
Newton-type Distributed Optimization

A. Lower Bounds for One-shot Parameter Averaging
A.1. Proof of Theorem 1

Before providing the proof details, let us first describe the high-level intuition of our construction. Roughly speaking, one-
shot averaging works well when the bias of the predictor returned by each machine (as a random vector in Euclidean space,
based on the sampled training data) is much smaller than the variance. Since each such predictor is based on independent
data, averaging m such predictors reduces the variance by a factor of m, leading to good guarantees. However, averaging
has no effect on the bias, so this method is ineffectual when the bias dominates the variance. The construction below shows
that when the strong convexity parameter is small, this can indeed happen.

More specifically, when the strong convexity parameter is smaller than O(1/
√
n), the magnitude of the deviations of the

(random) predictor returned by each machine does not decay with the sample size n. Moreover, its distribution is highly
dependent on the data distribution and the shape of f , and is biased in general. Below we use one such construction, which
we found to be convenient for precise analytic calculations, but the intuition applies much more broadly.

Specifically, letW = [−2/λ, log(1/λ)], and define the loss function f(w; z) as

f(w; z) = λ

(
1

2
w2 + exp(w)

)
− zw.

Furthermore, suppose that z ∼ N (0, 1), i.e. the examples have a standard Gaussian distribution. Note that this function is
λ-strongly convex, and can be shown to satisfy Ez[f ′(w; z)2] ≤ 9 for any w ∈ W .

Let ŵ1 be the parameter vector returned by the machine 1 (this is without loss of generality, since all the machines receive
examples drawn from the same distribution). The key to the proof is to show that ŵ1 is strongly biased, namely that E[ŵ1]
is bounded away from the true optimum w∗. To compute E[ŵ1], note that ŵ1 minimizes the random function

1

n

n∑
i=1

f(w; zi) = λ

(
1

2
w2 + exp(w)

)
− z̃√

n
w, (21)

where z̃ = (z1 + . . .+ zn)/
√
n. Note that since z1, . . . , zn are i.i.d. Gaussians, z̃ also has the same Gaussian distribution

N (0, 1).

Taking the derivative, equating to zero and slightly manipulating the result, we get that

λ
√
n (w + exp(w)) = z̃.

The function on the left-hand-side is strictly monotonically increasing, and has a range [−∞,∞]. Thus, for any z̃, there
exists a unique root w(z̃). Moreover, as long as |z̃| ≤

√
n, it’s easy to verify that w(z̃) is within our domain W =

[−2/λ, log(1/λ)], hence ŵ1 = w(z̃). Therefore, letting p(·) denote the standard gaussian distribution of z̃, we have

E[ŵ1] =

∫ √n
x=−

√
n

ŵ1p(x)dx+

∫
|x|>
√
n

ŵ1p(x)dx ≤
∫ √n
x=−

√
n

w(x)p(x)dx+
2

λ
Pr(|z̃| ≥

√
n)

≤
∫ √n
x=0

(w(x) + w(−x)) p(x)dx+
2

λ

√
1

n exp(n)
, (22)

where in the last step we used the symmetry of the distribution of z̃ and a standard Gaussian tail bound.

We now turn to analyze w(x) + w(−x). First, we have by definition

w(x) + exp(w(x)) =
x

λ
√
n

(23)

for all x, and therefore

w(x) + w(−x) =

(
x

λ
√
n
− exp(w(x))

)
+

(
− x

λ
√
n
− exp(w(−x))

)
≤ − exp(w(x)). (24)
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Therefore, we have w(x) + w(−x) ≤ 0 for all x. More precisely, considering (23) and the fact that its left hand size is
monotonic inw(x), it’s easy to verify that for any x ≥ 0, we havew(x) ≥ log

(
x

λ
√
n
− log

(
x

λ
√
n

))
, andw(−x) ≤ − x

λ
√
n

,
so using (24),

w(x) + w(−x) ≤ − exp(w(x)) ≤ − x

λ
√
n

+ log

(
x

λ
√
n

)
.

Since log(a) < a/2 for all a ≥ 0, this expression is at most− x
2λ
√
n

. Plugging this back into (22), and using the assumption
n ≥ 9, we get that

E[ŵ1] ≤ − 1

2λ
√
n

∫ √n
x=0

xp(x)dx+
2

λ

√
1

n exp(n)
≤ − 1

2λ
√
n

∫ √9

x=0

xp(x)dx+
2

λ

√
1

n exp(n)
.

Since p(x) is the standard Gaussian distribution, it can be numerically checked that this is at most

− 0.19

λ
√
n

+
2

λ

√
1

n exp(n)
=

1

λ
√
n

(
−0.19 + 2

√
exp(−n)

)
≤ − 1

6λ
√
n
.

So, we finally get E[ŵ1] ≤ −1/(6λ
√
n).

Now, we show that this expected value of ŵ1 is far away from w∗. w∗ is not hard to calculate: It satisfies

w∗ + exp(w∗) = 0,

and it can be calculated numerically that w∗ = −0.5671.. > −3/5. Moreover, we assume λ ≤ 1/(9
√
n), so λ

√
n ≤ 1/9

and thus it can be verified that
w∗ − E[ŵ1] > −3

5
+

1

6λ
√
n
≥ 1

10 λ
√
n
.

Note that this is always a positive quantity. As a result, using Jensen’s inequality, we get

E[(w∗ − w̄)2] ≥ (w∗ − E[w̄])2 = (w∗ − E[ŵ1])2 ≥ 1

100 λ2n
.

Moreover, by λ-strong convexity of f , we have that

E[F (w̄)− F (w∗)] ≥ E
[
λ

2
(w̄ − w∗)2

]
≥ 1

200 λn
.

Finally, it is known that by performing empirical risk minimization over all N = nm instances, and using the fact that
E[‖∇wf(w, z)‖2] is bounded by a constant, we get

E[(ŵ − w∗)2] ≤ O
(

1

λ2nm

)
(see (Zhang et al., 2013)) and

E[F (ŵ)− F (w∗)] ≤ O
(

1

λnm

)
(see Equation (10)). Combining the four inequalities above gives us the theorem statement.

A.2. Bias Correction Also Fails

In (Zhang et al., 2013), which analyzes one-shot parameter averaging, the authors noticed that the analysis fails for small
values of λ, and proposed a modification of the simple averaging scheme, designed to reduce bias issues. Specifically,
given a parameter r ∈ [0, 1], each machine subsamples rn examples without replacement from its dataset, and computes
the optimum ŵ2,k with respect to this subsample. Then, it computes the optimum ŵk,1 over the entire dataset, and returns
the weighted combination ŵk = (ŵk,1 − rŵk,2)/(1 − r). Unfortunately, the analysis still results in lower-order terms
with bad dependence on λ, and it’s not difficult to extend our construction from Theorem 1 to show that this bias-corrected
version of the algorithm still fails (at least, if r is chosen in a fixed manner).
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For simplicity, we will only sketch the derivation for a fixed choice of λ given n, namely λ = 1/10
√
n, and for r = 1/2.

Also, we assume for simplicity that W = R (to avoid tedious dealings with small Gaussian tails). With this choice, the
returned solution becomes ŵk = 2ŵk,1 − ŵk,2. The distribution of ŵk,1, using the same derivation as in the proof of the
theorem, is determined by

ŵk,1 + exp(ŵk,1) =
1

λ
√
n
z̃ = 10z̃

where z̃ has a standard Gaussian distribution. As to ŵk,2, its distribution is similar to that of ŵk,1 with the same choice of
λ but only half as many points, hence

ŵk,2 + exp(ŵk,2) =
1

λ
√
n/2

z̃ = 10
√

2 z̃.

By a numerical calculation, one can verify that E[ŵk] = 2E[ŵk,1]− E[ŵk,2] ≈ 2 ∗ (−3.3)− (−4.8) = −1.8. In contrast,
w∗ = −0.5671... as discussed in the proof. Thus, the bias is constant and does not scale down with the data size, getting a
similar effect as in Theorem 1

B. Proof of Theorem 2
For any w(t−1), the optimal solution is always given by:

ŵ = arg min
w
φ(w) = w(t−1) −H−1∇φ(w(t−1)). (25)

Following (16), we have:

w(t) = w(t−1) − η
(

1

m

∑
(Hi + µI)−1

)
∇φ(w(t−1))

= w(t−1) − ηH̃−1∇φ(w(t−1)).

Therefore
w(t) − ŵ = (H−1 − ηH̃−1)∇φ(w(t−1)) = (I − ηH̃−1H)(w(t−1) − ŵ). (26)

where for the last equality we rearranged (25) to calculate ∇φ(w(t−1)) = H(w(t−1) − ŵ). Bounding ‖Av‖ ≤ ‖A‖2‖v‖
and iterating (26) leads to the desired result.

C. Proof of Lemma 1
We will need two auxiliary lemmas:

Lemma 3. For any positive definite matrix H:

‖I − (H + µI)−1H‖ =
µ

λ+ µ
,

where λ is the smallest eigenvalue of H .

Proof. Write H = USU>, then

‖I − (H + µI)−1H‖ = ‖UIU> − (U(S + µI)U>)−1USU>‖ = ‖UIU> − U(S + µI)−1U>USU>‖
= ‖U

(
I − (S + µI)−1S

)
U>‖ = ‖I − (S + µI)−1S‖.

This equals one minus the smallest element on the diagonal of the diagonal matrix (S + µI)−1S, which is λ/(λ+ µ).

Lemma 4. Let A be a positive definite matrix with minimal eigenvalue γ which is larger than some µ > 0, and {∆i}mi=1

matrices of the same size, such that maxi ‖∆i‖ ≤ β and β < γ. Then∥∥∥∥∥
(

1

m

m∑
i=1

(A+ ∆i)
−1 −A−1

)
(A− µI)

∥∥∥∥∥ ≤ 2β2

γ (γ − β)
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Proof. For any i, we have

(A+ ∆i)
−1 =

(
A(I +A−1∆i)

)−1
= (I +A−1∆i)

−1A−1.

Note that ‖A−1∆i‖ ≤ ‖A−1‖‖∆i‖ ≤ 1
γβ < 1. Therefore, we can use the identity

(I + C)−1 =

∞∑
r=0

(−1)rCr

which holds for any C such that ‖C‖ < 1. Using this with C = A−1∆i and plugging back, we get

(A+ ∆i)
−1 =

∞∑
r=0

(−1)r
(
A−1∆i

)r
A−1 = A−1 −A−1∆iA

−1 +

∞∑
r=2

(−1)r
(
A−1∆i

)r
A−1.

Averaging over i = 1 . . .m and using the assumption
∑m
i=1 ∆i = 0, we get

1

m

m∑
i=1

(A+ ∆i)
−1 = A−1 +

∞∑
r=2

(−1)r

m

m∑
i=1

(
A−1∆i

)r
A−1.

Multiplying both sides by (A− µI), we get(
1

m

m∑
i=1

(A+ ∆i)
−1

)
(A− µI) = A−1 (A− µI) +

∞∑
r=2

(−1)r

m

m∑
i=1

(
A−1∆i

)r (
I − µA−1

)
.

By the triangle inequality and convexity of the norm, this implies∥∥∥∥∥
(

1

m

m∑
i=1

(A+ ∆i)
−1 −A−1

)
(A− µI)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
r=2

(−1)r

m

m∑
i=1

(
A−1∆i

)r
(I − µA−1)

∥∥∥∥∥
≤
∞∑
r=2

1

m

m∑
i=1

‖
(
A−1∆i

)r
(I − µA−1)‖

≤
∞∑
r=2

1

m

m∑
i=1

‖A−1‖r‖∆i‖r‖I − µA−1‖

≤
∞∑
r=2

βr

γr

(
1 +

µ

γ

)
≤ 2β2

γ2

∞∑
r=0

(
β

γ

)r
=

2β2

γ2
1

1− β
γ

=
2β2

γ(γ − β)

from which the result follows.

We are now ready to prove Lemma 1. Using Lemma 3, we can upper bound ‖I − H̃−1H‖ as

‖I − 1

m

m∑
i=1

(Hi + µI)
−1
H‖ ≤ ‖I − (H + µI)−1H‖+

∥∥∥∥∥ 1

m

m∑
i=1

(Hi + µI)
−1
H − (H + µI)−1H

∥∥∥∥∥
≤ µ

λ+ µ
+

∥∥∥∥∥
(

1

m

m∑
i=1

(Hi + µI)
−1 − (H + µI)−1

)
H

∥∥∥∥∥
Now, we use Lemma 4 with A = H + µI and ∆i = Hi −H (noting that ‖∆i‖ ≤ β), and get the bound

µ

λ+ µ
+

2β2

(λ+ µ) (λ+ µ− β)
.

assuming β < λ+ µ.
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Now, let us assume the even stronger condition that β < 1
2 (λ+ µ) (which we shall justify at the end of the proof), then we

can upper bound the right hand side in the equation above by

µ

λ+ µ
+

4β2

(λ+ µ)
2 . (27)

Differentiating with respect to µ, we get an optimal point at

µopt =
8β2

λ
− λ.

If this is non-positive, it means that λ2 > 8β2, and moreover, that µ = 0, so (27) equals 4β2/λ2. Otherwise, we pick
µ = 8β2

λ − λ, and (27) becomes

1− λ
8β2

λ

+
4β2(
8β2

λ

)2 = 1− λ2

8β2
+

λ2

16β2
= 1− λ2

16β2
.

Combining the two cases, we get the result stated in the Lemma. Finally, it remains to justify why β < 1
2 (λ + µ). By the

way we picked µ, it’s enough to prove that

2β < max

{
λ,

8β2

λ

}
,

or equivalently,

2 < max

{
λ

β
, 8
β

λ

}
.

This is true since max{x, 8/x} > 2 for all positive x.

D. Proof of Lemma 2
H is the average of the Hessians ofmn i.i.d. quadratic functions, all with eigenvalues at most L, and eachHi is the average
of the Hessians of n i.i.d. quadratic functions, all with eigenvalues at most L. By a matrix Hoeffding’s inequality (Tropp,
2012), we have that for each i, with probability 1− δ over the samples received by machine i,

‖Hi − E[Hi]‖ ≤
√

8L2 log(d/δ)

n
.

By a union bound, we get that with probability 1− δ,

max
i
‖Hi − E[Hi]‖ ≤

√
8L2 log(dm/δ)

n
.

Moreover, we have E[Hi] = E[H] and H = 1
m

∑
iHi, so if this event occurs, we also have

‖H − E[H]‖ ≤
√

8L2 log(d/δ)

n
.

Combining these, we get that with probability 1− δ,

max
i
‖Hi −H‖ ≤ max

i
‖Hi − E[H]‖+ ‖H − E[H]‖ ≤

√
32 L2 log(dm/δ)

n
.

E. Proof of Theorem 3
Plugging 2 into Lemma 1, and noting that the strong convexity of the instantaneous losses implies F̂ (w) is λ strongly
convex7, we obtain

‖I − H̃−1H‖ ≤

{
128(L/λ)2 log(dm/δ)

n if 128(L/λ)2 log(dm/δ)
n ≤ 1

2

1− n
512(L/λ)2 log(dm/δ) otherwise.

(28)

7In fact, it is enough to require that F̂ (w) is λ-strongly convex, and it is not necessary to require strong convexity of f(w, z) for
each individual z. However, requiring that the population objective F (w) is λ-strongly convex might not be sufficient if λ < L/

√
n,

e.g. when λ ∝ 1/
√
nm.
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By smoothness of F̂ , we have F̂ (w(t))− F̂ (ŵ) ≤ L
2 ‖w

(t) − ŵ‖2, and therefore Theorem 2 implies that

F̂ (w(t))− F̂ (ŵ) ≤ L

2
‖w(0) − ŵ‖2‖I − ηH̃−1H‖2t.

This means that to get optimization error ≤ ε, the number of iterations required is

log
(
L‖w(0)−ŵ‖2

2ε

)
−2 log

(
‖I − ηH̃−1H‖

) (29)

Considering (28), if the first case holds, then the denominator in (29) is at least 2 log(2) and we get that the number of

iterations required is O
(

log
(
L‖w(0)−ŵ‖

ε

))
. If the second case in (28) holds, we have

log
(
‖I − ηH̃−1H‖

)
≤ log

(
1− n

512(L/λ)2 log(dm/δ)

)
≤ − n

512(L/λ)2 log(dm/δ)
,

which implies that the iteration bound (29) is at most

256(L/λ)2 log(dm/δ)

n
log

(
L‖w(0) − ŵ‖2

2ε

)
.

F. Proof of Theorem 4
We begin with the following lemma:

Lemma 5. Under the conditions of Theorem 4, the following inequalities hold:

(∇hi(w′)−∇hi(w))>(w′ − w) ≥ 1

Li + µ
‖∇hi(w′)−∇hi(w)‖22 (30)

and
‖∇φ(w)‖22 ≥ λ(φ(w)− φ(ŵ)). (31)

Proof. The smoothness of hi implies that its conjugate h∗i is 1/(Li + µ) strongly convex. Let u′ = ∇hi(w′) and u =
∇hi(w), then w′ = ∇h∗i (u′) and w = ∇h∗i (u). We have

(∇hi(w′)−∇hi(w))>(w′ − w) = (∇h∗i (u′)−∇h∗i (u))>(u′ − u) ≥ 1

Li + µ
‖u′ − u‖22.

This proves (30).

Since ∇φ(ŵ) = 0, ‖∇φ(w)‖22 = ‖∇φ(w)−∇φ(ŵ)‖22. From ‖∇φ(w)−∇φ(ŵ)‖2 ≥ λ‖w − ŵ‖2, we obtain

‖∇φ(w)−∇φ(ŵ)‖22 ≥λ‖∇φ(w)−∇φ(ŵ)‖2‖w − ŵ‖2
≥λ(∇φ(w)−∇φ(ŵ))>(w − ŵ)

=λ∇φ(w)>(w − ŵ) ≥ λ(φ(w)− φ(ŵ)).

This proves (31).

We are now ready to prove the Theorem. At iteration t, we have the following first order equation:

∇hi(w(t)
i )−∇hi(w(t−1)) = −η∇φ(w(t−1)). (32)
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Therefore,

φ(w
(t)
i )

=φ(w(t−1)) +∇φ(w(t−1))>(w
(t)
i − w

(t−1)) +Dφ(w
(t)
i ;w(t−1))

=φ(w(t−1))− 1

η
(∇hi(w(t)

i )−∇hi(w(t−1)))>(w
(t)
i − w

(t−1)) +Dφ(w
(t)
i ;w(t−1))

≤φ(w(t−1))− 1

η
(∇hi(w(t)

i )−∇hi(w(t−1)))>(w
(t)
i − w

(t−1)) +
L

2
‖w(t)

i − w
(t−1)‖22

≤φ(w(t−1))− 1

η
(∇hi(w(t)

i )−∇hi(w(t−1)))>(w
(t)
i − w

(t−1)) +
L

2(λi + µ)2
‖∇hi(w(t)

i )−∇hi(w(t−1))‖22

≤φ(w(t−1))−
[
η−1

µ+ Li
− L

2(λi + µ)2

]
‖∇hi(w(t)

i )−∇hi(w(t−1))‖22

=φ(w(t−1))− (ρi/λ)‖∇φ(w(t−1))‖22.

where ρi =
[

1
µ+Li

− ηL
2(µ+λi)2

]
ηλ. In the above derivations, the first inequality uses the smoothness of φ; the second

inequality uses the strong convexity of hi; the third inequality uses (30); the second and the last equalities use (32).

Therefore

φ(w(t)) ≤ 1

m

m∑
i=1

φ(w
(t)
i )

≤ 1

m

m∑
i=1

[φ(w(t−1))− (ρi/λ)‖∇φ(w(t−1))‖22] = φ(w(t−1))− (ρ/λ)‖∇φ(w(t−1))‖22

≤φ(w(t−1))− ρ(φ(w(t−1))− φ(ŵ)),

where the first inequality is Jensen’s and the third inequality is due to (31). As a result, we get

φ(w(t))− φ(ŵ) ≤ φ(w(t−1))− φ(ŵ)− ρ(φ(w(t−1))− φ(ŵ)) = (1− ρ)(φ(w(t−1))− φ(ŵ)).

The desired bound follows by recursively applying the above inequality.

G. Proof of Theorem 5
We have

φ(ŵ) =φ(w(t−1)) +∇φ(w(t−1))>(ŵ − w(t−1)) +Dφ(ŵ;w(t−1))

=φ(w(t))−∇φ(w(t−1))>(w(t) − w(t−1))−Dφ(w(t);w(t−1)) +∇φ(w(t−1))>(ŵ − w(t−1)) +Dφ(ŵ;w(t−1))

=φ(w(t)) +∇φ(w(t−1))>(ŵ − w(t))−Dφ(w(t);w(t−1)) +Dφ(ŵ;w(t−1))

=φ(w(t)) +∇φ(w(t−1))>(ŵ − w(t−1))−Dφ(w(t);w(t−1)) +Dφ(ŵ;w(t−1)) +∇φ(w(t−1))>(w(t−1) − w(t))

=φ(w(t)) +∇φ(w(t−1))>(ŵ − w(t−1))−Dφ(w(t);w(t−1)) +Dφ(ŵ;w(t−1))

+ η−1[Dh(w(t−1);w(t)) +Dh(w(t);w(t−1))]

≥φ(w(t)) +∇φ(w(t−1))>(ŵ − w(t−1)) +Dφ(ŵ;w(t−1)) + η−1Dh(w(t−1);w(t)),

where in the last inequality, we have used the assumption that Dφ(w(t);w(t−1)) ≤ η−1Dh(w(t);w(t−1)). This implies
that

Dh(w(t−1);w(t)) + η∇φ(w(t−1))>(ŵ − w(t−1)) ≤ η[φ(ŵ)− φ(w(t))−Dφ(ŵ;w(t−1))]. (33)
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Therefore we have

Dh(ŵ;w(t))−Dh(ŵ;w(t−1))

=Dh(w(t−1);w(t)) + (∇h(w(t−1))−∇h(w(t)))>(ŵ − w(t−1))

=Dh(w(t−1);w(t)) + η∇φ(w(t−1))>(ŵ − w(t−1))

≤η[φ(ŵ)− φ(w(t))−Dφ(ŵ;w(t−1))]

≤− ηDφ(ŵ;w(t−1))

≤− ηγDh(ŵ;w(t−1)),

where the first inequality is due to (33), the second inequality comes from the inequality φ(ŵ) ≤ φ(w(t)), and the third
inequality uses the assumption that Dφ(ŵ;w(t−1)) ≥ γDh(ŵ;w(t−1)). We thus obtain

Dh(ŵ;w(t)) ≤ (1− ηγ)Dh(ŵ;w(t−1)),

and this implies the desired result.


