Online Bayesian Passive-Aggressive Learning

Appendix A: Proof of Lemma 2.2

In this section, we prove Lemma 2.2. We should note that
our deviations below also provide insights for the devel-
opments of online BayesPA algorithms with the averaging
classifiers.

Proof. We prove for the more generalized soft-margin ver-
sion of BayesPA learning, which can be reformulated using
a slack variable &:

argmin KL[g(w)||q:(w)] + 2¢&;
qg(w)eP (24)
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Similar to Corollary 5 in (Zhu et al., 2012), the optimal
solution ¢*(w) of the above problem can be derived from
its functional Lagrangian and has the following form:

1
q"(w) = mfh(w) exp(Ttythmt) (25)

where T'(7) is a normalization term and 7 is the optimal
solution to the dual problem:

max 7€ — log'(7)

(26)
st 0< 7 <2

Using this primal-dual interpretation, we first prove that for
prior po(w) = N(wo, I), ¢(w) = N (s, I) for some
¢ in each round ¢ = 0,1,2,... This can be shown by
induction. Assume for round ¢, the distribution ¢;(w) =
N (s, I). Then for round ¢ + 1, (25) suggests the distribu-
tion
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Therefore, the distribution g1 (w) = N (s + 7, I)
and as a by-product, the normalization term I'(7) =

K
V2 exp(rye] pe + 57x] ).

Next, we show that p¢1 = p+ + Ty is the optimal so-
lution of the online Passive-Aggressive update rule (Cram-
mer et al., 2006). To see this, we plug the derived I'(7;)
into (26), ignore constant terms and obtain

1
max €Ty — §Tt2thzct — ytTt‘U,;rCCt
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which is exactly the dual form of the online Passive-
Aggressive update equation:

H:+1 = argmin %H/J’ - Ht||2 + 2C§ (29)
s.t. ytuTmt Z €— 57 5 Z Oa

the optimal solution to which is puf, 1 = py + 7y, Itis
then clear that ;11 = py, 4. O

Appendix B:

We show the objective in (11) is an upper bound of that in
(6), that is,
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where £(q) = KL|[q||q:(w, ®)q0(Z;)].

Proof. We first have
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Comparing these two equations and canceling out common

factors, we know that in order for (30) to make sense, it
suffices to prove
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is uniformly true for any given (w, ®, Z;), where H(-) is
the entropy operator and ¢’ = g(\; | w, ®, Z;). The in-

equality (31) can be reformulated as
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Exploiting the convexity of the function log(-), i.e.
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and utilizing the equality (10), we then have (32) and there-
fore prove (30). O



