Supplementary Materials

A Proof of Theorem 2.1

Let b^{*} be an optimal solution for a given instance of the problem. We first examine properties of GREEDYPROCEDURE that hold for arbitrary b_{0}. We then show that there exists some b_{0} in the enumeration step such that GREEDYPROCEDURE returns b with $f(b) \geq(1-1 / e) f\left(b^{*}\right)$, which proves Theorem 2.1.

Let us fix an initial solution b_{0}, and analyze behavior of GreedyProcedure with input b_{0}. We denote by b_{i} the tentative solution b at the beginning of the i th iteration and denote by s_{i} and $k_{i} s$ and k chosen in the i th iteration, respectively. Assume that GreedyProcedure first has not updated the tentative solution b in the L th trial. Equivalently, let L be the minimum number such that $b_{L}=b_{L+1}$ and $b_{i}<b_{i+1}$ for $i=1, \ldots, L-1$. Note that if such a situation never happens during the execution of GreedyProcedure, define L to be the number of iterations.

Lemma A.1. Without loss of generality, we may assume that $b\left(s_{L}\right)+k_{L} \leq b^{*}\left(s_{L}\right)$.
Proof. Suppose that $b\left(s_{L}\right)+k_{L}>b^{*}\left(s_{L}\right)$. Let us consider a modified instance in which the capacity of s_{L} is decreased to $b\left(s_{L}\right)+k_{L}-1$. The optimal value is unchanged by this modification because b^{*} is still feasible and optimal. Furthermore, GreedyProCEDURE returns the same solution (with respect to same b_{0}). Thus it suffices to analyze the algorithm in the modified instance. Repeating this argument completes the proof of this lemma.

Consider the i th iteration of the algorithm. For simplicity, we denote $\Delta\left(b_{i}, s_{i}, k_{i}\right)$ by $\Delta_{i}, \delta\left(b_{i}, s_{i}, k_{i}\right)$ by δ_{i}, and $w\left(s_{i}\right)$ by w_{i}. Note that $f\left(b_{i}\right)=f\left(b_{0}\right)+\sum_{j=1}^{i-1} \Delta_{i}$ for $i=1, \ldots, L$. Let $B^{\prime}:=B-w \cdot b_{0}$.

Lemma A.2. For $i=1, \ldots, L$, we have $\Delta_{i} \geq \frac{w_{i} k_{i}}{B^{\prime}}\left(f\left(b^{*}\right)-f\left(b_{i}\right)\right)$.
Proof. Let us denote $b_{i} \vee b^{*}=b_{i}+\sum \alpha_{s} \chi_{s}$, where the sum is taken over s in $\operatorname{supp}^{+}\left(b^{*}-b_{i}\right)$ and $\alpha_{s}:=b^{*}(s)-b_{i}(s)$. Since $b_{i} \vee b^{*}(s) \chi_{s}=b_{i}+\alpha_{s} \chi_{s}$ for each $s \in \operatorname{supp}^{+}\left(b^{*}-b_{i}\right),(4)$ implies

$$
\begin{aligned}
f\left(b_{i} \vee b^{*}\right) & \leq f\left(b_{i}\right)+\sum_{s \in \operatorname{supp}^{+}\left(b^{*}-b_{i}\right)}\left(f\left(b_{i}+\alpha_{s} \chi_{s}\right)-f\left(b_{i}\right)\right) \\
& \leq f\left(b_{i}\right)+\sum_{s \in \operatorname{supp}^{+}\left(b^{*}-b_{i}\right)} w(s) \alpha_{s} \delta_{i}
\end{aligned}
$$

where the last inequality follows from the fact that $\left(f\left(b_{i}+k \chi_{s}\right)-f\left(b_{i}\right)\right) /(w(s) k) \leq \delta_{i}$ for all $s \in S$ and k. Since $\sum w(s) \alpha_{s}$ is at most B^{\prime} and $f\left(b^{*}\right) \leq f\left(b_{i} \vee b^{*}\right)$ by the monotonicity of f, it holds that $f\left(b^{*}\right) \leq f\left(b_{i}\right)+\delta_{i} B^{\prime}$. Therefore, we obtain $\delta_{i} \geq\left(f\left(b^{*}\right)-f\left(b_{i}\right)\right) / B^{\prime}$.

Applying Lemma A. 2 repeatedly, we have the following lemmas.

Lemma A.3. For $i=1, \ldots, L$, we have $f\left(b^{*}\right)-f\left(b_{i}\right) \leq\left(f\left(b^{*}\right)-f\left(b_{0}\right)\right) \cdot \prod_{j=1}^{i}\left(1-w_{j} k_{j} / B^{\prime}\right)$.
Proof. We prove this lemma by induction on i. For $i=1$, then the inequality holds because $\Delta_{1} \geq w_{1} k_{1}\left(f\left(b^{*}\right)-f\left(b_{0}\right)\right) / B^{\prime}$ by LemmaA. 2 For $i>1$, we have

$$
\begin{aligned}
& f\left(b^{*}\right)-f\left(b_{0}\right)-\sum_{j=1}^{i} \Delta_{j}=f\left(b^{*}\right)-f\left(b_{0}\right)-\sum_{j=1}^{i-1} \Delta_{j}-\Delta_{i} \\
& \leq f\left(b^{*}\right)-f\left(b_{0}\right)-\sum_{j=1}^{i-1} \Delta_{j}-\frac{w_{i} k_{i}}{B^{\prime}}\left(f\left(b^{*}\right)-f\left(b_{0}\right)-\sum_{j=1}^{i-1} \Delta_{j}\right) \quad(\text { by Lemma A. } 2 \text {) } \\
& =\left(1-\frac{w_{i} k_{i}}{B^{\prime}}\right)\left(f\left(b^{*}\right)-f\left(b_{0}\right)-\sum_{j=1}^{i-1} \Delta_{j}\right) \\
& \leq\left(1-\frac{w_{i} k_{i}}{B^{\prime}}\right) \cdot\left(f\left(b^{*}\right)-f\left(b_{0}\right)\right) \cdot \prod_{j=1}^{i-1}\left(1-\frac{w_{j} k_{j}}{B^{\prime}}\right)
\end{aligned}
$$

(by the induction hypothesis)
which completes the proof.
Lemma A.4. It holds that $f\left(b^{*}\right)-f\left(b_{i}\right) \leq\left(f\left(b^{*}\right)-f\left(b_{0}\right)\right) / e$.
Proof. Let $\varphi(x)=\ln (1-x)$. Note that φ is concave in $[0,1)$. By Jensen's inequality, we have $\sum_{i=1}^{L} \varphi\left(x_{i}\right) / L \leq \varphi\left(\sum_{i=1}^{L} x_{i} / L\right)$ for $x_{1}, \ldots, x_{L} \in[0,1)$. Putting $x_{i}:=$ $w_{i} k_{i} / B^{\prime}$, we obtain

$$
\begin{equation*}
\frac{1}{L} \sum_{i=1}^{L} \ln \left(1-\frac{w_{i} k_{i}}{B^{\prime}}\right) \leq \ln \left(1-\frac{1}{L} \sum_{i=1}^{L} \frac{w_{i} k_{i}}{B^{\prime}}\right) \leq \ln \left(1-\frac{1}{L}\right) \tag{1}
\end{equation*}
$$

where the last inequality follows since $\sum_{i=1}^{L} w_{i} k_{i} \geq B^{\prime}$ and φ is a monotonically decreasing function. Thus we have

$$
\begin{equation*}
\prod_{i=1}^{L}\left(1-\frac{w_{i} k_{i}}{B^{\prime}}\right) \leq\left(1-\frac{1}{L}\right)^{L} \leq \frac{1}{e} \tag{2}
\end{equation*}
$$

Combining this fact and Lemma A. 3 completes the proof.
We now move to proving that the greedy procedure returns a $(1-1 / e)$-approximate solution for some b_{0} in the enumeration step. If the optimal solution b^{*} satisfies $\left|\operatorname{supp}^{+}\left(b^{*}\right)\right| \leq 3$, it can be found in the enumeration step. Therefore, we assume that all the optimal solutions have more than three positive components. Let $s_{1}^{*}, s_{2}^{*}, s_{3}^{*}$ be elements in S satisfying:

$$
s_{i}^{*} \in \underset{s \in S \backslash\left\{s_{1}^{*}, \ldots, s_{i-1}^{*}\right\}}{\operatorname{argmax}} \Delta\left(\vee_{j=1}^{i-1} b^{*}\left(s_{j}^{*}\right) \chi_{s_{j}^{*}}, s, b^{*}(s)\right)
$$

for $i=1,2,3$. Since the size of the support of b^{*} is more than three, such s_{1}^{*}, s_{2}^{*} and s_{3}^{*} clearly exist.

Lemma A.5. For the feasible solution b_{0} with the support $\left\{s_{1}^{*}, s_{2}^{*}\right.$, $\left.s_{3}^{*}\right\}$ satisfying $b_{0}\left(s_{i}^{*}\right)=$ $b^{*}\left(s_{i}^{*}\right)$ for $1 \leq i \leq 3$, we have $\Delta_{L} \leq f\left(b_{0}\right) / 3$.

Proof. It follows that $\Delta_{L}=f\left(b_{L}+k_{L} \chi_{s_{L}}\right)-f\left(b_{L}\right) \leq f\left(b_{L} \vee b^{*}\left(s_{L}\right) \chi_{s_{L}}\right)-f\left(b_{L}\right)$ since $b_{L}\left(s_{L}\right)+k_{L} \leq b^{*}\left(s_{L}\right)$. By Lemma 2.2, Δ_{L} is at most $f\left(b^{*}\left(s_{L}\right) \chi_{s_{L}}\right)-f(0)=$ $f\left(b^{*}\left(s_{L}\right) \chi_{s_{L}}\right)$, and hence $\Delta_{L} \leq f\left(b^{*}\left(s_{1}^{*}\right) \chi_{s_{1}^{*}}\right)=\Delta\left(0, s_{1}^{*}, b^{*}\left(s_{1}^{*}\right)\right)$ by the choice of s_{1}^{*}. Similarly, by the choices of s_{2}^{*} and s_{3}^{*}, we have $\Delta_{L} \leq \Delta\left(b^{*}\left(s_{1}^{*}\right) \chi_{s_{1}^{*}}, s_{2}^{*}, b^{*}\left(s_{2}^{*}\right)\right)$ and $\Delta_{L} \leq \Delta\left(b^{*}\left(s_{1}^{*}\right) \chi_{s_{1}^{*}} \vee b^{*}\left(s_{2}^{*}\right) \chi_{s_{2}^{*}}, s_{3}^{*}, b^{*}\left(s_{3}^{*}\right)\right)$. Adding these inequalities, we obtain $\Delta_{L} \leq f\left(b_{0}\right) / 3$.

We are now ready to prove Theorem 2.1 Since $f(b) \geq f\left(b_{0}\right)+\sum_{i=1}^{L} \Delta_{i}-\Delta_{L}$, Lemmas A. 4 and A. 5 imply that

$$
\begin{aligned}
f(b) & \geq(1-1 / 3) f\left(b_{0}\right)+(1-1 / e)\left(f\left(b^{*}\right)-f\left(b_{0}\right)\right) \\
& \geq(1-1 / e) f\left(b^{*}\right)
\end{aligned}
$$

for the initial solution b_{0} described in Lemma A. 5 . This completes the proof of Theorem 2.1 .

B Proof of Lemmas

B. 1 Proof of Lemma 2.2

Proof. If $k \leq x(s)$ then both sides are 0 . If $x(s)<k \leq y(s)$ then the inequality (3) is equivalent to $f\left(x \vee k \chi_{s}\right)-f(x) \geq 0$, which is valid by monotonicity. Lastly, if $k>y(s)$ then we have $f\left(x \vee k \chi_{s}\right)+f(y) \geq f\left(y \vee k \chi_{s}\right)+f(x)$ by submodularity, which directly implies (3).

B. 2 Proof of Lemma 2.3

Proof. We prove this lemma by induction on the size of $\operatorname{supp}^{+}(y-x)$. If $\mid \operatorname{supp}^{+}(y-$ $x) \mid=0$, that is, $x \vee y=x$, then (4) is trivial. Suppose that there is an index $s \in$ $\operatorname{supp}^{+}(y-x)$. We define $y_{1}=y-y(s) \chi_{s}$. Then $y=y_{1} \vee y(s) \chi_{s}$ and $y_{1} \wedge y(s) \chi_{s}=0$ hold. By submodularity of $x \vee y_{1}$ and $x \vee y(s) \chi_{s}$, we have

$$
f\left(x \vee y_{1}\right)+f\left(x \vee y(s) \chi_{s}\right) \geq f(x \vee y)+f\left(\left(x \vee y_{1}\right) \wedge\left(x \vee y(s) \chi_{s}\right)\right)
$$

Since it holds that

$$
\left(x \vee y_{1}\right) \wedge\left(x \vee y(s) \chi_{s}\right)=x \vee\left(y_{1} \wedge y(s) \chi_{s}\right)=x \vee 0=x
$$

the above inequality implies that

$$
f\left(x \vee y_{1}\right)+f\left(x \vee y(s) \chi_{s}\right)-f(x) \geq f(x \vee y)
$$

Therefore, applying the induction hypothesis to x and y_{1}, we obtain (4). Thus the statement holds.

B. 3 Proof of Lemma 4.1

Proof. By simple algebra, we can easily check that

$$
\begin{align*}
f\left(b+\chi_{s}\right)-f(b) & =p_{s}^{(b(s)+1)} \sum_{t \in \Gamma(s)} \prod_{v \in \Gamma(t)} \prod_{i=1}^{b(v)}\left(1-p_{v}^{(i)}\right) \tag{3}\\
f\left(b+2 \chi_{s}\right)-f\left(b+\chi_{s}\right) & =\left(1-p_{s}^{(b(s)+1)}\right) p_{s}^{(b(s)+2)} \sum_{t \in \Gamma(s)} \prod_{v \in \Gamma(t)} \prod_{i=1}^{b(v)}\left(1-p_{v}^{(i)}\right) . \tag{4}
\end{align*}
$$

Let $\alpha:=\sum_{t \in \Gamma(s)} \prod_{v \in \Gamma(t)} \prod_{i=1}^{b(v)}\left(1-p_{v}^{(i)}\right)$ for simplicity of notations. Then we have $f\left(b+\chi_{s}\right)-f(b)-\left(f\left(b+2 \chi_{s}\right)-f\left(b+\chi_{s}\right)\right)=p_{s}^{(b(s)+1)} \alpha-p_{s}^{(b(s)+2)}\left(1-p_{s}^{(b(s)+1)}\right) \alpha \geq$ $\alpha\left(p_{s}^{(b(s)+2)}-p_{s}^{(b(s)+2)}\left(1-p_{s}^{(b(s)+2)}\right)\right)=\alpha\left(p_{s}^{(b(s)+2)}\right)^{2} \geq 0$.

C Pseudocode of Algorithm

```
Algorithm 3 SimpleGreedyProcedurefor Competitormodel
    for each \(t \in T\) do
        Let \(\lambda:=1\)
        for \(k=1\) to \(1+\max _{s \in \Gamma(t)} \tilde{b}(s)\) do
            Let \(\phi_{k}(t):=1\) and \(\lambda_{t, k}:=\lambda\left(1-\prod_{s \in \Gamma(t): \tilde{b}(s) \geq k}\left(1-\tilde{p}_{s}^{(k)}\right)\right)\).
            Let \(\lambda:=\lambda \prod_{s \in \Gamma(t): \tilde{b}(s) \geq k}\left(1-\tilde{p}_{s}^{(k)}\right)\).
        end for
    end for
    Let \(b:=0\).
    for \(i=1\) to \(B\) do
        Choose \(s\) maximizing \(\sum_{t \in \Gamma(s)} \sum_{k} \lambda_{t, k} r_{s, k}^{(b(s)+1)} \phi_{k}(t)\).
        Let \(b(s):=b(s)+1\).
        for \(t \in \Gamma(s)\) do
            for \(k=1\) to \(1+\max _{s \in \Gamma(t)} \tilde{b}(s)\) do
                Let \(\phi_{k}(t):=\left(1-r_{s, k}^{(b(s))}\right) \phi_{k}(t)\).
            end for
        end for
    end for
    return \(b\)
```

