found that for the problems we aim to solve, usin b)cfi:[iscs:|m?)itnrleo?mlC?nggtsigfaa{gclzf :ﬁ:ﬁﬁn quﬁfé*f b|?
exact minimization was usually the same order of complex- poir 7. - . i
ity as performing approximate minimization (like using an and only ifitis asymptotlca!ly stable with regard to the se-
Armijo step ruleBertsekag1999; Absil et al.(2009). que_n(.:(_e generated b_y Alg_onthm)( _

Definition 3. For an iterationt of Algorithm (1), and a set

Based on these two decisions, Algoritht) (s a random  of indices(i(t), j(¢)), we define the auxiliary single vari-
coordinate minimization technique. able functiong?” :

7(0) = f (U -G(i, 5,0 3
Algorithm 1 Riemannian coordinate minimization @, 90 0) = [ (Us- G,5.9)) @)

Input: Differentiable objective functiory, initial matrix  Note thatgi’j are differentiable and periodic with a period
Uo € Ou of 27, SinceOy is compact andf is differentiable there
t=0 exists a single Lipschitz constaht f) > 0 for all g;”.
Whilesn;;cfenzi:?oiﬂ? at random a pairt), j(¢)) such Theorem 2. Rate of convergence

tHatl <pz'(t) <) i d P&ILt). ) Letf b(_a a continuous function with-Lipschitz directional
20, . — ; f(_U ) (i, 5,0)) derivatives?. Let U, be the sequence generated by Al-
$Yel = argmnin b &\h3,0))- gorithm 1. For the sequence of Riemannian gradients

3. Ut+1 =U; - G(Lj, 9t+1)- Vf(Ut) S TUtOd we have:
4.t =1+ 1. )
: L. _f
end while max F [||Vf(Uy)|[5] < " (/) = fmin) 4

OUtpUt: Ufinal- 0<t<T T4+1

’Because?, is compact, any functiorf with a continuous
second-derivative will obey this condition.
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The proof is a Riemannian version of the proof for the ratewheren is the number of sampleg,is the input dimension-
of convergence of Euclidean random coordinate descent fality andm is the number of PCA components computed.
non-convex functionsRatrascu & Necoara2013 and is  This objective is once-differentiable and the objective ma
provided as supplemental material. trix U grows with the number of samples

4. Sparse PCA 4.1. Givens rotation algorithm for the full casem = n
Principal component analysis (PCA) is a basic dimenis e choose the number of principal componentso be
sipnality reducing technique used through(_)ut th_e sci_enceéqum to the number of sampleswe can apply Algorithm
Given a data setl € R?*" of n observations ind di- (1) girectly to solve the optimization problem of E@.
mensions, the principal components are a set of OrthOchxpliCitly, at each round, for choice of coordinate§, §)

nalfbveCtOTSZ1,22.7...,Zn? € R such that the variance ang 5 matrix/, € O, the resulting coordinate minimiza-
Yok, zl AATz; is maximized. The data is then repre- g, problem is:

=171

sented in a new coordinate systemh = Z7A where

_ dxm m_ d
£l SR argmin — Y Y O[I(AVG(i,3.0)s| ~ 213 =
One drawback of ordinary PCA is lack of interpretabil- ¢ j=1i=1
ity. In the original datad, each dimension usually has d
an understandable meaning, such as the level of expresrgmin — Zﬂcos(ﬁ)(AUt)k.,» + sin(0) (AU )k;| — )3+
sion of a certain gene. The dimensions/ohowever are 0 k=1
typically linear combinations of all gene expression lev- [| = sin(0) (AU )i + cos(0) (AU )| — 7]1
els, and as such are much more difficult to interpret. A (6)

common approach to the problem of findimgerpretable
principal components is Sparse PCZo( etal, 2006  Algorithm 2 Riemannian coordinate minimization for
Jourree et al.201Q d’Aspremont et a].2007 Zhang etal.  sparse PCA

2012 Zhang & Ghaoui 2012. SPCA aims to find vec- |nput: Data matrixA € R?*", initial matrix Uy € O,
tors z; as in PCA, but which are also sparse. In the gene- sparsity parameter > 0

expression example, the non-zero components afight =0
correspond to a few genes that explain well the structure of 417 — 4.1y, .
the dataA. while not convergedio

One of the most popular approaches for solving the prob- 1 Sample uniformly atrandom a pait), j(t)) such
lem of finding sparse principal components is the work thatl <i(t) <j(t) < n.
by Jourree et al.(2010. In their paper, they formalize 20141 = argznax

the problem as finding the optimum of the following con- Zd (I . 9
: L : , r—1([lcos(0) (AU ) pi(ry + sin(0) (AU )ijoy| — 715
strained optimization problem to find the sparse basis vec- I = sin(0) (AU ) age) + cos(0)(AU) 00| — NEN

torsz: BAU = AU - G(i(t), (1)), 011 ).
argmax  Tr(ZTAU) —~ Z | Zij] (5) 4.t=t+1
UeRmxm, ZeRdxm i end while

5. Z = solveForZ (AU, ~) Il Algorithm 6 of

d
st. U'U =1, Z5=1Vj=1...m . Jourrée et al(2010.
i1 Output: Z € Réxn

Jourree et al. provide an algorithm to solve Egjthat has  gee Algorithm ) for the full procedure. In practice, there
two parts: The first and more time consuming part findsis no need to store the matricés in memory, and one

an optimalU, from which optimalZ is then found. We  can work directly with the matrixiU;. Evaluating the ex-
focus here on the problem of finding the mattix Note pression in Eq.6 for a givend requiresO(d) operations,

that whenm = n, the cqnstramUTU = I, implies that  \yhereq is the dimension of the data. We found in practice
U'is an orthogonal matrix. that optimizing Eq6 required an order of 5-10 evaluations.
We use a second formulation of the optimization problemOVverall each iteration of Algorithn®j requiresO(d) oper-
also given by Jourge et al. in section 2.5.1 of their paper: ations.

m d

4.2. Givens rotation algorithm for the casem <
argmax > Y [[(A-U)i;| — 412 g "

UER™™ j=1i=1 The major drawback of Algorithn®j is that it requires the

st. UTU = 1,,, number of principal components to be equal to the num-
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=== Givens coordinate minimization
=—e— Generalized Power method

ber of samples:. This kind of “full dimensional sparse | °°
PCA’ may not be necessary when researchers are interesi g
to obtain a small number of components. We therefore dig %
velop a streaming version of Algorithn2)( For a small
given m, we treat the data as if onlyr samples exist at _ S
any time, giving an intermediate moddl/ € R¥™. Af-  ° 1 = Couieiromermensa |
ter a few rounds of optimizing over this subset of sample: g b o0 ops 4 0 Yoovaaors - ¢
we use a heuristic to drop one of the previous samples and (a) explained variance (b) number of non-zeros
incorporate a new sample. This gives us a streaming ver-

sion of the algorithm beF:ause in every phase we .need onli¥igure 1.(a) The explained variance as function of FLOPS of the
m samples of the data in memory. The full details of thecoordinate minimization method from Algoritherand of the gen-

mean # non-zeros

mean explain
o
w

algorithm are given in the supplemental material. eralized power method bjourrée et al(2010), on a prostate can-
cer gene expression dataset. (b) The number of non-zeros in the
4.3. Experiments sparse PCA matrix as function of FLOPS of the coordinate mini-

mization method from Algorithn2 and of the generalized power
Sparse PCA attempts to trade-off two variables: the fracmethod bydourrée et al(2010), on a prostate cancer gene expres-
tion of data variance that is explained by the model’s comsion dataset. The size of the sparse PCA matrii$00 x 102.
ponents, and the level of sparsity of the components. In our
experiment, we monitor a third important parameter, the
number of floating point operations (FLOPS) performed
to achieve a certain solution. To compute the number of

FLOPS we counted the number of additions and multipli- o
cations computed on each iteration. This does not includ@nc® procedgre suggested in this cas&ay et aI.(ZOO@, .
pointer arithmetic. which takes into account the fact that the sparse principal

components are not orthogonal.

We first examined Algorithn? for the case wheren = )
ll):)pr the Generalized Power Method we use the grdedy

n. We used the prostate cancer gene expression data . " .
Singh et al.(2002. This dataset consists of the gene ex-/ersion of Jourree et al{(2010, with the parametep set

pression levels for 52 tumor and 50 normal samples ovelp 1. We found the greedy version to be more stable and
12,600 genes, resulting inla, 600 x 102 data matrix. to be able to produce sparse solutions when the number of

. components was: > 1. We used values of ranging from
We compared the performance of our approach with that 0f.01 to 0.2, and two stopping conditions: “convergence”,
theGeneralized Power Methasf Jourree et al(2010. We  where the algorithm was run until its objective converged
focus on this method for comparisons because both methyithin a relative tolerance level afo—*, and “early stop”
ods optimize the same objective function, which allows towhere we stopped the algorithm after 14% of the iterations
characterize the relative strengths and weaknesses of thequired for convergence. For our algorithm we used the
two approaches. same range of values, and an early-stop condition where

As can be seen in Figurg the Givens coordinate mini- the algorithm was stopped after using 14% of the samples.

mization method finds a sparser solution with better exFigure 2 demonstrates the tradeoff between floating point
plained variance, and does so faster than the generalizesberations and explained variance for SPCA with 3, 5 and
power method. 10 components and with 3 sparsity levels: 5%, 10% and
We tested the streaming version of the coordinate descef?0- Using low dimensions is often useful for visual ex-
algorithm for sparse PCA (Algorithm 5, supp. material) plorat|on_of the datg. Each d.ot represents one mstan_ce of
on a recent large gene expression data set collected from Ji€ &l90rithm, run with a certain value p&nd stopping cri-

six human brainsHawrylycz et al, 2012). Overall, each of terion. To av_0|d clutter we on]y show _mstances which per-
the 20K human genes was measured at 3702 different brafi?'med bestin terms of explained variance or few FLOPS.
locations, and this data can be used to study the spatial patthen strong sparsity is required (5% or 10% sparsity),
terns of MRNA expression across the human brain. Wehe Givens-rotation coordinate descent algorithm finds so-
again compared the performance of our approach with thatitions faster (blue rectangles are more to the left in Fégur
of the Generalized Power Methaaf Jourrée et al(2010. 2), and these solutions are similar or better in terms of ex-

We split the data into 5 train/test partitions, with eaclintra plaioned variance. For low-dimensional less sparse solsitio
setincluding 2962 examples and each test set including 7407 Sparsity) we find that the generalized power method

examples. We evaluated the amount of variance explainef’dS comparable or better solutions using the same compu-

by the model on the test set. We use the adjusted Var;gtional cost, but only when the number of components is

small, as seen in Figuic,f,i.
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Figure 2.The tradeoff between explained variance and computational cost thaBd 10-component sparse PCA models applied to
human gene expression data. The models are constrained for masipausity of 5% (a), (d) & (g), 10% (b), (e) & (h) and 20% (c), (f)

& (i). Red pluses indicate the Generalized Power metlodi{ee et al, 2010; blue squares represent the Givens coordinate procedure.
See Subsectiof.3for experimental conditions. Explained variance was adjusted follo&mget al.(2006.

5. Orthogonal tensor decomposition 5.1. Orthogonal tensor decomposition

Recently it has been shown that many classic mafthe problem of tensor decomposition is very hard in gen-
chine learning problem such as Gaussian Mixture Moderal (Kolda & Bader 2009. However, a certain class of

els and Latent Dirichlet Allocation can be solved effi-tensors known asrthogonally decomposablkensors are
ciently by using 3rd order moment#&ifandkumar et aJ. easier to decompose, as has been discussed recently by
20123 Hsu & Kakade 2013 Anandkumar et a).2012hc;  Anandkumar et al20123; Hsu & Kakade(2013 and oth-
Chaganty & Liang2013. These methods ultimately rely ers. Here we introduce the problem of orthogonal tensor
on finding an orthogonal decomposition of 3-way tensorsdecomposition, and provide a new characterization of the
T € R¥*dxd and reconstructing the solution from this de-solutions to the decomposition problem as extrema of an
composition. Here we show that the problem of finding anoptimization problem on the orthogonal matrix manifold.

iti sB dxdxd
grthoq{onalll decotmposmon I_or'a ttgn ' eb:R C‘;? The resulting algorithm is similar to one recently proposed
€ haturally cast as an optimization probiem over the Orby Ishteva et al(2013. However, we aim for full diago-

thogonal matrix manlfolt_j. We apply Algorithr to this .__nhalization, while they focus on finding a good low-rank ap-
problem, ar!d compare Its perf(_)rmance on a task of f'nd[groximation. This results in different objective functgon
ing a Gaus_s_|an Mixture Model with a state-of-the-art tenso urs involves third-order polynomials @, while Ishteva
decomposition method, the robust Tensor Power Metho t al.’s results in sixth-order polynomials on the low-rank

(Anandkumar et al.20123. We find that the Givens coor- compact Stiefel manifold. Diagonalizing the tengoris

. . %ttainable in our case thanks to the strong assumption that
number of mixture components is large.
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it is orthogonally decomposable. Nonetheless, both meth-or this we need to calculate the form of the function

ods are extensions of Jacobi's eigenvalue algorithm to thg” (9) =

tensor case, in different setups.

We start with preliminary notations and definitions. We fo-

cus here on symmetric tensdrse R4*4x<, A third-order

tensor is symmetric if its values are identical for any per-

=T

10(1)%(2)%(3)

mutationo of the indices: withl;

111213

We also view a tensdf as a trilinear map.

T RY x R4 x R4 - R T(Ul,vg,v3)
d

Zu,b,c:l TabcvlaUZbUZSc-

Finally, we also use the three-form tensor product of a

vector u € R? with itself. v @ v @ u € RIxXIxd

(u®u® u)gpe = uq - up - u.. Such a tensor is called a
rank-onetensor.

Definition 4. A symmetric tensdf is orthogonally decom-

posable if there exists an orthonormal sgt. .. v; € RY,
and positive scalara, ... \; > 0 such that:
d
T:Z)\i(vi(@vi@vi). (7)

i=1

Unlike matrices, most symmetric tensors are not or-
as shown by

thogonally decomposable. However,
Anandkumar et al. (20123; Hsu & Kakade (2013;
Anandkumar et al (2013, several problems of interest,

notably Gaussian Mixture Models and Latent Dirichlet In each Step of the a|gor|thm we max|m|yé

f(U-G(i,4,0)). We have:

> Tk, s ur) + T (i, i, @) + T (i, iy, i) .
k#i,j

where we usedi; = cos(f)u; + sin(f)u; anda; =
cos(B)u; — sin(0)u;.

Denote byT the tensor such tha1fﬁj,C = T(ug,uy, up).
We will abuse notation and dendfe = T'(U, U, U). The
tensorT is the three-way multiplication of’ by the ma-
trix U. This is the liting of the matrix operation/ =
M(U,U) = UMUT to the tensor domain.

Collecting terms, using the symmetry Bfand some basic
trigonometric identities, we then have:

gij(9) =cos (9) (Tm + TJ]J 3Tijj - 3Tjii) ©)
+sin3(0) (Tm — Tjj5 — 3Tij5 + STjii)
—I—COS(Q) (3Tijj + 3@”)
over

Allocation do give rise to third-order moments which are _» < ¢ < 7. The scalar functiog” has at most 3 max-

orthogonally decomposable in the limit of infinite data.

ima that can be obtained in closed form solution, and thus

The goal of orthogonal tensor decomposition is, given arfan be maximized in constant time.

orthogonally decomposable tengarto find the orthogonal
vector se, ... vq € R% and the scalars,, ... \g > 0.

Algorithm 3 Riemannian coordinate maximization for or-
thogonal tensor decomposition

We now show that finding an orthogonal decomposition CaNpput: Symmetric tensof’ € R4*@x,

be stated as an optimization problem oy

Theorem 3. LetT € R**?*d have an orthogonal decom-
position as in Definitiord, and consider the optimization

problem
pax f(U) ZT (wis wiy u;), (®)
whereU = [uj ug ... ug). The stable stationary points of

the problem are exactly orthogonal matricessuch that
u; = vy (; for a permutationr on [d]. The maximum value

they attain sy, A

The proof is given in the supplemental material.

5.2. Coordinate minimization algorithm for orthogonal
tensor decomposition

We now adapt Algorithni for solving the problem of or-
thogonal tensor decomposition of a tenggrby maximiz-
ing the objective functior8, f(U) = Zle T(ug, wi,u;).

Initialize t = 0,7° =T, Uy = I,.

while not convergedio
1. Sample uniformly at random a pdic¢),
thatl <i(t) < j(t) < d.
2. ObtainT®,, Tt ., Tt

i) m’ ijj? -
3. 0; = argmax g;’ (0), whereg,” is defined as i®.
[

j(t)) such

Tt

Jiit

4.7 =T! (G(Z’ 7,04, G(ivja 975); G(ivja ‘gt))
Il Three way multiplication of * by G(i, j, 6;).
5. Ut+1 G(’L ],Gt)
6.t=t+1.
end while
Output: Utinal-

The most computationally intensive part of Algoritt8iis
line 4. Multiplying a tensor by the Givens rotati6i{(i, j, )
only affects tensor entries on tligh andj-th slice. This
requiresO(d?) operations per iteration. In Section D of the
supplemental material we provide a different version o thi
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Figure S.Qlustering p_erformance in terms of normalized Ml 0.82 1dK SOK SOK 1OOK ZOOK
of the Givens algorithm vs. the tensor power method of Number of samples

Anandkumar et al(20123. Clustering by fitting a GMM from

samples drawn from a 20-component GMM with varying dimen'Figure 4.Same task as Figu® but for fixed dimensionl = 100
sion, using 3rd order moments. Reconstruction is performed fron%md varying number of samples.

(a) 10K and (b) 200K samples. Blue line with triangles marks the
Givens coordinate method. Red line with circles marks the tensor
power method, and the black line is the optimal performance if all
GMM parameters are known.
performance of both algorithms across all sample sizes for

dimension= 100. We see that the coordinate minimization
method again performs better for larger sample sizes. We
observed this phenomenon for 50 components as well, and
algorithm which does not require calculating the teriBor  for mixture models with larger variance.
Instead, it operates directly on the data points, calagati
cross products on demand. This version of the algorith

has complexity per step @ (#samples) instead. We described a framework to efficiently optimize differen-
5.3. Experiments tiable functions over the manifold of orthogonal matrices.

Hsu & Kakadg2013 andAnandkumar et a(20123 have The appr_oach is based on Givens rotati_ons, which We.show
recently shown how fitting a Gaussian Mixture Model C@" be viewed as the parallel of coordlna:[e updates in Eu-
(GMM) with common spherical covariance can be reduced1d€an spaces. We prove the procedure’s convergence to
to orthogonally decomposing a third moment tensor. We? 'O_Cﬁ' optimum. Using th_|s framew_ork, we develop_ed_al-
evaluate the Givens coordinate minimization algorithm us9°"thms for two unsupervised learning problems: Finding
ing this problem. We compare with a state of the art tensopP2rS€ Principal components; and learning a Gaussian mix-
decomposition method, the robust tensor power method, Jure model through orthogonal tensor decomposition. Our
given inAnandkumar et ak2012a. method poses an alternative to the tensor power method for
We generated GMMs with the following parameters: num-Orthogonal tensor_de_composmons. Qur z_ilternatlve e>e_tend
ber of dimensions i{10, 20, 50, 100, 200}, number of the way Fhe Jacobi eigenvalue alg_onthm is an gl_ternanve to
samples in{10K, 30K, 50K, 100K, 200K }. We used 20 the matrix power method for matrix decompositions.

components, each with a spherical variance of 2. Th&ye expect that the proposed framework can be further ex-
centers were sampled from a Gaussian distribution withended to other problems requiring learning over orthogo-
an inverse-Wishart distributed covariance matrix. Givenng| matrices including ICA. Moreover, coordinate descent
the samples, we constructed the 3rd order moment, depproaches have some inherent advantages and are some-
composed it, and reconstructed the model following thejmes better amenable to parallelization. Developing dis-

procedure inAnandkumar et al(20123. We then clus- tributed Givens-rotation algorithms would be an interegti
tered the samples according to the reconstructed mode|;tyre research direction.

and measured theormalized mutual informatioiNMI)
(Manning et al. 2008 between the learned clustering and
the true clusters.

ﬁﬁ. Conclusion
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