Supplementary Materials

A Proof of Theorem 2.1

Let b^* be an optimal solution for a given instance of the problem. We first examine properties of GREEDYPROCEDURE that hold for *arbitrary* b_0 . We then show that there exists *some* b_0 in the enumeration step such that GREEDYPROCEDURE returns b with $f(b) \ge (1 - 1/e)f(b^*)$, which proves Theorem 2.1.

Let us fix an initial solution b_0 , and analyze behavior of GREEDYPROCEDURE with input b_0 . We denote by b_i the tentative solution b at the beginning of the *i*th iteration and denote by s_i and k_i s and k chosen in the *i*th iteration, respectively. Assume that GREEDYPROCEDURE first has not updated the tentative solution b in the *L*th trial. Equivalently, let L be the minimum number such that $b_L = b_{L+1}$ and $b_i < b_{i+1}$ for $i = 1, \ldots, L - 1$. Note that if such a situation never happens during the execution of GREEDYPROCEDURE, define L to be the number of iterations.

Lemma A.1. Without loss of generality, we may assume that $b(s_L) + k_L \leq b^*(s_L)$.

Proof. Suppose that $b(s_L)+k_L > b^*(s_L)$. Let us consider a modified instance in which the capacity of s_L is decreased to $b(s_L) + k_L - 1$. The optimal value is unchanged by this modification because b^* is still feasible and optimal. Furthermore, GREEDYPRO-CEDURE returns the same solution (with respect to same b_0). Thus it suffices to analyze the algorithm in the modified instance. Repeating this argument completes the proof of this lemma.

Consider the *i*th iteration of the algorithm. For simplicity, we denote $\Delta(b_i, s_i, k_i)$ by Δ_i , $\delta(b_i, s_i, k_i)$ by δ_i , and $w(s_i)$ by w_i . Note that $f(b_i) = f(b_0) + \sum_{j=1}^{i-1} \Delta_i$ for $i = 1, \ldots, L$. Let $B' := B - w \cdot b_0$.

Lemma A.2. For i = 1, ..., L, we have $\Delta_i \ge \frac{w_i k_i}{B'} (f(b^*) - f(b_i))$.

Proof. Let us denote $b_i \vee b^* = b_i + \sum \alpha_s \chi_s$, where the sum is taken over s in $\operatorname{supp}^+(b^* - b_i)$ and $\alpha_s := b^*(s) - b_i(s)$. Since $b_i \vee b^*(s)\chi_s = b_i + \alpha_s \chi_s$ for each $s \in \operatorname{supp}^+(b^* - b_i)$, (4) implies

$$f(b_i \vee b^*) \le f(b_i) + \sum_{s \in \text{supp}^+(b^* - b_i)} (f(b_i + \alpha_s \chi_s) - f(b_i))$$
$$\le f(b_i) + \sum_{s \in \text{supp}^+(b^* - b_i)} w(s) \alpha_s \delta_i,$$

where the last inequality follows from the fact that $(f(b_i+k\chi_s)-f(b_i))/(w(s)k) \leq \delta_i$ for all $s \in S$ and k. Since $\sum w(s)\alpha_s$ is at most B' and $f(b^*) \leq f(b_i \vee b^*)$ by the monotonicity of f, it holds that $f(b^*) \leq f(b_i) + \delta_i B'$. Therefore, we obtain $\delta_i \geq (f(b^*) - f(b_i))/B'$.

Applying Lemma A.2 repeatedly, we have the following lemmas.

Lemma A.3. For i = 1, ..., L, we have $f(b^*) - f(b_i) \leq (f(b^*) - f(b_0)) \cdot \prod_{j=1}^i (1 - w_j k_j / B')$.

Proof. We prove this lemma by induction on i. For i = 1, then the inequality holds because $\Delta_1 \ge w_1 k_1 (f(b^*) - f(b_0))/B'$ by Lemma A.2. For i > 1, we have

$$\begin{aligned} f(b^*) - f(b_0) - \sum_{j=1}^{i} \Delta_j &= f(b^*) - f(b_0) - \sum_{j=1}^{i-1} \Delta_j - \Delta_i \\ &\leq f(b^*) - f(b_0) - \sum_{j=1}^{i-1} \Delta_j - \frac{w_i k_i}{B'} \left(f(b^*) - f(b_0) - \sum_{j=1}^{i-1} \Delta_j \right) \quad \text{(by Lemma A.2)} \\ &= \left(1 - \frac{w_i k_i}{B'} \right) \left(f(b^*) - f(b_0) - \sum_{j=1}^{i-1} \Delta_j \right) \\ &\leq \left(1 - \frac{w_i k_i}{B'} \right) \cdot (f(b^*) - f(b_0)) \cdot \prod_{j=1}^{i-1} \left(1 - \frac{w_j k_j}{B'} \right), \end{aligned}$$

(by the induction hypothesis)

which completes the proof.

Lemma A.4. It holds that $f(b^*) - f(b_i) \le (f(b^*) - f(b_0))/e$.

Proof. Let $\varphi(x) = \ln(1-x)$. Note that φ is concave in [0, 1). By Jensen's inequality, we have $\sum_{i=1}^{L} \varphi(x_i)/L \leq \varphi(\sum_{i=1}^{L} x_i/L)$ for $x_1, \ldots, x_L \in [0, 1)$. Putting $x_i := w_i k_i/B'$, we obtain

$$\frac{1}{L}\sum_{i=1}^{L}\ln\left(1-\frac{w_ik_i}{B'}\right) \le \ln\left(1-\frac{1}{L}\sum_{i=1}^{L}\frac{w_ik_i}{B'}\right) \le \ln\left(1-\frac{1}{L}\right),\tag{1}$$

where the last inequality follows since $\sum_{i=1}^{L} w_i k_i \geq B'$ and φ is a monotonically decreasing function. Thus we have

$$\prod_{i=1}^{L} \left(1 - \frac{w_i k_i}{B'} \right) \le \left(1 - \frac{1}{L} \right)^L \le \frac{1}{e}.$$
(2)

Combining this fact and Lemma A.3 completes the proof.

We now move to proving that the greedy procedure returns a (1-1/e)-approximate solution for some b_0 in the enumeration step. If the optimal solution b^* satisfies $|\operatorname{supp}^+(b^*)| \leq 3$, it can be found in the enumeration step. Therefore, we assume that all the optimal solutions have more than three positive components. Let s_1^*, s_2^*, s_3^* be elements in S satisfying:

$$s_{i}^{*} \in \operatorname*{argmax}_{s \in S \setminus \{s_{1}^{*}, \dots, s_{i-1}^{*}\}} \Delta \left(\vee_{j=1}^{i-1} b^{*}(s_{j}^{*}) \chi_{s_{j}^{*}}, s, b^{*}(s) \right)$$

for i = 1, 2, 3. Since the size of the support of b^* is more than three, such s_1^*, s_2^* and s_3^* clearly exist.

Lemma A.5. For the feasible solution b_0 with the support $\{s_1^*, s_2^*, s_3^*\}$ satisfying $b_0(s_i^*) = b^*(s_i^*)$ for $1 \le i \le 3$, we have $\Delta_L \le f(b_0)/3$.

Proof. It follows that $\Delta_L = f(b_L + k_L \chi_{s_L}) - f(b_L) \leq f(b_L \vee b^*(s_L) \chi_{s_L}) - f(b_L)$ since $b_L(s_L) + k_L \leq b^*(s_L)$. By Lemma 2.2, Δ_L is at most $f(b^*(s_L) \chi_{s_L}) - f(0) = f(b^*(s_L) \chi_{s_L})$, and hence $\Delta_L \leq f(b^*(s_1^*) \chi_{s_1^*}) = \Delta(0, s_1^*, b^*(s_1^*))$ by the choice of s_1^* . Similarly, by the choices of s_2^* and s_3^* , we have $\Delta_L \leq \Delta(b^*(s_1^*) \chi_{s_1^*}, s_2^*, b^*(s_2^*))$ and $\Delta_L \leq \Delta(b^*(s_1^*) \chi_{s_1^*} \vee b^*(s_2^*) \chi_{s_2^*}, s_3^*, b^*(s_3^*))$. Adding these inequalities, we obtain $\Delta_L \leq f(b_0)/3$.

We are now ready to prove Theorem 2.1. Since $f(b) \ge f(b_0) + \sum_{i=1}^{L} \Delta_i - \Delta_L$, Lemmas A.4 and A.5 imply that

$$\begin{split} f(b) &\geq (1 - 1/3)f(b_0) + (1 - 1/e)(f(b^*) - f(b_0)) \\ &\geq (1 - 1/e)f(b^*) \end{split}$$

for the initial solution b_0 described in Lemma A.5. This completes the proof of Theorem 2.1.

B Proof of Lemmas

B.1 Proof of Lemma 2.2

Proof. If $k \le x(s)$ then both sides are 0. If $x(s) < k \le y(s)$ then the inequality (3) is equivalent to $f(x \lor k\chi_s) - f(x) \ge 0$, which is valid by monotonicity. Lastly, if k > y(s) then we have $f(x \lor k\chi_s) + f(y) \ge f(y \lor k\chi_s) + f(x)$ by submodularity, which directly implies (3).

B.2 Proof of Lemma 2.3

Proof. We prove this lemma by induction on the size of $\operatorname{supp}^+(y-x)$. If $|\operatorname{supp}^+(y-x)| = 0$, that is, $x \vee y = x$, then (4) is trivial. Suppose that there is an index $s \in \operatorname{supp}^+(y-x)$. We define $y_1 = y - y(s)\chi_s$. Then $y = y_1 \vee y(s)\chi_s$ and $y_1 \wedge y(s)\chi_s = 0$ hold. By submodularity of $x \vee y_1$ and $x \vee y(s)\chi_s$, we have

$$f(x \lor y_1) + f(x \lor y(s)\chi_s) \ge f(x \lor y) + f((x \lor y_1) \land (x \lor y(s)\chi_s)).$$

Since it holds that

$$(x \lor y_1) \land (x \lor y(s)\chi_s) = x \lor (y_1 \land y(s)\chi_s) = x \lor 0 = x,$$

the above inequality implies that

$$f(x \lor y_1) + f(x \lor y(s)\chi_s) - f(x) \ge f(x \lor y).$$

Therefore, applying the induction hypothesis to x and y_1 , we obtain (4). Thus the statement holds.

B.3 Proof of Lemma 4.1

Proof. By simple algebra, we can easily check that

$$f(b + \chi_s) - f(b) = p_s^{(b(s)+1)} \sum_{t \in \Gamma(s)} \prod_{v \in \Gamma(t)} \prod_{i=1}^{b(v)} (1 - p_v^{(i)}),$$
(3)

$$f(b+2\chi_s) - f(b+\chi_s) = (1 - p_s^{(b(s)+1)}) p_s^{(b(s)+2)} \sum_{t \in \Gamma(s)} \prod_{v \in \Gamma(t)} \prod_{i=1}^{b(v)} (1 - p_v^{(i)}).$$
(4)

Let $\alpha := \sum_{t \in \Gamma(s)} \prod_{v \in \Gamma(t)} \prod_{i=1}^{b(v)} (1 - p_v^{(i)})$ for simplicity of notations. Then we have $f(b + \chi_s) - f(b) - (f(b + 2\chi_s) - f(b + \chi_s)) = p_s^{(b(s)+1)} \alpha - p_s^{(b(s)+2)} (1 - p_s^{(b(s)+1)}) \alpha \ge \alpha (p_s^{(b(s)+2)} - p_s^{(b(s)+2)} (1 - p_s^{(b(s)+2)})) = \alpha (p_s^{(b(s)+2)})^2 \ge 0.$

C Pseudocode of Algorithm

Algorithm 3 SIMPLEGREEDYPROCEDUREFORCOMPETITORMODEL
1: for each $t \in T$ do
2: Let $\lambda := 1$
3: for $k = 1$ to $1 + \max_{s \in \Gamma(t)} \tilde{b}(s)$ do
4: Let $\phi_k(t) := 1$ and $\lambda_{t,k} := \lambda \left(1 - \prod_{s \in \Gamma(t): \tilde{b}(s) \ge k} (1 - \tilde{p}_s^{(k)}) \right).$
5: Let $\lambda := \lambda \prod_{s \in \Gamma(t): \tilde{b}(s) > k} (1 - \tilde{p}_s^{(k)}).$
6: end for
7: end for
8: Let $b := 0$.
9: for $i = 1$ to B do
10: Choose s maximizing $\sum_{t \in \Gamma(s)} \sum_k \lambda_{t,k} r_{s,k}^{(b(s)+1)} \phi_k(t)$.
11: Let $b(s) := b(s) + 1$.
12: for $t \in \Gamma(s)$ do
13: for $k = 1$ to $1 + \max_{s \in \Gamma(t)} \tilde{b}(s)$ do
14: Let $\phi_k(t) := (1 - r_{s,k}^{(b(s))})\phi_k(t).$
15: end for
16: end for
17: end for
18: return b