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A. Regularity Conditions
Within the text we have referred to regularity conditions on the MDP:

Regularity conditions A.1: p(s′|s, a), ∇ap(s′|s, a), µθ(s), ∇θµθ(s), r(s, a), ∇ar(s, a), p1(s) are continuous in all
parameters and variables s, a, s′ and x.

Regularity conditions A.2: there exists a b and L such that sups p1(s) < b, supa,s,s′ p(s
′|s, a) < b, supa,s r(s, a) < b,

supa,s,s′ ||∇ap(s′|s, a)|| < L, and supa,s ||∇ar(s, a)|| < L.

B. Proof of Theorem 1
proof of Theorem 1. The proof follows along the same lines of the standard stochastic policy gradient theorem in Sutton
et al. (1999). Note that the regularity conditions A.1 imply that V µθ (s) and ∇θV µθ (s) are continuous functions of θ
and s and the compactness of S further implies that for any θ, ||∇θV µθ (s)||, || ∇aQµθ (s, a)|a=µθ(s) || and ||∇θµθ(s)||
are bounded functions of s. These conditions will be necessary to exchange derivatives and integrals, and the order of
integration whenever necessary in the following proof. We have,

∇θV µθ (s) = ∇θQµθ (s, µθ(s))

= ∇θ
(
r(s, µθ(s)) +

∫
S
γp(s′|s, µθ(s))V µθ (s′)ds′

)
= ∇θµθ(s) ∇ar(s, a)|a=µθ(s) +∇θ

∫
S
γp(s′|s, µθ(s))V µθ (s′)ds′

= ∇θµθ(s) ∇ar(s, a)|a=µθ(s)

+

∫
S
γ
(
p(s′|s, µθ(s))∇θV µθ (s′) +∇θµθ(s) ∇ap(s′|s, a)|a=µθ(s) V

µθ (s′)
)
ds′ (1)

= ∇θµθ(s)∇a
(
r(s, a) +

∫
S
γp(s′|s, a)V µθ (s′)ds′

)∣∣∣∣
a=µθ(s)

+

∫
S
γp(s′|s, µθ(s))∇θV µθ (s′)ds′

= ∇θµθ(s) ∇aQµθ (s, a)|a=µθ(s) +

∫
S
γp(s→ s′, 1, µθ)∇θV µθ (s′)ds′.

Where in (1) we used the Leibniz integral rule to exchange order of derivative and integration, requiring the regularity
conditions, specifically continuity of p(s′|s, a), µθ(s), V µθ (s) and their derivatives w.r.t. θ. And now iterating this formula
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we have,

= ∇θµθ(s) ∇aQµθ (s, a)|a=µθ(s)

+

∫
S
γp(s→ s′, 1, µθ)∇θµθ(s′) ∇aQµθ (s′, a)|a=µθ(s′) ds′

+

∫
S
γp(s→ s′, 1, µθ)

∫
S
γp(s′ → s′′, 1, µθ)∇θV µθ (s′′)ds′′ds′

= ∇θµθ(s) ∇aQµθ (s, a)|a=µθ(s)

+

∫
S
γp(s→ s′, 1, µθ)∇θµθ(s′) ∇aQµθ (s′, a)|a=µθ(s′) ds′

+

∫
S
γ2p(s→ s′, 2, µθ)∇θV µθ (s′)ds′ (2)

...

=

∫
S

∞∑
t=0

γtp(s→ s′, t, µθ)∇θµθ(s′) ∇aQµθ (s′, a)|a=µθ(s′) ds′.

Where in 2 we have used Fubini’s theorem to exchange the order of integration, requiring the regularity conditions so that
||∇θV µθ (s)|| is bounded. Now taking the expectation over S1 we have,

∇θJ(µθ) = ∇θ
∫
S
p1(s)V

µθ (s)ds

=

∫
S
p1(s)∇θV µθ (s) ds (3)

=

∫
S

∫
S

∞∑
t=0

γtp1(s)p(s→ s′, t, µθ)∇θµθ(s′) ∇aQµθ (s′, a)|a=µθ(s′) ds′ds

=

∫
S
ρµθ (s)∇θµθ(s) ∇aQµθ (s, a)|a=µθ(s) ds,

where in (3) we used the Leibniz integral rule to exchange derivative and integral, requiring the regularity conditions,
specifically so that p1(s) and V µθ (s) and derivatives w.r.t. θ are continuous. In the final line we again used Fubini’s
theorem to exchange the order of integration, requiring the boundedness of the integrand as implied by the regularity
conditions.

C. Proof of Theorem 2
We first restate Theorem 2 in detail, with discussion, and then prove the theorem. We first make a preliminary definition:
Conditions B1: Functions νσ parametrized by σ are said to be a regular delta-approximation onR ⊆ A if they satisfy the
following conditions:

1. The distributions νσ converge to a delta distribution: limσ↓0
∫
A νσ(a

′, a)f(a)da = f(a′) for a′ ∈ R and suitably
smooth f . Specifically we require that this convergence is uniform in a′ and over any class F of L-Lipschitz and
bounded functions, ||∇af(a)|| < L <∞, supa f(a) < b <∞, i.e.:

lim
σ↓0

sup
f∈F,a′∈A

∣∣∣∣∫
A
νσ(a

′, a)f(a)da− f(a′)
∣∣∣∣ = 0

2. For each a′ ∈ R, νσ(a′, ·) is supported on some compact Ca′ ⊆ A with Lipschitz boundary bd(Ca′), vanishes on the
boundary and is continuously differentiable on Ca′ .

3. For each a′ ∈ R, for each a ∈ A, the gradient∇a′νσ(a′, a) exists.

4. Translation invariance: For all a ∈ A, a′ ∈ R, and any δ ∈ Rn such that a + δ ∈ A, a′ + δ ∈ A, ν(a′, a) =
ν(a′ + δ, a+ δ).
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We restate the theorem:

Theorem. Let µθ : S → A. Denote the range of µθ by Rθ := range(µθ) ⊆ A, and R = ∪θRθ. For each θ, Consider a
stochastic policy πµθ,σ such that πµθ,σ(a|s) = νσ(µθ(s), a), where νσ satisfy Conditions B1 onR above. Suppose further
that the “regularity conditions” A.1 and A.2 (see Section A) on the MDP hold. Then,

lim
σ↓0
∇θJ(πµθ,σ) = ∇θJ(µθ) (4)

where on the l.h.s. the gradient is the standard stochastic policy gradient and on the r.h.s. the gradient is the deterministic
policy gradient.

Theorem 2 holds for a very wide class of policies when A = Rn: any continuously differentiable, compactly supported
ξ : Rn → R with total integral 1, can be used to construct νσ(a, a′) = 1/σnξ((a′ − a)/σ) which satisfies our conditions,
and the space of such functions is large: given any compact support such a function can be constructed. It is easy to
check that any νσ(a, a′) constructed on compact support with Lipschitz boundary in this way will satisfy Conditions B1.

A simple example is any “bump function” such as, in 1 dimension, ξ(a) =

{
e
− 1

1−|a|2 |a| < 1
0 |a| ≥ 1

, or multidimensional

versions.
We now prove the theorem. Throughout the proof we denote the time t marginal density at state s following policy π by
pπt (s). We begin with preliminary lemmas:

Lemma 1. Let U × V ⊆ Rn × Rn. Let ν : U × V → R be differentiable on U × V . Then (A)⇔ (B)⇒ (C) where,

(A) Translation invariance: For all u ∈ U , v ∈ V , and any δ ∈ Rn such that u+δ ∈ U , v+δ ∈ V , ν(u, v) = ν(u+δ, v+δ).

(B) There exists some function χ : Rn → R such that ν(u, v) = χ(u− v).

(C) ∇uν(u, v) = −∇vν(u, v), wherever the gradients exist.

If furthermore U × V is convex then C ⇒ A, i.e. all properties are equivalent.

proof of Lemma 1. A ⇒ B: For any c ∈ U − V define χ : Rn → R by χ : c 7→ ν(w,w − c) for any w ∈ U such that
c = w − v for some v ∈ V . Observe that this defines χ uniquely on all of U − V . Thus given any u ∈ U , v ∈ V we can
choose w = u and we have,

χ(u− v) = ν(u, u− (u− v))
= ν(u, v)

B⇒ A: Trivial

B ⇒ C: Let h(u, v) = u − v then by the chain rule ∇uν(u, v) = ∇hχ(h)|h(u,v)∇uh(u, v) = ∇hχ(h)|h(u,v) =

− ∇hχ(h)|h(u,v)∇vh(u, v) = −∇vν(u, v)

(C and Convexity)⇒ A: Suppose U × V is convex. Consider any (u, v) ∈ U × V , and any δ ∈ Rn, we have

〈∇(u,v)ν(u, v), (δ, δ)〉 = 〈∇uν(u, v), δ〉+ 〈∇vν(u, v), δ〉
= 〈∇uν(u, v), δ〉 − 〈∇uν(u, v), δ〉
= 0

hence ν is constant in the direction (δ, δ). Since (u, v) and δ were arbitrary, ν is constant in the direction (δ, δ) for all
δ ∈ Rn. Now since U × V is convex, for any A = (u, v) ∈ U × V and B = (u + δ, v + δ) ∈ U × V we have that the
straight line connecting A and B is entirely contained U × V . Thus, since ν is constant along the path ν(A) = ν(B).

We now note that the regularity conditions and properties of ν imply the following lemmas which we will need to prove
Theorem 2.

Lemma 2. 1. For any stochastic policy π and any t, sups p
π
t (s) < b and similarly for deterministic policies.
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2. For any stochastic policy π, sups ρ
π(s) < b/(1− γ) and similarly for deterministic policies.

3. for any stochastic policy π, supa,s {||∇aQπ(a, s)||} < c <∞ and similarly for deterministic policies.

Proof. 1. The claim is true for t = 1 by the regularity conditions A.2, then for t ≥ 1,

sup
s′
pπt+1(s

′) = sup
s′

∫
pπt (s)

∫
π(a|s)p(s′|s, a)dads

≤ sup
s′,a,s

p(s′|s, a) < b

2. sups ρ
π(s) ≤

∑∞
t=1 γ

t−1 sups p
π
t (s) ≤ b/(1− γ)

3. We have that,

sup
s,a
||∇aQπ(a, s)|| ≤ sup

s,a
||∇ar(s, a)||+ γ sup

s,a

∫
||∇ap(s′|s, a)|||V π(s′)|ds′

≤ L+ γ

∫
Lb/(1− γ)ds′

<∞

where the final line follows since S is compact and the integral over S is finite.

Lemma 3. limσ↓0 ρ
πµθ,σ (s) = ρπµθ,0(s) and the convergence is uniform w.r.t. s, i.e.

lim
σ↓0

sup
s
|ρπµθ,σ (s)− ρπµθ,0(s)| = 0 (5)

Proof. We have that ρπ(s) =
∑∞
t=1 γ

t−1pπt (s). Clearly p
πµθ,σ
1 (s) = p1(s) = p

πµθ,0
1 (s). Note that by the definition of νσ ,

given any ε1 > 0 we can choose σ∗ such that for all σ < σ∗,

sup
s
|
∫
πµθ,σ(a|s)p(s′|s, a)da−

∫
πµθ,0(a|s)p(s′|s, a)da| ≤ ε1.

Now suppose (for induction) that for some t ≥ 1 we have that

sup
s
|pπµθ,σt (s)− pπµθ,0t (s)| ≤ ε2(t),

then,

sup
s′

∣∣∣pπµθ,σt+1 (s′)− pπµθ,0t+1 (s′)
∣∣∣ ≤ sup

s′

∫
|pπµθ,σt (s)− pπµθ,0t (s)|

∫
πµθ,σ(a|s)p(s′|s, a)dads

+ sup
s′

∫
p
πµθ,0
t (s)

∣∣∣∣∫ πµθ,σ(a|s)p(s′|s, a)da−
∫
πµθ,0(a|s)p(s′|s, a)da

∣∣∣∣ ds
≤ ε2(t)

∫
bds+ ε1

= ε2(t)bζ + ε1,

where ζ =
∫
1ds <∞. Since ε2(1) = 0 we therefore have that

sup
s
|pπµθ,σt (s)− pπµθ,0t (s)| ≤ ε1(bζ + 1)t−1,
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And now given any ε > 0 if we choose T sufficiently large such that,
∑∞
t=T+1 γ

t−1b < ε/2 and then we choose ε1 and the
corresponding σ∗ sufficiently small so that,

∑T
t=1 γ

t−1ε1(bζ + 1)t−1 < ε/2, then we ensure that for any σ < σ∗,

sup
s
|ρπµθ,σ (s)− ρπµθ,0(s)| = sup

s
|
∞∑
t=1

γt−1p
πµθ,σ
t (s)−

∞∑
t=1

γt−1p
πµθ,0
t (s)|

≤
T∑
t=1

γt−1 sup
s
|pπµθ,σt (s)− pπµθ,0t (s)|

+

∞∑
t=T+1

γt−1 sup
s
|pπµθ,σt (s)− pπµθ,0t (s)|

≤
T∑
t=1

γt−1ε1(bζ + 1)t−1 +

∞∑
t=1

γt−1b

≤ ε

as required.

Lemma 4. For all s ∈ S, θ, the convergence∇aQπµθ,σ (a, s)→ ∇aQπµθ,0(a, s), as σ → 0, is uniform in (s, a), i.e.

lim
σ↓0

sup
(s,a)

||∇aQπµθ,σ (a, s)−∇aQπµθ,0(a, s)|| = 0

Proof. ∇aQπ(a, s) = ∇a
(
r(s, a) + γ

∫
p(s′|s, a)V π(s′)ds′

)
, so

sup
(s,a)

||∇aQπµθ,σ (a, s)−∇aQπµθ,0(a, s)|| ≤ γ
∫

sup
(s′,s,a)

||∇ap(s′|s, a)|||V πµθ,σ (s′)− V πµθ,0(s′)|ds′

≤ γζL sup
s′
|V πµθ,σ (s′)− V πµθ,0(s′)|

where ζ =
∫
1ds <∞. Now, given any ε1, ε2 there exists σ∗ such that for all σ < σ∗ we have that,

sup
s
|
∫
r(s, a) (πµθ,σ(a|s)− πµθ,0(a|s)) da| < ε1

and

sup
s,ŝ
|ρπµθ,σŝ (s)− ρπµθ,0ŝ (s)| < ε2 (6)

where ρπŝ (s) is analogous to ρπ(s), but conditioned on starting in distribution
∫
p(s|a, ŝ)π(a|ŝ)da at t = 1 rather than in

distribution p1 (the result (6) result can be proved in an identical fashion to Lemma 3 noting that the result does not depend
upon p1 other than through its boundedness). Then,

sup
s′
|V πµθ,σ (s′)− V πµθ,0(s′)| ≤ sup

s′

∣∣∣∣∫ r(s′, a)(πµθ,σ(a|s′)− πµθ,0(a|s′))da
∣∣∣∣

+ γ sup
s′

∣∣∣∣∫ ∫ ρ
πµθ,σ
s′ (s)πµθ,σ(a|s)r(s, a)dads−

∫ ∫
ρ
πµθ,0
s′ (s)πµθ,0(a|s)r(s, a)dads

∣∣∣∣
≤ ε1 + sup

s′

∫ ∫
|ρπµθ,σs′ (s)− ρπµθ,σs′ (s)||r(s, a)|πµθ,0(a|s)dads

+ | sup
s′

∫
ρ
πµθ,0
s′ (s)

∫
r(s, a) (πµθ,σ(a|s)− πµθ,0(a|s)) dads|

≤ ε1 + ε2ζb+ ε1/(1− γ)

which can thus be made arbitrarily small by choosing σ sufficiently small.
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proof of Theorem 2. Translation invariance, and Lemma 1 implies that ∇a′νσ(a′, a)|a′=µθ(s) = −∇aνσ(µθ(s), a). Then
integration by parts implies that,∫

A
Qπµθ,σ (s, a) ∇a′νσ(a′, a)|a′=µθ(s) da = −

∫
A
Qπµθ,σ (s, a)∇aνσ(µθ(s), a)da

=

∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)da+ boundary terms

=

∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)da

Where the boundary terms are zero since νσ vanishes on the boundary. We have, from the stochastic policy gradient
theorem,

lim
σ↓0
∇θJ(πµθ,σ) = lim

σ↓0

∫
S
ρπµθ,σ (s)

∫
A
Qπµθ,σ (s, a)∇θπµθ,σ(a|s) dads

= lim
σ↓0

∫
S
ρπµθ,σ (s)

∫
A
Qπµθ,σ (s, a)∇θµθ(s)∇a′ νσ(a′, a)|a′=µθ(s) dads

= lim
σ↓0

∫
S
ρπµθ,σ (s)∇θµθ(s)

∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)dads

=

∫
S
lim
σ↓0

ρπµθ,σ (s)∇θµθ(s)
∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)dads, (7)

where exchange of limit and integral in (7) follows by dominated convergence (in Banach spaces) where we can take the
dominating function (which is bounded by Lemma 2),

gθ(s) = sup
σ
{ρπµθ,σ (s)} sup

a∈Cµθ(s),σ
{||∇aQπµθ,σ (a, s)||} ||∇θµθ(s)||op

≥ ||ρπµθ,σ (s)
∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)da∇θµθ(s)||. (8)

Where || · ||op denotes the operator norm, or largest singular value. Now note that by uniform convergence of
∇aQπµθ,σ (s, a), Lemma 4, given any ε1, ε2 there exists σ∗ such that for all σ < σ∗ we have

||∇aQπµθ,σ (s, a)−∇aQπµθ,0(s, a)|| < ε1

so that

||
∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)da−
∫
Cµθ(s)

∇aQπµθ,0(s, a)νσ(µθ(s), a)da|| < ε1,

and also that,

||
∫
Cµθ(s)

∇aQπµθ,0(s, a)νσ(µθ(s), a)da− ∇aQπµθ,0(s, a)|a=µθ(s) || < ε2.

Hence,

||
∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)da− ∇aQπµθ,0(s, a)|a=µθ(s) || < ε1 + ε2

and from this and Lemma 3 we have,

(7) =

∫
S
ρπµθ,0(s)∇θµθ(s) lim

σ↓0

∫
Cµθ(s)

∇aQπµθ,σ (s, a)νσ(µθ(s), a)dads

=

∫
S
ρπµθ,0(s)∇θµθ(s) ∇aQπµθ,0(s, a)|a=µθ(s) ds

=

∫
S
ρµθ (s)∇θµθ(s) ∇aQµθ (s, a)|a=µθ(s) ds


