
Densifying One Permutation Hashing via Rotation for Fast Near Neighbor
Search

Anshumali Shrivastava ANSHU@CS.CORNELL.EDU

Dept. of Computer Science, Computing and Information Science (CIS), Cornell University, Ithaca, NY 14853, USA

Ping Li PINGLI@STAT.RUTGERS.EDU

Dept. of Statistics & Biostatistics, Dept. of Computer Science, Rutgers University, Piscataway, NJ 08854, USA

Abstract
The query complexity of locality sensitive hash-
ing (LSH) based similarity search is dominated
by the number of hash evaluations, and this num-
ber grows with the data size (Indyk & Motwani,
1998). In industrial applications such as search
where the data are often high-dimensional and
binary (e.g., text n-grams), minwise hashing is
widely adopted, which requires applying a large
number of permutations on the data. This is
costly in computation and energy-consumption.

In this paper, we propose a hashing technique
which generates all the necessary hash evalu-
ations needed for similarity search, using one
single permutation. The heart of the proposed
hash function is a “rotation” scheme which den-
sifies the sparse sketches of one permutation
hashing (Li et al., 2012) in an unbiased fash-
ion thereby maintaining the LSH property. This
makes the obtained sketches suitable for hash ta-
ble construction. This idea of rotation presented
in this paper could be of independent interest for
densifying other types of sparse sketches.

Using our proposed hashing method, the query
time of a (K,L)-parameterized LSH is reduced
from the typical O(dKL) complexity to merely
O(KL + dL), where d is the number of nonze-
ros of the data vector, K is the number of hashes
in each hash table, and L is the number of hash
tables. Our experimental evaluation on real data
confirms that the proposed scheme significantly
reduces the query processing time over minwise
hashing without loss in retrieval accuracies.

1. Introduction
Near neighbor search is a fundamental problem with
widespread applications in search, databases, learning,
computer vision, etc. The task is to return a small num-
ber of data points from a dataset, which are most similar to

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

a given input query. Efficient (sub-linear time) algorithms
for near neighbor search has been an active research topic
since the early days of computer science, for example, the
K-D tree (Friedman et al., 1975). In this paper, we develop
a new hashing technique for fast near neighbor search when
the data are sparse, ultra-high-dimensional, and binary.

1.1. Massive, Sparse, High-Dimensional (Binary) Data
The use of ultra-high-dimensional data has become pop-
ular in machine learning practice. Tong (2008) discussed
datasets with 1011 items and 109 features. Weinberger et al.
(2009) experimented with a binary dataset of potentially
16 trillion unique features. Agarwal et al. (2011); Chandra
et al. also described linear learning with massive binary
data. Chapelle et al. (1999) reported good performance by
using binary data for histogram-based image classification.

One reason why binary high-dimensional data are common
in practice is due to the ubiquitous use of n-gram (e.g., n-
contiguous words) features in text and vision applications.
With n ≥ 3, the size of the dictionary becomes very large
and most of the grams appear at most once. More than
10 years ago, industry already used n-grams (Broder et al.,
1997; Fetterly et al., 2003) with (e.g.,) n ≥ 5.

1.2. Fast Approximate Near Neighbor Search and LSH
The framework of locality sensitive hashing (LSH) (In-
dyk & Motwani, 1998) is popular for sub-linear time near
neighbor search. The idea of LSH is to bucket (group) the
data points probabilistically in a hash table so that similar
data points are more likely to reside in the same bucket.The
performance of LSH depends on the data types and the im-
plementations of specific underlying hashing algorithms.
For binary data, minwise hashing is a popular choice.

1.3. Minwise hashing and b-Bit Minwise Hashing
For binary sparse data, it is routine to store only the lo-
cations of the nonzero entries. In other words, we can
view binary vector in RD equivalently as sets in Ω =
{0, 1, 2, ..., D− 1}. Consider two sets S1, S2 ⊆ Ω. A pop-
ular measure of similarity is the resemblance R = |S1∩S2|

|S1∪S2| .

Consider a random permutation π : Ω −→ Ω. We apply
π on S1, S2 and store the two minimum values under π:



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

minπ(S1) and minπ(S2), as the hashed values. By an
elementary probability argument,

Pr (minπ(S1) = minπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (1)

This method is known as minwise hashing (Broder, 1997;
Broder et al., 1998; 1997). See Figure 1 for an illustration.

π(S
2
)

π(S
1
)

1

1

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0  0  0  0  0     0  1  0  0  0   0   0   0   1   1   1   0   1   0   0   1   1   0

0  0  0  0  0     1  0  0  0  0   0   1   0   1   0   1   1   0   0   0   0   0   0

Figure 1. (b-bit) minwise hashing. Consider two binary vec-
tors (sets), S1, S2 ⊆ Ω = {0, 1, ..., 23}. The two per-
muted sets are: π(S1) = {5, 7, 14, 15, 16, 18, 21, 22}, π(S2) =
{5, 6, 12, 14, 16, 17}. Thus, minwise stores minπ(S1) = 5 and
minπ(S2) = 5. With b-bit minwise hashing, we store their low-
est b bits. For example, if b = 1, we store 1 and 1, respectively.

Li & König (2010); Li et al. (2013) proposed b-bit min-
wise hashing by only storing the lowest b-bits (as opposed
to, e.g., 64 bits) of the hashed values; also see Figure 1.
This substantially reduces not only the storage but also the
dimensionality. Li et al. (2011) applied this technique in
large-scale learning. Shrivastava & Li (2012) directly used
these bits to build hash tables for near neighbor search.

1.4. Classical LSH with Minwise Hashing
The crucial formula of the collision probability (1) suggests
that minwise hashing belongs to the LSH family.

Let us consider the task of similarity search over a giant
collection of sets (binary vectors) C = {S1, S2, ..., SN},
where N could run into billions. Given a query Sq , we are
interested in finding S ∈ C with high value of |Sq∩S|

|Sq∪S| . The
idea of linear scan is infeasible due to the size of C. The
idea behind LSH with minwise hashing is to concatenate
K different minwise hashes for each Si ∈ C, and then store
Si in the bucket indexed by

B(Si) = [hπ1(Si);hπ2(Si); ...;hπK
(Si)], (2)

where πi : i ∈ {1, 2, ...,K} are K different random permu-
tations and hπi(S) = min(πi(S)). Given a query Sq , we
retrieve all the elements from bucket B(Sq) for potential
similar candidates. The bucket B(Sq) contains elements
Si ∈ C whose K different hash values collide with that of
the query. By the LSH property of the hash function, i.e.,
(1), these elements have higher probability of being similar
to the query Sq compared to a random point. This proba-
bility value can be tuned by choosing appropriate value for
parameter K. The entire process is repeated independently
L times to ensure good recall. Here, the value of L is again
optimized depending on the desired similarity levels.

The query time cost is dominated by O(dKL) hash eval-
uations, where d is the number of nonzeros of the query

vector. Our work will reduce the cost to O(KL + dL).
Previously, there were two major attempts to reduce query
time (i.e., hashing cost), which generated multiple hash val-
ues from one single permutation: (i) Conditional Random
Sampling (CRS) and (ii) One permutation hashing (OPH).

1.5. Conditional Random Sampling (CRS)

π(S
2
)

π(S
1
)

1

1

1

1

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

10  0  0  0  0          0  0  0  0   0        0   1   0   1   1   0   0   0   0   0   0

10  0  0  0  0      0      0  0  0   0   0   0        1   1   0   1   0   0   1   1   0

Figure 2. Conditional Random Sampling (CRS). Suppose the
data are already permuted under π. We store the smallest k = 3
nonzeros as “sketches”: {5, 7, 14} and {5, 6, 12}, respectively.
Because min{14, 12} = 12, we only look at up to the 12-th col-
umn (i.e., 13 columns in total). Because we have already applied
a random permutation, any chunk of the data can be viewed as
a random sample, in particular, the chunk from the 0-th column
to the 12-th column. This looks we equivalently obtain a random
sample of size 13, from which we can estimate any similarities,
not just resemblance. Also, it clear that the method is naturally
applicable to non-binary data. A careful analysis showed that it is
(slightly) better NOT to use the last column, i.e., we only use up
to the 11-th column (a sample of size 12 instead of 13).

Minwise hashing requires applying many permutations on
the data. Li & Church (2007); Li et al. (2006) developed
the Conditional Random Sampling (CRS) by directly tak-
ing the k smallest nonzeros (called sketches) from only one
permutation. The method is unique in that it constructs an
equivalent random sample pairwise (or group-wise) from
these nonzeros. Note that the original minwise hashing pa-
per (Broder, 1997) actually also took the smallest k nonze-
ros from one permutation. Li & Church (2007) showed that
CRS is significantly more accurate. CRS naturally extends
to multi-way similarity (Li et al., 2010; Shrivastava & Li,
2013) and the method is not restricted to binary data.

Although CRS requires only one permutation, the draw-
back of that method is that the samples (sketches) are not
aligned. Thus, strictly speaking, CRS can not be used for
linear learning or near neighbor search by building hash ta-
bles; otherwise the performance would not be ideal.

1.6. One Permutation Hashing

π(S
2
)

π(S
1
)

1

1

1

1

1

1 1

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0  0  0  0  0     0  1  0  0  0   0   0   0       1         0   1   0    0       1   0

0  0  0  0  0     1  0  0  0  0   0        0   1   0        1   0   0    0   0   0   0

Figure 3. One Permutation Hashing. Instead of only storing the
smallest nonzero in each permutation and repeating the permu-
tation k times, we can use just one permutation, break the space
evenly into k bins, and store the smallest nonzero in each bin. It is
not directly applicable to near neighbor search due to empty bins.

Li et al. (2012) developed one permutation hashing. As il-
lustrated in Figure 3, the method breaks the space equally



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

into k bins after one permutation and stores the smallest
nonzero of each bin. In this way, the samples are naturally
aligned. Note that if k = D, where D = |Ω|, then we
get back the (permuted) original data matrix. When there
are no empty bins, one permutation hashing estimates the
resemblance without bias. However, if empty bins occur,
we need a strategy to deal with them. The strategy adopted
by Li et al. (2012) is to simply treat empty bins as “ze-
ros” (i.e., zero-coding), which works well for linear learn-
ing. Note that, in Li et al. (2012), “zero” means zero in the
“expanded metric space” (so that indicator function can be
explicitly written as an inner product).

1.7. Limitation of One Permutation Hashing
One permutation hashing can not be directly used for near
neighbor search by building hash tables because empty bins
do not offer indexing capability. In other words, because of
these empty bins, it is not possible to determine which bin
value to use for bucketing.Using the LSH framework, each
hash table may need (e.g.,) 10 ∼ 20 hash values and we
may need (e.g.,) 100 or more hash tables. If we generate all
the necessary (e.g., 2000) hash values from merely one per-
mutation, the chance of having empty bins might be high
in sparse data. For example, suppose on average each data
vector has 500 nonzeros. If we use 2000 bins, then roughly
(1− 1/2000)

500 ≈ 78% of the bins would be empty.

Suppose we adopt the zero-coding strategy, by coding ev-
ery empty bin with any fixed special number. If empty bins
dominate, then two sparse vectors will become artificially
“similar”. On the other hand, suppose we use the “random-
coding” strategy, by coding an empty bin randomly (and
independently) as a number in {0, 1, 2, D − 1}. Again, if
empty bins dominate, then two sparse vectors which are
similar in terms of the original resemblance may artificially
become not so similar. We will see later that these schemes
lead to significant deviation from the expected behavior.
We need a better strategy to handle empty bins.

1.8. Our Proposal: One Permutation with Rotation
Our proposed hashing method is simple and effective. Af-
ter one permutation hashing, we collect the hashed values
for each set. If a bin is empty, we “borrow” the hashed
value from the first non-empty bin on the right (circular).
Due to the circular operation, the scheme for filling empty
bins appears like a “rotation”. We can show mathematically
that we obtain a valid LSH scheme. Because we gener-
ate all necessary hash values from merely one permutation,
the query time of a (K,L)-parameterized LSH scheme is
reduced from O(dKL) to O(KL + dL), where d is the
number of nonzeros of the query vector. We will show em-
pirically that its performance in near neighbor search is vir-
tually identical to that of the original minwise hashing.

An interesting consequence is that our work supplies an
unbiased estimate of resemblance regardless of the number

of empty bins, unlike the original paper (Li et al., 2012).

2. Our Proposed Hashing Method

π(S
2
)

π(S
1
)

1

1

1

1

1

1 1

0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0  0  0  0  0     0  1  0  0  0   0   0   0       1         0   1   0    0       1   0

0  0  0  0  0     1  0  0  0  0   0        0   1   0        1   0   0    0   0   0   0

OPH(π(S
1
)) = [ E, 1, E, 2, 0, 1 ]            H(π(S

1
)) = [ 1+C, 1, 2+C, 2, 0, 1 ]

OPH(π(S
2
)) = [ E, 1, E, 0, 0, E ]           H(π(S

2
)) = [ 1+C, 1, C, 0, 0, 1+2C]

Figure 4. One Permutation Hashing+Rotation, with D = 24
(space size) and k = 6 bins (i.e., D/k = 4). For one permutation
hashing (OPH), the hashed value is defined in (4). In particular,
for set S1, OPH(π(S1)) = [E, 1, E, 2, 0, 1] where E stands for
“empty bins”. The 0-th and 2-th bins are empty. In the 1-th bin,
the minimum is 5, which becomes 1 after the modular operation:
5 mod 4 = 1. Our proposed hash method, defined in (5), needs
to fill the two empty bins for S1. For the 0-th bin, the first non-
empty bin on the right is the 1-th bin (i.e., t = 1) with hashed
value 1. Thus, we fill the 0-th empty bin with “1 + C”. For the
2-th bin, the first non-empty bin on the right is the 3-th bin (i.e.,
t = 1 again) with hashed value 0 and hence we fill the 2-th bin
with “C”. The interesting case for S2 is the 5-th bin, which is
empty. The first non-empty bin on the right (circular) is the 1-th
bin (as 5+ 2 mod 6 = 1). Thus, the 5-th bin becomes “1+2C”.

Our proposed hashing method is easy to understand with an
example as in Figure 4. Consider S ⊆ Ω = {0, 1, ..., D −
1} and a random permutation π : Ω −→ Ω. As in Figure 3
(also in Figure 4), we divide the space evenly into k bins.
For the j-th bin, where 0 ≤ j ≤ k − 1, we define the set

Mj(π(S)) =

{
π(S) ∩

[
Dj

k
,
D(j + 1)

k

)}
(3)

If Mj(π(S)) is empty, we denote the hashed value under
this one permutation hashing by OPH

j
(π(S)) = E, where

E stands for “empty”. If the set is not empty, we just take
the minimum of the set (mod by D/k). In this paper, with-
out loss of generality, we always assume D is divisible by
k (otherwise we just increase D by padding zeros). That is,
if Mj(π(S)) ̸= ϕ, we have

OPH
j

(π(S)) = minMj(π(S)) mod
D

k
(4)

We are now ready to define our hashing scheme, which is
basically one permutation hashing plus a “rotation” scheme
for filling empty bins. Formally, we define

Hj(π(S)) =


OPH

j
(π(S)) if OPH

j
(π(S)) ̸= E

OPH
(j+t)mod k

(π(S)) + tC otherwise

(5)

t = min z, s.t. OPH
(j+z) mod k

(π(S)) ̸= E (6)



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

Here C ≥ D
k +1 is a constant, to avoid undesired collisions.

Basically, we fill the empty bins with the hashed value of
the first non-empty bin on the “right” (circular).

Theorem 1

Pr (Hj(π(S1)) = Hj(π(S2))) = R (7)

Theorem 1 proves that our proposed method provides a
valid hash function which satisfies the LSH property from
one permutation. While the main application of our method
is for approximate neighbor search, which we will elabo-
rate in Section 4, another promising use of our work is for
estimating resemblance using only linear estimator (i.e., an
estimator which is an inner product); see Section 3.

3. Resemblance Estimation
Theorem 1 naturally suggests a linear, unbiased estimator
of the resemblance R:

R̂ =
1

k

k−1∑
j=0

1 {Hj(π(S1)) = Hj(π(S2))} (8)

Linear estimator is important because it implies that the
hashed data form an inner product space which allows
us to take advantage of the modern linear learning algo-
rithms (Joachims, 2006; Shalev-Shwartz et al., 2007; Bot-
tou; Fan et al., 2008) such as linear SVM.

The original one permutation hashing paper (Li et al., 2012)
proved the following unbiased estimator of R

R̂OPH,ub =
Nmat

k −Nemp
(9)

Nemp =
k−1∑
j=0

1

{
OPH

j
(π(S1)) = E and OPH

j
(π(S2)) = E

}

Nmat =
k−1∑
j=0

1

{
OPH

j
(π(S1)) = OPH

j
(π(S2)) ̸= E

}
which unfortunately is not a linear estimator because the
number of “jointly empty” bins Nemp would not be known
until we see both hashed sets. To address this issue, Li et al.
(2012) provided a modified estimator

R̂OPH =
Nmat√

k −N
(1)
emp

√
k −N

(2)
emp

(10)

N (1)
emp =

k−1∑
j=0

1

{
OPH

j
(π(S1)) = E

}
,

N (2)
emp =

k−1∑
j=0

1

{
OPH

j
(π(S2)) = E

}

This estimator, although is not unbiased (for estimating R),
works well in the context of linear learning. In fact, the

normalization by
√

k −N
(1)
emp

√
k −N

(2)
emp is smoothly in-

tegrated in the SVM training procedure which usually re-
quires the input vectors to have unit l2 norms.

It is easy to see that as k increases (to D), R̂OPH estimates
the original (normalized) inner product, not resemblance.
From the perspective of applications (in linear learning),
this is not necessarily a bad choice, of course.

Here, we provide an experimental study to compare the two
estimators, R̂ in (8) and R̂OPH in (10). The dataset, ex-
tracted from a chunk of Web crawl (with 216 documents),
is described in Table 1, which consists of 12 pairs of sets
(i.e., total 24 words). Each set consists of the document IDs
which contain the word at least once.

Table 1. 12 pairs of words used in Experiment 1. For example,
“A” and “THE” correspond to the two sets of document IDs which
contained word “A” and word “THE” respectively.

Word 1 Word 2 |S1| |S2| R
HONG KONG 940 948 0.925
RIGHTS RESERVED 12234 11272 0.877
A THE 39063 42754 0.644
UNITED STATES 4079 3981 0.591
SAN FRANCISCO 3194 1651 0.456
CREDIT CARD 2999 2697 0.285
TOP BUSINESS 9151 8284 0.163
SEARCH ENGINE 14029 2708 0.152
TIME JOB 12386 3263 0.128
LOW PAY 2936 2828 0.112
SCHOOL DISTRICT 4555 1471 0.087
REVIEW PAPER 3197 1944 0.078

Figure 5 and Figure 6 summarizes the estimation accura-
cies in terms of the bias and mean square error (MSE). For

R̂, bias = E
(
R̂−R

)
, and MSE = E

(
R̂−R

)2

. The def-

initions for R̂OPH is analogous. The results confirm that
our proposed hash method leads to an unbiased estimator
regardless of the data sparsity or number of bins k. The es-
timator in the original one permutation hashing paper can
be severely biased when k is too large (i.e., when there are
many empty bins). The MSEs suggest that the variance
of R̂ essentially follows R(1−R)

k , which is the variance of
the original minwise hashing estimator (Li & König, 2010),
unless k is too large. But even when the MSEs deviate from
R(1−R)

k , they are not large, unlike R̂OPH .

This experimental study confirms that our proposed hash
method works well for resemblance estimation (and hence
it is useful for training resemblance kernel SVM using a
linear algorithm). The more exciting application of our
work would be approximate near neighbor search.



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

10
1

10
2

10
3

10
4

10
5

−0.01

0

0.01

0.02

0.03

0.04

k

B
ia

s

HONG−−KONG

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.02

0

0.02

0.04

0.06

0.08

k

B
ia

s

A−− THE

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.02

0

0.02

0.04

0.06

k

B
ia

s

RIGHTS−− RESERVED

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

k

B
ia

s

UNITED−− STATES

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

0.2

k

B
ia

s

SAN−− FRANCISCO

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

0.2

k

B
ia

s
CREDIT−− CARD

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

k

B
ia

s

TOP−− BUSINESS

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

0.2

k

B
ia

s

SEARCH−− ENGINE

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

k

B
ia

s

TIME−− JOB

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

k

B
ia

s

LOW−− PAY

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.05

0

0.05

0.1

0.15

k

B
ia

s

SCHOOL−− DISTRICT

 

 

Proposed
OPH

10
1

10
2

10
3

10
4

10
5

−0.02

0

0.02

0.04

0.06

0.08

k

B
ia

s

REVIEW−− PAPER

 

 

Proposed
OPH

Figure 5. Bias in resemblance estimation. The plots are the biases of the proposed estimator R̂ defined in (8) and the previous estimator
R̂OPH defined in (10) from the original one permutation hashing paper (Li et al., 2012). See Table 1 for a detailed description of the
data. It is clear that the proposed estimator R̂ is strictly unbiased regardless of k, the number of bins which ranges from 22 to 215.

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

HONG−−KONG

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

A −− THE

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

RIGHTS −− RESERVED

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

UNITED −− STATES

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

SAN −− FRANCISCO

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

CREDIT −− CARD

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

TOP −− BUSINESS

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

SEARCH −− ENGINE

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

TIME −− JOB

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

LOW −− PAY

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

SCHOOL −− DISTRICT

 

 

Proposed
OPH
R(1−R)/k

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

M
S

E

REVIEW −− PAPER

 

 

Proposed
OPH
R(1−R)/k

Figure 6. MSE in resemblance estimation. See the caption of Figure 5 for more descriptions. The MSEs of R̂ essentially follow
R(1−R)/k which is the variance of the original minwise hashing, unless k is too large (i.e., when there are too many empty bins). The
previous estimator R̂OPH estimates R poorly when k is large, as it is not designed for estimating R.



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

4. Near Neighbor Search
We implement the classical LSH algorithm described in
Section 1.4 using the standard procedures (Andoni & In-
dyk, 2004) with the following choices of hash functions:

• Traditional Minwise Hashing We use the standard
minwise hashing scheme hi(S) = min(πi(S)) which
uses K × L independent permutations.

• The Proposed Scheme We use our proposed hashing
scheme H given by (5) which uses only one permuta-
tion to generate all the K × L hash evaluations.

• Empty Equal Scheme (EE) We use a heuristic way
of dealing with empty bins by treating the event of si-
multaneous empty bins as a match (or hash collision).
This can be achieved by assigning a fixed special sym-
bol to all the empty bins. We call this Empty Equal
(EE) scheme. This can be formally defined as:

hEE
j (S) =

{
OPH

j
(π(S)), if OPH

j
(π(S)) ̸= E

A fixed special symbol, otherwise
(11)

• Empty Not Equal Scheme (ENE) Alternatively, one
can also consider the strategy of treating simultaneous
empty bins as a mismatch of hash values referred to
as Empty Not Equal (ENE). ENE can be reasonably
achieved by assigning a new random number to each
empty bin independently. The random number will
ensure, with high probability, that two empty bins do
not match. This leads to the following hash function

hENE
j (S) =

{
OPH

j
(π(S)), if OPH

j
(π(S)) ̸= E

rand(new seed), otherwise
(12)

Our aim is to compare the performance of minwise hashing
with the proposed hash function H. In particular, we would
like to evaluate the deviation in performance of H with re-
spect to the performance of minwise hashing. Since H has
the same collision probability as that of minwise hashing,
we expect them to have similar performance. In addition,
we would like to study the performance of simple strategies
(EE and ENE) on real data.

4.1. Datasets

To evaluate the proposed bucketing scheme, we chose the
following three publicly available datasets.

• MNIST Standard dataset of handwritten digit sam-
ples. The feature dimension is 784 with an average

number of around 150 non-zeros. We use the stan-
dard partition of MNIST, which consists of 10000 data
points in one set and 60000 in the other.

• NEWS20 Collection of newsgroup documents. The
feature dimension is 1,355,191 with 500 non-zeros
on an average. We randomly split the dataset in two
halves having around 10000 points in each partition.

• WEBSPAM Collection of emails documents. The
feature dimension is 16,609,143 with 4000 non-zeros
on an average. We randomly selected 70000 data
points and generated two partitions of 35000 each.

These datasets cover a wide variety in terms of size, spar-
sity and task. In the above datasets, one partition, the bigger
one in case of MNIST, was used for creating hash buck-
ets and the other partition was used as the query set. All
datasets were binarized by setting non-zero values to 1.

We perform a rigorous evaluation of these hash functions,
by comparing their performances, over a wide range of
choices for parameters K and L. In particular, we want
to understand if there is a different effect of varying the pa-
rameters K and L on the performance of H as compared
to minwise hashing. Given parameters K and L, we need
K × L number of hash evaluations per data point. For
minwise hashing, we need K × L independent permuta-
tions while for the other three schemes we bin the data into
k = K × L bins using only one permutation.

For both WEBSPAM and NEWS20, we implemented
all the combinations for K = {6, 8, 10, 12} and L =
{4, 8, 16, 32, 64, 128}. For MNIST, with only 784 features,
we used K = {6, 8, 10, 12} and L = {4, 8, 16, 32}.

We use two metrics for evaluating retrieval: (i) the frac-
tion of the total number of points retrieved by the bucket-
ing scheme per query, (ii) the recall at a given threshold T0,
defined as the ratio of retrieved elements having similarity,
with the query, greater than T0 to the total number of ele-
ments having similarity, with the query, greater than T0. It
is important to balance both of them, for instance in linear
scan we retrieve everything, and so we always achieve a
perfect recall. For a given choice of K and L, we report
both of these metrics independently. For reporting the re-
call, we choose two values of threshold T0 = {0.5, 0.8}.
Since the implementation involves randomizations, we re-
peat the experiments for each combination of K and L 10
times, and report the average over these 10 runs.

Figure 7 presents the plots of the fraction of points re-
trieved per query corresponding to K = 10 for all the three
datasets with different choices of L. Due to space con-
straint, here we only show the recall plots for various val-
ues of L and T0 corresponding to K = 10 in Figure 8. The
plots corresponding to K = {6, 8, 12} are very similar.



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

10 20 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Minwise

Proposed

EE

ENE

K=10

L (Number of Tables)

F
ra

ct
io

n 
R

et
rie

ve
d

MNIST

20 40 60 80 100 120
10

−5

10
−4

10
−3

Minwise

Proposed

EE

ENE

K=10

L (Number of Tables)

F
ra

ct
io

n 
R

et
rie

ve
d

NEWS20

20 40 60 80 100 120
10

−3

10
−2

10
−1

Minwise Proposed

EE

ENE

K=10

L (Number of Tables)

F
ra

ct
io

n 
R

et
rie

ve
d

WEBSPAM

Figure 7. Fraction of points retrieved by the bucketing scheme per query corresponding to K = 10 shown over different choices of L.
Results are averaged over 10 independent runs. Plots with K = {6, 8, 12} are very similar in nature.

One can see that the performance of the proposed hash
function H is indistinguishable from minwise hashing, ir-
respective of the sparsity of data and the choices of K, L
and T0. Thus, we conclude that minwise hashing can be
replaced by H without loss in the performance and with a
huge gain in query processing time (see Section 5).

Except for the WEBSPAM dataset, the EE scheme re-
trieves almost all the points, and so its not surprising that it
achieves a perfect recall even at T0 = 0.5. EE scheme
treats the event of simultaneous empty bins as a match.
The probability of this event is high in general for sparse
data, especially for large k, and therefore even non-similar
points have significant chance of being retrieved. On the
other hand, ENE shows the opposite behavior. Simulta-
neous empty bins are highly likely even for very similar
sparse vectors, but ENE treats this event as a rejection, and
therefore we can see that as k = K × L increases, the re-
call values starts decreasing even for the case of T0 = 0.8.
WEBSPAM has significantly more nonzeros, so the occur-
rence of empty bins is rare for small k. Even in WEB-
SPAM, we observe an undesirable deviation in the perfor-
mance of EE and ENE with K ≥ 10.

5. Reduction in Computation Cost

200 400 600 800 1000
0

500

1000

1500

Number of Hash Evaluations

R
at

io

NEWS20

200 400 600 800 1000
0

200

400

600

800

1000

Number of Hash Evaluations

R
at

io

WEBSPAM

Figure 9. Ratio of time taken by minwise hashing to the time
taken by our proposed scheme with respect to the number of hash
evaluations, on the NEWS20 and WEBSPAM datasets.

5.1. Query Processing Cost Reduction
Let d denote the average number of nonzeros in the dataset.
For running a (K,L)-parameterized LSH algorithm, we

need to generate K × L hash evaluations of a given query
vector (Indyk & Motwani, 1998). With minwise hashing,
this requires storing and processing K×L different permu-
tations. The total computation cost for simply processing a
query is thus O(dKL).

On the other hand, generating K×L hash evaluations using
the proposed hash function H requires only processing a
single permutation. It involves evaluating K×L minimums
with one permutation hashing and one pass over the K×L
bins to reassign empty values via “rotation” (see Figure 4).
Overall, the total query processing cost is O(d+KL). This
is a massive saving over minwise hashing.

To verify the above claim, we compute the ratio of the time
taken by minwise hashing to the time taken by our pro-
posed scheme H for NEWS20 and WEBSPAM dataset. We
randomly choose 1000 points from each dataset. For every
vector, we compute 1024 hash evaluations using minwise
hashing and the proposed H. The plot of the ratio with the
number of hash evaluations is shown in Figure 9. As ex-
pected, with the increase in the number of hash evaluations
minwise hashing is linearly more costly than our proposal.

Figure 9 does not include the time required to generate per-
mutations. Minwise hashing requires storing K × L ran-
dom permutation in memory while our proposed hash func-
tion H only needs to store 1 permutation. Each fully ran-
dom permutation needs a space of size D. Thus with min-
wise hashing storing K × L permutations take O(KLD)
space which can be huge, given that D in billions is com-
mon in practice and can even run into trillions. Approxi-
mating these K × L permutations using D cheap univer-
sal hash functions (Carter & Wegman, 1977; Nisan, 1990;
Mitzenmacher & Vadhan, 2008) reduces the memory cost
but comes with extra computational burden of evaluating
K × L universal hash function for each query. These are
not our main concerns as we only need one permutation.

5.2. Reduction in Total Query Time
The total query complexity of the LSH algorithm for re-
trieving approximate near neighbor using minwise hashing



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

10 20 30

0.2

0.4

0.6

0.8

1

Minwise

Proposed

EE

ENE

K=10

L (Number of Tables)

R
ec

al
l

MNIST

T
0
=0.5

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

Minwise

Proposed

EE

ENE

K=10

L (Number of Tables)

R
ec

al
l

NEWS20

T
0
=0.5

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

MinwiseProposed

EE

ENE

K=10

L (Number of Tables)

R
ec

al
l

WEBSPAM

T
0
=0.5

10 20 30

0.2

0.4

0.6

0.8

1
Minwise

Proposed

EE

ENE

K=10

L (Number of Tables)

R
ec

al
l

MNIST

T
0
=0.8

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1 Minwise ProposedEE

ENE

K=10

L (Number of Tables)

R
ec

al
l NEWS20

T
0
=0.8

20 40 60 80 100 120

0.2

0.4

0.6

0.8

1 Minwise ProposedEE

ENE

K=10

L (Number of Tables)

R
ec

al
l

WEBSPAM

T
0
=0.8

Figure 8. Recall values of points having similarity with the query greater than T0 = {0.5, 0.8} corresponding to K = 10 shown over
different choices of L. Results are averaged over 10 independent runs. Plots with K = {6, 8, 12} are very similar in nature.

is the sum of the query processing cost and the cost incurred
in evaluating retrieved candidates. The total running cost
of LSH algorithm is dominated by the query processing
cost (Indyk & Motwani, 1998; Dasgupta et al., 2011). In
theory, the number of data points retrieved using the appro-
priate choice of LSH parameters (K,L), in the worst case,
is O(L) (Indyk & Motwani, 1998). The total cost of evalu-
ating retrieved candidates in brute force fashion is O(dL).
Thus, the total query time of LSH based retrieval with min-
wise hashing is O(dKL + dL) = O(dKL). Since, both
scheme behaves very similarly for any given (K,L), the to-
tal query time with the proposed scheme is O(KL+d+dL)
which comes down to O(KL+ dL). This analysis ignores
the effect of correlation in the LSH algorithm but we can
see from the plots that the effect is negligible.

The need for evaluating all the retrieved data points based
on exact similarity leads to O(dL) cost. In practice, an
efficient estimate of similarity can be obtained by using the
same hash evaluations used for indexing (Shrivastava & Li,
2012). This decreases the re-ranking cost further.

5.3. Pre-processing Cost Reduction
The LSH algorithm needs a costly pre-processing step
which is the bucket assignment for all N points in the col-
lection. The bucket assignment takes in total O(dNKL)
with minwise hashing. The proposed hashing scheme H
reduces this cost to O(NKL+Nd).

6. Conclusion
With the explosion of data in modern applications, the
brute force strategy of scanning all data points for search-

ing for near neighbors is prohibitively expensive, especially
in user-facing applications like search. LSH is popular for
achieving sub-linear near neighbor search. Minwise hash-
ing, which belongs to the LSH family, is one of the ba-
sic primitives in many “big data” processing algorithms.
In addition to near-neighbor search, these techniques are
frequently used in popular operations like near-duplicate
detection (Broder, 1997; Manku et al., 2007; Henzinger,
2006), all-pair similarity (Bayardo et al., 2007), similarity
join/record-linkage (Koudas & Srivastava, 2005), temporal
correlation (Chien & Immorlica, 2005), etc.

Current large-scale data processing systems deploying in-
dexed tables based on minwise hashing suffer from the
problem of costly processing. In this paper, we propose a
new hashing scheme based on a novel “rotation” technique
to densify one permutation hashes (Li et al., 2012). The
obtained hash function possess the properties of minwise
hashing, and at the same time it is very fast to compute.

Our experimental evaluations on real data suggest that the
proposed hash function offers massive savings in compu-
tation cost compared to minwise hashing. These savings
come without any trade-offs in the performance measures.

Acknowledgement
The work is supported by NSF-III-1360971, NSF-Bigdata-
1419210, ONR-N00014-13-1-0764, and AFOSR-FA9550-
13-1-0137. We thank the constructive review comments
from SIGKDD 2013, NIPS 2013, and ICML 2014, for im-
proving the quality of the paper. The sample matlab code
for our proposed hash function is available upon request.



Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search

References
Agarwal, Alekh, Chapelle, Olivier, Dudik, Miroslav, and Lang-

ford, John. A reliable effective terascale linear learning system.
Technical report, arXiv:1110.4198, 2011.

Andoni, Alexandr and Indyk, Piotr. E2lsh: Exact euclidean local-
ity sensitive hashing. Technical report, 2004.

Bayardo, Roberto J., Ma, Yiming, and Srikant, Ramakrishnan.
Scaling up all pairs similarity search. In WWW, pp. 131–140,
2007.

Bottou, Leon. http://leon.bottou.org/projects/sgd.

Broder, Andrei Z. On the resemblance and containment of docu-
ments. In the Compression and Complexity of Sequences, pp.
21–29, Positano, Italy, 1997.

Broder, Andrei Z., Glassman, Steven C., Manasse, Mark S., and
Zweig, Geoffrey. Syntactic clustering of the web. In WWW,
pp. 1157 – 1166, Santa Clara, CA, 1997.

Broder, Andrei Z., Charikar, Moses, Frieze, Alan M., and Mitzen-
macher, Michael. Min-wise independent permutations. In
STOC, pp. 327–336, Dallas, TX, 1998.

Carter, J. Lawrence and Wegman, Mark N. Universal classes of
hash functions. In STOC, pp. 106–112, 1977.

Chandra, Tushar, Ie, Eugene, Goldman, Kenneth, Llinares,
Tomas Lloret, McFadden, Jim, Pereira, Fernando, Redstone,
Joshua, Shaked, Tal, and Singer, Yoram. Sibyl: a system for
large scale machine learning.

Chapelle, Olivier, Haffner, Patrick, and Vapnik, Vladimir N. Sup-
port vector machines for histogram-based image classification.
IEEE Trans. Neural Networks, 10(5):1055–1064, 1999.

Chien, Steve and Immorlica, Nicole. Semantic similarity between
search engine queries using temporal correlation. In WWW, pp.
2–11, 2005.

Dasgupta, Anirban, Kumar, Ravi, and Sarlós, Tamás. Fast
locality-sensitive hashing. In KDD, pp. 1073–1081, 2011.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang, Xiang-
Rui, and Lin, Chih-Jen. Liblinear: A library for large linear
classification. Journal of Machine Learning Research, 9:1871–
1874, 2008.

Fetterly, Dennis, Manasse, Mark, Najork, Marc, and Wiener,
Janet L. A large-scale study of the evolution of web pages.
In WWW, pp. 669–678, Budapest, Hungary, 2003.

Friedman, Jerome H., Baskett, F., and Shustek, L. An algorithm
for finding nearest neighbors. IEEE Transactions on Comput-
ers, 24:1000–1006, 1975.

Henzinger, Monika Rauch. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In SIGIR, pp. 284–291,
2006.

Indyk, Piotr and Motwani, Rajeev. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality. In STOC,
pp. 604–613, Dallas, TX, 1998.

Joachims, Thorsten. Training linear svms in linear time. In KDD,
pp. 217–226, Pittsburgh, PA, 2006.

Koudas, Nick and Srivastava, Divesh. Approximate joins: Con-
cepts and techniques. In VLDB, pp. 1363, 2005.

Li, Ping and Church, Kenneth W. A sketch algorithm for estimat-
ing two-way and multi-way associations. Computational Lin-
guistics (Preliminary results appeared in HLT/EMNLP 2005),
33(3):305–354, 2007.

Li, Ping and König, Arnd Christian. b-bit minwise hashing. In
Proceedings of the 19th International Conference on World
Wide Web, pp. 671–680, Raleigh, NC, 2010.

Li, Ping, Church, Kenneth W., and Hastie, Trevor J. Condi-
tional random sampling: A sketch-based sampling technique
for sparse data. In NIPS, pp. 873–880, Vancouver, BC, Canada,
2006.

Li, Ping, König, Arnd Christian, and Gui, Wenhao. b-bit minwise
hashing for estimating three-way similarities. In Advances in
Neural Information Processing Systems, Vancouver, BC, 2010.

Li, Ping, Shrivastava, Anshumali, Moore, Joshua, and König,
Arnd Christian. Hashing algorithms for large-scale learning.
In NIPS, Granada, Spain, 2011.

Li, Ping, Owen, Art B, and Zhang, Cun-Hui. One permutation
hashing. In NIPS, Lake Tahoe, NV, 2012.

Li, Ping, Shrivastava, Anshumali, and König, Arnd Christian. b-
bit minwise hashing in practice. In Internetware, Changsha,
China, 2013.

Manku, Gurmeet Singh, Jain, Arvind, and Sarma, Anish Das. De-
tecting Near-Duplicates for Web-Crawling. In WWW, Banff,
Alberta, Canada, 2007.

Mitzenmacher, Michael and Vadhan, Salil. Why simple hash
functions work: exploiting the entropy in a data stream. In
SODA, 2008.

Nisan, Noam. Pseudorandom generators for space-bounded com-
putations. In Proceedings of the twenty-second annual ACM
symposium on Theory of computing, STOC, pp. 204–212,
1990.

Shalev-Shwartz, Shai, Singer, Yoram, and Srebro, Nathan. Pega-
sos: Primal estimated sub-gradient solver for svm. In ICML,
pp. 807–814, Corvalis, Oregon, 2007.

Shrivastava, Anshumali and Li, Ping. Fast near neighbor search
in high-dimensional binary data. In ECML, 2012.

Shrivastava, Anshumali and Li, Ping. Beyond pairwise: Provably
fast algorithms for approximate k-way similarity search. In
NIPS, Lake Tahoe, NV, 2013.

Tong, Simon. Lessons learned developing a
practical large scale machine learning system.
http://googleresearch.blogspot.com/2010/04/lessons-learned-
developing-practical.html, 2008.

Weinberger, Kilian, Dasgupta, Anirban, Langford, John, Smola,
Alex, and Attenberg, Josh. Feature hashing for large scale mul-
titask learning. In ICML, pp. 1113–1120, 2009.


