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Appendix A: Proof of Lemma 2.2
In this section, we prove Lemma 2.2. We should note that
our deviations below also provide insights for the devel-
opments of online BayesPA algorithms with the averaging
classifiers.

Proof. We prove for the more generalized soft-margin ver-
sion of BayesPA learning, which can be reformulated using
a slack variable ξ:

qt+1(w) = argmin
q(w)∈P

KL[q(w)||qt(w)] + 2cξt

s.t. : ytEq[w>xt] ≥ ε− ξt), ξt ≥ 0.
(24)

Similar to Corollary 5 in (Zhu et al., 2012), the optimal
solution q∗(w) of the above problem can be derived from
its functional Lagrangian and has the following form:

q∗(w) =
1

Γ(τt)
qt(w) exp(τtytw

>xt) (25)

where Γ(τt) is a normalization term and τt is the optimal
solution to the dual problem:

max
τt

τtε− log Γ(τt)

s.t. 0 ≤ τt ≤ 2c
(26)

Using this primal-dual interpretation, we first prove that for
prior p0(w) = N (w0, I), qt(w) = N (µt, I) for some
µt in each round t = 0, 1, 2, ... This can be shown by
induction. Assume for round t, the distribution qt(w) =
N (µt, I). Then for round t+ 1, (25) suggests the distribu-
tion

qt+1(w) =
C

Γ(τt)
exp

(
− 1

2
||w−(µt+τtytxt)||2

)
(27)

where the constant C = exp(ytτtµ
>
t xt + 1

2τ
2
t x
>
t xt) .

Therefore, the distribution qt+1(w) = N (µt + τtxt, I)
and as a by-product, the normalization term Γ(τt) =√

2π
K

exp(τtytx
>
t µt + 1

2τ
2
t x
>
t xt).

Next, we show that µt+1 = µt + τytxt is the optimal so-
lution of the online Passive-Aggressive update rule (Cram-
mer et al., 2006). To see this, we plug the derived Γ(τt)
into (26), ignore constant terms and obtain

max
τt

ετt − 1
2τ

2
t x
>
t xt − ytτtµ>t xt

s.t. 0 ≤ τt ≤ 2c
(28)

which is exactly the dual form of the online Passive-
Aggressive update equation:

µ∗t+1 = arg min 1
2 ||µ− µt||2 + 2cξ

s.t. ytµ>xt ≥ ε− ξ, ξ ≥ 0,
(29)

the optimal solution to which is µ∗t+1 = µt + τtytxt. It is
then clear that µt+1 = µ∗t+1.

Appendix B:
We show the objective in (11) is an upper bound of that in
(6), that is,

L(q(w,Φ,Zt,λt))− Eq[log(ψ(Yt,λt|Zt,w))]

≥ L(q(w,Φ,Zt)) + 2c
∑
d∈Bt

Eq[(ξd)+]
(30)

where L(q) = KL[q||qt(w,Φ)q0(Zt)].

Proof. We first have

L(q(w,Φ,Zt,λt)) = Eq[log
q(λt | w,Φ,Zt)q(w,Φ,Zt)

qt(w,Φ,Zt)
],

and

L(q(w,Φ,Zt)) = Eq[log
q(w,Φ,Zt)

qt(w,Φ,Zt)
]

Comparing these two equations and canceling out common
factors, we know that in order for (30) to make sense, it
suffices to prove

H[q′]− Eq′ [log(ψ(Yt,λt|Zt,w)] ≥ 2c
∑

d∈Bt

Eq′ [(ξd)+]

(31)
is uniformly true for any given (w,Φ,Zt), where H(·) is
the entropy operator and q′ = q(λt | w,Φ,Zt). The in-
equality (31) can be reformulated as

Eq′ [log
q′

ψ(Yt,λt|Zt,w)
] ≥ 2c

∑

d∈Bt

Eq′ [(ξd)+] (32)

Exploiting the convexity of the function log(·), i.e.

−Eq′ [log
ψ(Yt,λt|Zt,w)

q′
] ≥ − log

∫

λt

ψ(Yt,λt|Zt,w) dλt,

and utilizing the equality (10), we then have (32) and there-
fore prove (30).


