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6. Appendix

6.1. Proof of Theorem 1

Proof. We use u to denote the unit vector in the di-
rection of xi − xj . By the mean value theorem, we
have

K(xi,xj) = gu(η‖xi−xj‖2) = gu(0)+ηg′u(s)‖xi−xj‖2
for some s ∈ (0, η‖xi − xj‖2). By definition, f(0) =
gu(0), so

f(0) ≤ K(xi,xj) + ηR‖xi − xj‖2, (6)

where R := sup
θ∈R,‖v‖=1

|g′v(θ)|. (7)

Squaring both sides of (6) we have

f(0)2 ≤K(xi,xj)2 + η2R2‖xi − xj‖22
+ 2K(xi,xj)(ηR‖xi − xj‖2).

From the classical arithmetic and geometric mean in-
equality, we can upper bound the last term by

2K(xi,xj)(ηR‖xi − xj‖2) ≤ 1
2
f(0)2,

therefore

f(0)2

2
≤ K(xi,xj)2 + η2R2‖xi − xj‖22. (8)

Plugging in (8) into Dkernel({Vs}c
s=1), we have

Dkernel({Vs}c
s=1)

≥
c∑

s=1

1
|Vs|

∑
i,j∈Vs

(
f(0)2

2
− η2R2‖xi − xj‖22

)

≥ nf(0)2

2
− η2R2

c∑
s=1

1
|Vs|

∑
i,j∈Vs

‖xi − xj‖22,

which proves the desired bound (3).

6.2. Proof of Theorem 2

Proof. To prove this theorem, we use the ε-net theo-
rem in (Cucker & Smale, 2001). This theorem shows
that when X = [x1, . . . ,xn] are in a ball with ra-
dius r, there exists T = ( 4r

r̄ )d balls of radius r̄ that
cover all the data points X. Now we set T to be k, so
r̄ = k−1/d4r.

We consider {x1, . . . ,xns
} are data points in the s-th

cluster, {y1, . . . ,yny
} are data points in the t-th clus-

ter, and ns = |Vs|, nt = |Vt|. Our goal is to show that
G(s,t) is low-rank, where G

(s,t)
i,j = K(xi,yj). Assume

rt is the radius of the t-th cluster, therefore we can
find k balls with r̄ = k−1/d4rt to cover {yj}nt

j=1.

Figure 5. The Gaussian kernel approximation error of
BKA using different ways to generate five partitions on
500 samples from covtype. k-means in the input space per-
forms similar to spectral clustering on kernel matrix but is
much more efficient.

Assume centers of the balls are {m1,m2, . . . ,mk},
then we can form a low-rank matrix Ḡ(s,t) = Ū V̄ T ,
where for all i = 1, . . . , ns, j = 1, . . . , nt, and s =
1, . . . , k,

Ūi,s = K(xi,ms) and V̄j,s =

{
1 if yj ∈ Ball(ms),
0 otherwise.

Assume yj is in ball s, then

(G(s,t)
ij − Ḡ

(s,t)
ij )2 = (f(xi − yj)− f(xi −ms))2

≤ C2‖(xi − yj)− (xi −ms)‖2
= C2‖yj −ms‖22
≤ C2r̄2.

Therefore, if (G(s,t))∗ is the best rank k approximation
for G(s,t), then

‖G(s,t)−(G(s,t))∗‖F ≤ ‖G(s,t)−Ḡ(s,t)‖F ≤ Ck−1/d4rt
√

nsnt.
(9)

Similarly, by dividing {xi}m1
i=1 to k balls we can get the

following inequality:

‖G(s,t) − (G(s,t))∗‖F ≤ Ck−1/d4rs
√

nsnt. (10)

Combining (9) and (10) we can prove Theorem 2.

6.3. Empirical observation on low rank
structure after k-means clustering

Theorem 2 suggests that each block of the kernel ma-
trix will be low rank if we find the partition by k-
means in the input space. In the following we show
some empirical justification. We present the numeri-
cal rank for each block, where numerical rank for a m
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Figure 6. The cosine of the principal angles between the
basis of diagonal and off-diagonal blocks of a Gaussian
kernel(γ = 1 and 1000 random samples from covtype) with
respect to different ranks. The cosine values of the princi-
pal angles are close to 1 showing that two basis are similar.

by n matrix A is defined as the number of singular val-
ues with magnitude larger than max(n, m)‖A‖2δ. We
sample 4000 data points from the ijcnn1 dataset and
generate 5 clusters by k-means and random partition.
Table 5 shows the numerical rank for each block using
k-means, while Table 6 shows the numerical rank for
each block when the partitions are random. We ob-
serve that by using k-means, the rank for each block
is fairly small.

16 14 13 7 7
14 29 13 9 9
13 13 20 10 10
7 9 10 29 11
7 9 10 11 28

Table 5. Rank of each block(from a subsampled ijcnn1 data
set) using k-means clustering.

139 99 101 44 45
99 116 86 43 44
101 86 131 46 47
44 43 46 47 45
45 44 47 45 49

Table 6. Rank of each block(from a subsampled ijcnn1 data
set) using random partition.

6.4. The principal angles between the basis of
diagonal and off-diagonal blocks

In MEKA, we use the diagonal blocks’ basis to approx-
imate the off-diagonal blocks’ basis to reduce mem-
ory requirements. Furthermore, we observe that the
principal angles between the basis of diagonal and
off-diagonal blocks are small, which provides empiri-
cal justification to reuse the basis. In Figure 6, we

randomly sampled 1000 data points from the covtype
dataset and generated 5 clusters by k-means. The blue
line shows the cosine values of the principal angles be-
tween a basis of a diagonal block G(s,s) and that of an
off-diagonal block G(s,t) for different rank k, where s
and t are randomly chosen. We can observe that most
of the cosine values are close to 1, showing that the
two basis are similar.

6.5. The comparison of MEKA and Nys with
CSI

Figure 7 compares our proposed method with the stan-
dard Nyström(Nys), and incomplete Cholesky with
side information (CSI) for approximating the Gaus-
sian kernel on the wine and cpusmall datasets. All the
settings are the same with Table 3. We observe that
both MEKA and Nys are much faster than CSI for
kernel regression.

6.6. Influence of ε in MEKA

We test the influence of thresholding parameter ε on
the ijcnn1 data (Figure 8). Recall that we set L(s,t) = 0
if K(ms,mt) ≤ ε. For large ε, we will set more off-
diagonal blocks in L to be 0. In this case, although
MEKA yields higher approximation error(because it
omits more off-diagonal information), it is faster. On
the other hand, for small ε, when more off-diagonal
information is considered, we will notice an increase in
time and decrease in approximation error. In the rest
of our experiments, we set ε to be 0.1.

6.7. Time cost for each step in MEKA

In Figure 9, we show the time cost for each step of
MEKA on ijcnn1 dataset. Here the parameter settings
are γ = 1 and k = 100.

The execution time of our proposed algorithm mainly
consists of three parts:(1) time for performing k-means
clustering, TC ; (2) time for forming the “basis”, W
from the diagonal blocks, TW (3) Time to compute
the link matrix L from off-diagonal blocks, TL. From
Figure 9, we observe that when the number of clusters
c is small, TW will dominant the whole process. As
c increases, the time for computing the link matrix
L, TL, increases. This is because the number of off-
diagonal blocks increases quadratically as c increases.
Since the time complexity for k-means is O(ncd), TC

will increase as c increases.

6.8. Proof of Theorem 3

Proof. Let B denote the matrix formed by the diago-
nal block of G, that is, B = G(1)⊕G(2)⊕· · ·⊕G(c). Ac-
cording to the definition of Δ, G = B +Δ. In MEKA,
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(a) wine, time vs regression error. (b) cpusmall, time vs regression error.

Figure 7. Kernel ridge regression results on wine and cpusmall datasets for Nys, CSI, and MEKA. Methods with regression
error above the top of y-axis are not shown in the figures.

Figure 8. Time cost (in seconds) and kernel approximation
quality of MEKA when varying the thresholding parameter
ε for setting off-diagonal blocks in L to be zero.

the error ‖G̃−G‖2 consists of two components,

‖G̃−G‖2 = ‖B̃ −B + (Δ̃−Δ)‖ ≤ ‖B̃ −B‖+ ‖Δ̃−Δ‖
(11)

where B̃ and Δ̃ are the approximations for B and Δ
in MEKA respectively.

Let us first consider the error in approximating the
diagonal blocks ‖B̃−B‖2. Since we sample cm bench-
mark points from n data points uniformly at random
without replacement and distribute them according to
the partition coming from k-means, the s-th cluster
now has ms benchmark points with

∑s=c
s=1 ms = cm.

For the s-th diagonal block G(s), we will perform the
rank-ks approximation using standard Nyström, so we
have G(s) ≈ E(s)(M (s)

ks
)+E(s), where E(s) denotes the

matrix formed by ms sampled columns from G(s) and
M

(s)
ks

is a ms×ms matrix consisting of the intersection
of sampled ms columns.

Suppose we use the singular value based approach to
choose ks for s-th cluster as described in Section 4.2,

Figure 9. Time cost (in seconds) for performing each step
of MEKA when varying the number of clusters c.

and M+
ck = (M (1)

k1
)+⊕ (M (2)

k2
)+⊕ · · · ⊕ (M (c)

kc
)+, where

M is the cm× cm block diagonal matrix that consists
of the intersection of the sampled cm columns. Then
we can see that approximating the diagonal blocks B
is equivalent to directly performing standard Nyström
on B by sampling cm benchmark points uniformly
at random without replacement to achieve the rank-
ck approximation. The standard Nyström’s norm-2
and Frobenius error bound are given in (Kumar et al.,
2009), so ‖B − B̃‖2 can be bounded with probability
at least 1− δ as

‖B − B̃‖2 ≤ ‖B −Bck‖2+ (12)

2n√
cm

Bmax[1 +

√
n− cm

n− 0.5
1

β(cm, n)
log

1
δ
dB

max/B
1
2
max],

where Bck denotes the best rank-ck approximation to
B; Bmax = maxiBii; dB

max represents the distance
maxij

√
Bii + Bjj − 2Bij .

To bound ‖Δ̃ − Δ‖2, recall that some off-diagonal
blocks in MEKA are set to 0 by thresholding and 0 is
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(a) memory vs approx. error. (b) time vs approx. error.

Figure 10. Low-rank Laplacian kernel approximation results for pendigit.

one special solution of least squares problem to com-
pute L(s,t), we have ‖Δ̃−Δ‖2 ≤ ‖Δ‖2.
Furthermore, according to perturbation theory (Stew-
art & Ji-Guang, 1990), we have

‖B −Bck‖2 ≤ ‖G−Gck‖2 + ‖Δ‖2. (13)

The inequality in (12) combined with (13) gives a
bound on ‖G̃−G‖2 as,

‖G̃−G‖2
≤ ‖B −Bck‖2 + ‖Δ‖2+

2n√
cm

Bmax[1 +

√
n− cm

n− 0.5
1

β(cm, n)
log

1
δ
dB

max/B
1
2
max]

≤ ‖G−Gck‖2 + 2‖Δ‖2+
2n√
cm

Bmax[1 +

√
n− cm

n− 0.5
1

β(cm, n)
log

1
δ
dB

max/B
1
2
max]

≤ ‖G−Gck‖2 + 2‖Δ‖2+
2n√
cm

Gmax[1 +

√
n− cm

n− 0.5
1

β(cm, n)
log

1
δ
dG

max/G
1
2
max]

≤ ‖G−Gck‖2 + 2‖Δ‖2+
1√
c

2n√
m

Gmax[1 +

√
n−m

n− 0.5
1

β(m, n)
log

1
δ
dG

max/G
1
2
max],

where Gck denotes the best rank-ck approximation to
G; Gmax = maxiGii; dG

max represents the distance
maxij

√
Gii + Gjj − 2Gij . The third inequality is be-

cause G = B + Δ, Bmax ≤ Gmax and dB
max ≤ dG

max.
The last inequality is because n 	 m and n 	 cm.

Similarly by using perturbation theory and upper
bounds for the Frobenius error of standard Nyström,
the result follows.

6.9. The performance of MEKA on Laplacian
kernel on pendigit dataset

Figure 10 compares our proposed method
with the standard Nyström(Nys), Randomized
Nyström(RNys), and Kmeans Nyström(KNys) for ap-
proximating the Laplacian kernel on the pendigit data,
where c = 3 and γ = 2−7. Similar to Gaussian kernel,
we observe that MEKA is more memory efficient
and faster than other methods for approximating the
Laplacian kernel.


