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Abstract

We present an algorithm for minimizing a sum of
functions that combines the computational effi-
ciency of stochastic gradient descent (SGD) with
the second order curvature information leveraged
by quasi-Newton methods. We unify these dis-
parate approaches by maintaining an indepen-
dent Hessian approximation for each contribut-
ing function in the sum. We maintain computa-
tional tractability and limit memory requirements
even for high dimensional optimization problems
by storing and manipulating these quadratic ap-
proximations in a shared, time evolving, low di-
mensional subspace. This algorithm contrasts
with earlier stochastic second order techniques
that treat the Hessian of each contributing func-
tion as a noisy approximation to the full Hes-
sian, rather than as a target for direct estima-
tion. Each update step requires only a single
contributing function or minibatch evaluation (as
in SGD), and each step is scaled using an ap-
proximate inverse Hessian and little to no adjust-
ment of hyperparameters is required (as is typical
for quasi-Newton methods). We experimentally
demonstrate improved convergence on seven di-
verse optimization problems. The algorithm is
released as open source Python and MATLAB
packages.

1. Introduction
A common problem in optimization is to find a vector
x⇤ 2 RM which minimizes a function F (x), where F (x)
is a sum of N computationally cheaper differentiable sub-
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functions f
i

(x),

F (x) =

NX

i=1

f
i

(x) , (1)

x⇤
= argmin

x

F (x) . (2)

Many optimization tasks fit this form (Boyd & Vanden-
berghe, 2004), including training of autoencoders, support
vector machines, and logistic regression algorithms, as well
as parameter estimation in probabilistic models. In these
cases each subfunction corresponds to evaluating the ob-
jective on a separate data minibatch, thus the number of
subfunctions N would be the datasize D divided by the
minibatch size S. This scenario is commonly referred to in
statistics as M-estimation (Huber, 1981).

There are two general approaches to efficiently optimizing
a function of this form. The first is to use a quasi-Newton
method (Dennis Jr & Moré, 1977), of which BFGS (Broy-
den, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
or LBFGS (Liu & Nocedal, 1989) are the most common
choices. Quasi-Newton methods use the history of gradi-
ent evaluations to build up an approximation to the inverse
Hessian of the objective function F (x). By making de-
scent steps which are scaled by the approximate inverse
Hessian, and which are therefore longer in directions of
shallow curvature and shorter in directions of steep curva-
ture, quasi-Newton methods can be orders of magnitude
faster than steepest descent. Additionally, quasi-Newton
techniques typically require adjusting few or no hyperpa-
rameters, because they use the measured curvature of the
objective function to set step lengths and directions. How-
ever, direct application of quasi-Newton methods requires
calculating the gradient of the full objective function F (x)
at every proposed parameter setting x, which can be very
computationally expensive.

The second approach is to use a variant of Stochastic Gra-
dient Descent (SGD) (Robbins & Monro, 1951; Bottou,
1991). In SGD, only one subfunction’s gradient is evalu-
ated per update step, and a small step is taken in the neg-
ative gradient direction. More recent descent techniques
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Figure 1. A cartoon illustrating the proposed optimization technique. (a) The objective function F (x) (solid blue line) consists of a sum
of two subfunctions (dashed blue lines), F (x) = f1 (x)+f2 (x). At learning step t�1, f1 (x) and f2 (x) are approximated by quadratic
functions gt�1

1 (x) and g

t�1
2 (x) (red dashed lines). The sum of the approximating functions Gt�1 (x) (solid red line) approximates the

full objective F (x). The green dots indicate the parameter values at which each subfunction has been evaluated (b) The next parameter
setting x

t is chosen by minimizing the approximating function G

t�1 (x) from the prior update step. See Equation 4. (c) After each
parameter update, the quadratic approximation for one of the subfunctions is updated using a second order expansion around the new
parameter vector xt. See Equation 6. The constant and first order term in the expansion are evaluated exactly, and the second order term
is estimated by performing BFGS on the subfunction’s history. In this case the approximating subfunction g

t
1 (x) is updated (long-dashed

red line). This update is also reflected by a change in the full approximating function G

t (x) (solid red line). Optimization proceeds
by repeating these two illustrated update steps. In order to remain tractable in memory and computational overhead, optimization is
performed in an adaptive low dimensional subspace determined by the history of gradients and positions.

like IAG (Blatt et al., 2007), SAG (Roux et al., 2012), and
MISO (Mairal, 2013; 2014) instead take update steps in
the average gradient direction. For each update step, they
evaluate the gradient of one subfunction, and update the
average gradient using its new value. (Bach & Moulines,
2013) averages the iterates rather than the gradients. If the
subfunctions are similar, then SGD can also be orders of
magnitude faster than steepest descent on the full batch.
However, because a different subfunction is evaluated for
each update step, the gradients for each update step cannot
be combined in a straightforward way to estimate the in-
verse Hessian of the full objective function. Additionally,
efficient optimization with SGD typically involves tuning
a number of hyperparameters, which can be a painstaking
and frustrating process. (Le et al., 2011) compares the per-
formance of stochastic gradient and quasi-Newton methods
on neural network training, and finds both to be competi-
tive.

Combining quasi-Newton and stochastic gradient methods
could improve optimization time, and reduce the need to
tweak optimization hyperparameters. This problem has
been approached from a number of directions. In (Schrau-
dolph et al., 2007; Sunehag et al., 2009) a stochastic variant
of LBFGS is proposed. In (Martens, 2010), (Byrd et al.,
2011), and (Vinyals & Povey, 2011) stochastic versions of
Hessian-free optimization are implemented and applied to
optimization of deep networks. In (Lin et al., 2008) a trust
region Newton method is used to train logistic regression

and linear SVMs using minibatches. In (Hennig, 2013) a
nonparametric quasi-Newton algorithm is proposed based
on noisy gradient observations and a Gaussian process
prior. In (Byrd et al., 2014) LBFGS is performed, but
with the contributing changes in gradient and position re-
placed by exactly computed Hessian vector products com-
puted periodically on extra large minibatches. Stochastic
meta-descent (Schraudolph, 1999), AdaGrad (Duchi et al.,
2010), and SGD-QN (Bordes et al., 2009) rescale the gra-
dient independently for each dimension, and can be viewed
as accumulating something similar to a diagonal approx-
imation to the Hessian. All of these techniques treat the
Hessian on a subset of the data as a noisy approximation to
the full Hessian. To reduce noise in the Hessian approxima-
tion, they rely on regularization and very large minibatches
to descend F (x). Thus, unfortunately each update step re-
quires the evaluation of many subfunctions and/or yields a
highly regularized (i.e. diagonal) approximation to the full
Hessian.

We develop a novel second-order quasi-Newton technique
that only requires the evaluation of a single subfunction
per update step. In order to achieve this substantial sim-
plification, we treat the full Hessian of each subfunction as
a direct target for estimation, thereby maintaining a sep-
arate quadratic approximation of each subfunction. This
approach differs from all previous work, which in contrast
treats the Hessian of each subfunction as a noisy approxi-
mation to the full Hessian. Our approach allows us to com-
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bine Hessian information from multiple subfunctions in a
much more natural and efficient way than previous work,
and avoids the requirement of large minibatches per up-
date step to accurately estimate the full Hessian. More-
over, we develop a novel method to maintain computa-
tional tractability and limit the memory requirements of
this quasi-Newton method in the face of high dimensional
optimization problems (large M ). We do this by storing
and manipulating the subfunctions in a shared, adaptive
low dimensional subspace, determined by the recent his-
tory of the gradients and positions.

Thus our optimization method can usefully estimate and
utilize powerful second-order information while simulta-
neously combatting two potential sources of computational
intractability: large numbers of subfunctions (large N) and
a high-dimensional optimization domain (large M). More-
over, the use of a second order approximation means that
minimal or no adjustment of hyperparameters is required.
We refer to the resulting algorithm as Sum of Functions
Optimizer (SFO). We demonstrate that the combination of
techniques and new ideas inherent in SFO results in faster
optimization on seven disparate example problems. Fi-
nally, we release the optimizer and the test suite as open
source Python and MATLAB packages.

2. Algorithm
Our goal is to combine the benefits of stochastic and quasi-
Newton optimization techniques. We first describe the gen-
eral procedure by which we optimize the parameters x.
We then describe the construction of the shared low di-
mensional subspace which makes the algorithm tractable
in terms of computational overhead and memory for large
problems. This is followed by a description of the BFGS
method by which an online Hessian approximation is main-
tained for each subfunction. Finally, we end this section
with a review of implementation details.

2.1. Approximating Functions

We define a series of functions Gt

(x) intended to approxi-
mate F (x),

Gt

(x) =

NX

i=1

gt
i

(x) , (3)

where the superscript t indicates the learning iteration.
Each gt

i

(x) serves as a quadratic approximation to the cor-
responding f

i

(x). The functions gt
i

(x) will be stored, and
one of them will be updated per learning step.

2.2. Update Steps

As is illustrated in Figure 1, optimization is performed by
repeating the steps:

1. Choose a vector xt by minimizing the approximating
objective function Gt�1

(x),

xt

= argmin

x

Gt�1

(x) . (4)

Since Gt�1

(x) is a sum of quadratic functions
gt�1

i

(x), it can be exactly minimized by a Newton
step,

xt

= xt�1 � ⌘t
�
Ht�1

��1

@Gt�1

�
xt�1

�

@x
, (5)

where Ht�1 is the Hessian of Gt�1

(x). The step
length ⌘t is typically unity, and will be discussed in
Section 3.5.

2. Choose an index j 2 {1...N}, and update the cor-
responding approximating subfunction gt

i

(x) using a
second order power series around xt, while leaving all
other subfunctions unchanged,

gt
i

(x) =

8
>>>><

>>>>:

gt�1

i

(x) i 6= j

2

4
f
i

(xt

)

+ (x� xt

)

T

f 0
i

(xt

)

+

1

2

(x� xt

)

T

Ht

i

(x� xt

)

3

5 i = j
.

(6)

The constant and first order term in Equation 6 are set
by evaluating the subfunction and gradient, f

j

(xt

) and
f 0
j

(xt

). The quadratic term Ht

j

is set by using the BFGS
algorithm to generate an online approximation to the true
Hessian of subfunction j based on its history of gradient
evaluations (see Section 2.4). The Hessian of the summed
approximating function Gt

(x) in Equation 5 is the sum of
the Hessians for each gt

j

(x), Ht

=

P
j

Ht

j

.

2.3. A Shared, Adaptive, Low-Dimensional
Representation

The dimensionality M of x 2 RM is typically large. As
a result, the memory and computational cost of working
directly with the matrices Ht

i

2 RM⇥M is typically pro-
hibitive, as is the cost of storing the history terms �f 0 and
�x required by BFGS (see Section 2.4). To reduce the
dimensionality from M to a tractable value, all history is
instead stored and all updates computed in a lower dimen-
sional subspace, with dimensionality between K

min

and
K

max

. This subspace is constructed such that it includes
the most recent gradient and position for every subfunc-
tion, and thus K

min

� 2N . This guarantees that the sub-
space includes both the steepest gradient descent direction
over the full batch, and the update directions from the most
recent Newton steps (Equation 5).
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For the results in this paper, K
min

= 2N and K
max

= 3N .
The subspace is represented by the orthonormal columns of
a matrix Pt 2 RM⇥K

t

, (Pt

)

T

Pt

= I. Kt is the subspace
dimensionality at optimization step t.

2.3.1. EXPANDING THE SUBSPACE WITH A NEW
OBSERVATION

At each optimization step, an additional column is added to
the subspace, expanding it to include the most recent gra-
dient direction. This is done by first finding the component
in the gradient vector which lies outside the existing sub-
space, and then appending that component to the current
subspace,

qorth = f 0
j

�
xt

��Pt�1

�
Pt�1

�
T

f 0
j

�
xt

�
, (7)

Pt

=


Pt�1

qorth

||qorth||
�
, (8)

where j is the subfunction updated at time t. The new posi-
tion xt is included automatically, since the position update
was computed within the subspace Pt�1. Vectors embed-
ded in the subspace Pt�1 can be updated to lie in Pt sim-
ply by appending a 0, since the first Kt�1 dimensions of
Pt consist of Pt�1.

2.3.2. RESTRICTING THE SIZE OF THE SUBSPACE

In order to prevent the dimensionality Kt of the subspace
from growing too large, whenever Kt > K

max

, the sub-
space is collapsed to only include the most recent gradient
and position measurements from each subfunction. The or-
thonormal matrix representing this collapsed subspace is
computed by a QR decomposition on the most recent gradi-
ents and positions. A new collapsed subspace is thus com-
puted as,

P0
= orth

⇣h
f 0
1

⇣
x⌧

t
1

⌘
· · · f 0

N

⇣
x⌧

t
N

⌘
x⌧

t
1 · · ·x⌧

t
N

i⌘
,

(9)

where ⌧ t
i

indicates the learning step at which the ith sub-
function was most recently evaluated, prior to the current
learning step t. Vectors embedded in the prior subspace P
are projected into the new subspace P0 by multiplication
with a projection matrix T = (P0

)

T

P. Vector compo-
nents which point outside the subspace defined by the most
recent positions and gradients are lost in this projection.

Note that the subspace P0 lies within the subspace P. The
QR decomposition and the projection matrix T are thus
both computed within P, reducing the computational and
memory cost (see Section 4.1).

2.4. Online Hessian Approximation

An independent online Hessian approximation Ht

j

is main-
tained for each subfunction j. It is computed by performing

BFGS on the history of gradient evaluations and positions
for that single subfunction1.

2.4.1. HISTORY MATRICES

For each subfunction j, we construct two matrices, �f 0

and �x. Each column of �f 0 holds the change in the
gradient of subfunction j between successive evaluations
of that subfunction, including all evaluations up until the
present time. Each column of �x holds the corresponding
change in the position x between successive evaluations.
Both matrices are truncated after a number of columns L,
meaning that they include information from only the prior
L+1 gradient evaluations for each subfunction. For all re-
sults in this paper, L = 10 (identical to the default history
length for the LBFGS implementation used in Section 5).

2.4.2. BFGS UPDATES

The BFGS algorithm functions by iterating through the
columns in �f 0 and �x, from oldest to most recent. Let s
be a column index, and B

s

be the approximate Hessian for
subfunction j after processing column s. For each s, the
approximate Hessian matrix B

s

is set so that it obeys the
secant equation �f 0

s

= B
s

�x
s

, where �f 0
s

and �x
s

are
taken to refer to the sth columns of the gradient difference
and position difference matrix respectively.

In addition to satisfying the secant equation, B
s

is chosen
such that the difference between it and the prior estimate
B

s�1

has the smallest weighted Frobenius norm2. This
produces the standard BFGS update equation

B
s

= B
s�1

+

�f 0
s

�f 0T
s

�f 0T
s

�x
s

� B
s�1

�x
s

�xT

s

B
s�1

�xT

s

B
s�1

�x
s

.

(10)

The final update is used as the approximate Hessian for
subfunction j, Ht

j

= B
max(s)

.

3. Implementation Details
Here we briefly review additional design choices that were
made when implementing this algorithm. Each of these
choices is presented more thoroughly in Appendix C. Sup-
plemental Figure C.1 demonstrates that the optimizer per-
formance is robust to changes in several of these design

1We additionally experimented with Symmetric Rank 1 (Den-
nis Jr & Moré, 1977) updates to the approximate Hessian, but
found they performed worse than BFGS. See Supplemental Fig-
ure C.1.

2The weighted Frobenius norm is defined as ||E||F,W =

||WEW||F . For BFGS, W = B
� 1

2
s (Papakonstantinou, 2009).

Equivalently, in BFGS the unweighted Frobenius norm is mini-
mized after performing a linear change of variables to map the
new approximate Hessian to the identity matrix.
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Optimizer Computation per pass Memory use

SFO O �
QN +MN2

� O (MN)

SFO, ‘sweet spot’ O (QN) O (MN)

LBFGS O (QN +ML) O (ML)
SGD O (QN) O (M)

AdaGrad O (QN) O (M)

SAG O (QN) O (MN)

Table 1. Leading terms in the computational cost and memory re-
quirements for SFO and several competing algorithms. Q is the
cost of computing the value and gradient for a single subfunction,
M is the number of data dimensions, N is the number of sub-
functions, and L is the number of history terms retained. “SFO,
‘sweet spot”’ refers to the case discussed in Section 4.1.1 where
the minibatch size is adjusted to match computational overhead
to subfunction evaluation cost. For this table, it is assumed that
M � N � L.

choices.

3.1. BFGS Initialization

The first time a subfunction is evaluated (before there is
sufficient history to run BFGS), the approximate Hessian
Ht

j

is set to the identity times the median eigenvalue of the
average Hessian of the other active subfunctions. For later
evaluations, the initial BFGS matrix is set to a scaled iden-
tity matrix, B

0

= �I, where � is the minimum eigenvalue
found by solving the squared secant equation for the full
history. See Appendix C.1 for details and motivation.

3.2. Enforcing Positive Definiteness

It is typical in quasi-Newton techniques to enforce that the
Hessian approximation remain positive definite. In SFO
each Ht

i

is constrained to be positive definite by an explicit
eigendecomposition and hard thresholding. This is com-
putationally cheap due to the shared low dimensional sub-
space (Section 2.3). This is described in detail in Appendix
C.2.

3.3. Choosing a Target Subfunction

The subfunction j to update in Equation 6 is chosen to be
the one farthest from the current location xt, using the cur-
rent Hessian approximation Ht as the metric. This is de-
scribed more formally in Appendix C.3. As illustrated in
Supplemental Figure C.1, this distance based choice out-
performs the commonly used random choice of subfunc-
tion.

3.4. Growing the Number of Active Subfunctions

For many problems of the form in Equation 1, the gradient
information is nearly identical between the different sub-
functions early in learning. We therefore begin with only

(a) (b)

(c)

Figure 2. An exploration of computational overhead and opti-
mizer performance, especially as the number of minibatches or
subfunctions N is adjusted. (a) Computational overhead required
by SFO for a full pass through all the subfunctions as a function
of dimensionality M for fixed N = 100. (b) Computational over-
head of SFO as a function of N for fixed M = 106. Both plots
show the computational time required for a full pass of the op-
timizer, excluding time spent computing the target objective and
gradient. This time is dominated by the O �

MN

2
�

cost per pass
of N iterations of subspace projection. CPU indicates that all
computations were performed on a 2012 Intel i7-3970X CPU (6
cores, 3.5 GHz). GPU indicates that subspace projection was per-
formed on a GeForce GTX 660 Ti GPU. (c) Optimization perfor-
mance on the two convex problems in Section 5 as a function of
the number of minibatches N . Note that near maximal perfor-
mance is achieved after breaking the target problem into only a
small number of minibatches.

two active subfunctions, and expand the active set when-
ever the length of the standard error in the gradient across
subfunctions exceeds the length of the gradient. This pro-
cess is described in detail in Appendix C.4. As illustrated
in Supplemental Figure C.1, performance only differs from
the case where all subfunctions are initially active for the
first several optimization passes.

3.5. Detecting Bad Updates

Small eigenvalues in the Hessian can cause update steps to
overshoot severely (ie, if higher than second order terms
come to dominate within a distance which is shorter than
the suggested update step). It is therefore typical in quasi-
Newton methods such as BFGS, LBFGS, and Hessian-free
optimization to detect and reject bad proposed update steps,
for instance by a line search. In SFO, bad update steps
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are detected by comparing the measured subfunction value
f
j

(xt

) to its quadratic approximation gt�1

j

(xt

). This is
discussed in detail in Section C.5.

4. Properties
4.1. Computational Overhead and Storage Cost

Table 1 compares the cost of SFO to competing algorithms.
The dominant computational costs are the O (MN) cost of
projecting the M dimensional gradient and current param-
eter values into and out of the O (N) dimensional active
subspace for each learning iteration, and the O (Q) cost
of evaluating a single subfunction. The dominant memory
cost is O (MN), and stems from storing the active sub-
space Pt. Table A.1 in the Supplemental Material provides
the contribution to the computational cost of each compo-
nent of SFO. Figure 2 plots the computational overhead per
a full pass through all the subfunctions associated with SFO
as a function of M and N . If each of the N subfunctions
corresponds to a minibatch, then the computational over-
head can be shrunk as described in Section 4.1.1.

Without the low dimensional subspace, the leading term
in the computational cost of SFO would be the far larger
O �

M2.4

�
cost per iteration of inverting the approximate

Hessian matrix in the full M dimensional parameter space,
and the leading memory cost would be the far larger
O �

M2N
�

from storing an M ⇥ M dimensional Hessian
for all N subfunctions.

4.1.1. IDEAL MINIBATCH SIZE

Many objective functions consist of a sum over a number
of data points D, where D is often larger than M . For
example, D could be the number of training samples in a
supervised learning problem, or data points in maximum
likelihood estimation. To control the computational over-
head of SFO in such a regime, it is useful to choose each
subfunction in Equation 3 to itself be a sum over a mini-
batch of data points of size S, yielding N =

D

S

. This
leads to a computational cost of evaluating a single sub-
function and gradient of O (Q) = O (MS). The computa-
tional cost of projecting this gradient from the full space to
the shared N dimensional adaptive subspace, on the other
hand, is O (MN) = O �

M D

S

�
. Therefore, in order for the

costs of function evaluation and projection to be the same
order, the minibatch size S should be proportional to

p
D,

yielding

N /
p
D. (11)

The constant of proportionality should be chosen small
enough that the majority of time is spent evaluating the
subfunction. In most problems of interest,

p
D ⌧ M , jus-

tifying the relevance of the regime in which the number of

subfunctions N is much less than the number of parameters
M . Finally, the computational and memory costs of SFO
are the same for sparse and non-sparse objective functions,
while Q is often much smaller for a sparse objective. Thus
the ideal S (N ) is likely to be larger (smaller) for sparse
objective functions.

Note that as illustrated in Figure 2c and Figure 3 perfor-
mance is very good even for small N .

4.2. Convergence

Concurrent work by (Mairal, 2013) considers a similar al-
gorithm to that described in Section 2.2, but with Ht

i

a
scalar constant rather than a matrix. Proposition 6.1 in
(Mairal, 2013) shows that in the case that each g

i

majorizes
its respective f

i

, and subject to some additional smooth-
ness constraints, Gt

(x) monotonically decreases, and x⇤ is
an asymptotic stationary point. Proposition 6.2 in (Mairal,
2013) further shows that for strongly convex f

i

, the algo-
rithm exhibits a linear convergence rate to x⇤. A near iden-
tical proof should hold for a simplified version of SFO, with
random subfunction update order, and with Ht

i

regularized
in order to guarantee satisfaction of the majorization con-
dition.

5. Experimental Results
We compared our optimization technique to several com-
peting optimization techniques for seven objective func-
tions. The results are illustrated in Figures 3 and 4, and the
optimization techniques and objectives are described be-
low. For all problems our method outperformed all other
techniques in the comparison.

Open source code which implements the proposed tech-
nique and all competing optimizers, and which directly
generates the plots in Figures 1, 2, and 3, is provided
at https://github.com/Sohl-Dickstein/
Sum-of-Functions-Optimizer.

5.1. Optimizers

SFO refers to Sum of Functions Optimizer, and is the new
algorithm presented in this paper. SAG refers to Stochastic
Average Gradient method, with the trailing number pro-
viding the Lipschitz constant. SGD refers to Stochastic
Gradient Descent, with the trailing number indicating the
step size. ADAGrad indicates the AdaGrad algorithm, with
the trailing number indicating the initial step size. LBFGS
refers to the limited memory BFGS algorithm. LBFGS
minibatch repeatedly chooses one tenth of the subfunc-
tions, and runs LBFGS for ten iterations on them. Hessian-
free refers to Hessian-free optimization.

For SAG, SGD, and ADAGrad the hyperparameter was cho-
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(a) (b) (c)

(d) (e) (f)

Figure 3. A comparison of SFO to competing optimization techniques for six objective functions. The bold lines indicate the best
performing hyperparameter for each optimizer. Note that unlike all other techniques besides LBFGS, SFO does not require tuning
hyperparameters (for instance, the displayed SGD+momentum traces are the best out of 32 hyperparameter configurations). The objec-
tive functions shown are (a) a logistic regression problem, (b) a contractive autoencoder trained on MNIST digits, (c) an Independent
Component Analysis (ICA) model trained on MNIST digits, (d) an Ising model / Hopfield associative memory trained using Minimum
Probability Flow, (e) a multi-layer perceptron with sigmoidal units trained on MNIST digits, and (f) a multilayer convolutional network
with rectified linear units trained on CIFAR-10. The logistic regression and MPF Ising objectives are convex, and their objective values
are plotted relative to the global minimum.

sen by a grid search. The best hyperparameter value, and
the hyperparameter values immediately larger and smaller
in the grid search, are shown in the plots and legends for
each model in Figure 3. In SGD+momentum the two hy-
perparameters for both step size and momentum coefficient
were chosen by a grid search, but only the best param-
eter values are shown. The grid-searched momenta were
0.5, 0.9, 0.95, and 0.99, and the grid-searched step lengths
were all integer powers of ten between 10

�5 and 10

2. For
Hessian-free, the hyperparameters, source code, and objec-
tive function are identical to those used in (Martens, 2010),
and the training data was divided into four “chunks.” For
all other experiments and optimizers the training data was
divided into N = 100 minibatches (or subfunctions).

5.2. Objective Functions

A detailed description of all target objective functions in
Figure 3 is included in Section B of the Supplemental Ma-
terial. In brief, they consisted of:

• A logistic regression objective, chosen to be the same
as one used in (Roux et al., 2012).

• A contractive autoencoder with 784 visible units, and
256 hidden units, similar to the one in (Rifai et al.,
2011).

• An Independent Components Analysis (ICA) (Bell &
Sejnowski, 1995) model with Student’s t-distribution
prior.
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• An Ising model / Hopfield network trained using code
from (Hillar et al., 2012) implementing MPF (Sohl-
Dickstein et al., 2011b;a).

• A multilayer perceptron with a similar architecture to
(Hinton et al., 2012), with layer sizes of 784, 1200,
1200, and 10. Training used Theano (Bergstra &
Breuleux, 2010).

• A deep convolutional network with max pooling and
rectified linear units, similar to (Goodfellow & Warde-
Farley, 2013a), with two convolutional layers with 48
and 128 units, and one fully connected layer with 240
units. Training used Theano and Pylearn2 (Goodfel-
low & Warde-Farley, 2013b).

The logistic regression and Ising model / Hopfield objec-
tives are convex, and are plotted relative to their global min-
imum. The global minimum was taken to be the smallest
value achieved on the objective by any optimizer.

In Figure 4, a twelve layer neural network was trained on
cross entropy reconstruction error for the CURVES dataset.
This objective, and the parameter initialization, was chosen
to be identical to an experiment in (Martens, 2010).

6. Future Directions
We perform optimization in an O (N) dimensional sub-
space. It may be possible, however, to drastically reduce
the dimensionality of the active subspace without signif-
icantly reducing optimization performance. For instance,
the subspace could be determined by accumulating, in an
online fashion, the leading eigenvectors of the covariance
matrix of the gradients of the subfunctions, as well as the
leading eigenvectors of the covariance matrix of the update
steps. This would reduce memory requirements and com-
putational overhead even for large numbers of subfunctions
(large N ).

Most portions of the presented algorithm are naively par-
allelizable. The gt

i

(x) functions can be updated asyn-
chronously, and can even be updated using function and
gradient evaluations from old positions x⌧ , where ⌧ < t.
Developing a parallelized version of this algorithm could
make it a useful tool for massive scale optimization prob-
lems. Similarly, it may be possible to adapt this algorithm
to an online / infinite data context by replacing subfunctions
in a rolling fashion.

Quadratic functions are often a poor match to the geome-
try of the objective function (Pascanu et al., 2012). Neither
the dynamically updated subspace nor the use of indepen-
dent approximating subfunctions gt

i

(x) which are fit to the
true subfunctions f

i

(x) depend on the functional form of
gt
i

(x). Exploring non-quadratic approximating subfunc-
tions has the potential to greatly improve performance.

Figure 4. A comparison of SFO to Hessian-free optimization for
a twelve layer neural network trained on the CURVES dataset.
This problem is identical to an experiment in (Martens, 2010), and
the Hessian-free convergence trace was generated using source
code from the same paper. SFO converges in approximately one
tenth the number of effective passes through the data as Hessian-
free optimization.

Section 3.1 initializes the approximate Hessian using a di-
agonal matrix. Instead, it might be effective to initialize
the approximate Hessian for each subfunction using the
average approximate Hessian from all other subfunctions.
Where individual subfunctions diverged they would over-
write this initialization. This would take advantage of the
fact that the Hessians for different subfunctions are very
similar for many objective functions.

Recent work has explored the non-asymptotic convergence
properties of stochastic optimization algorithms (Bach &
Moulines, 2011). It may be fruitful to pursue a similar anal-
ysis in the context of SFO.

Finally, the natural gradient (Amari, 1998) can greatly ac-
celerate optimization by removing the effect of dependen-
cies and relative scalings between parameters. The natu-
ral gradient can be simply combined with other optimiza-
tion methods by performing a change of variables, such
that in the new parameter space the natural gradient and
the ordinary gradient are identical (Sohl-Dickstein, 2012).
It should be straightforward to incorporate this change-of-
variables technique into SFO.

7. Conclusion
We have presented an optimization technique which com-
bines the benefits of LBFGS-style quasi-Newton optimiza-
tion and stochastic gradient descent. It does this by using
BFGS to maintain an independent quadratic approximation
for each contributing subfunction (or minibatch) in an ob-
jective function. Each optimization step then alternates be-
tween descending the quadratic approximation of the full
objective, and evaluating a single subfunction and updat-
ing the quadratic approximation for that single subfunction.
This procedure is made tractable in memory and computa-
tional time by working in a shared low dimensional sub-
space defined by the history of gradient evaluations.
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