
Supplementary Materials

A Proof of Theorem 2.1
Let b∗ be an optimal solution for a given instance of the problem. We first examine
properties of GREEDYPROCEDURE that hold for arbitrary b0. We then show that there
exists some b0 in the enumeration step such that GREEDYPROCEDURE returns b with
f(b) ≥ (1− 1/e)f(b∗), which proves Theorem 2.1.

Let us fix an initial solution b0, and analyze behavior of GREEDYPROCEDURE with
input b0. We denote by bi the tentative solution b at the beginning of the ith iteration
and denote by si and ki s and k chosen in the ith iteration, respectively. Assume
that GREEDYPROCEDURE first has not updated the tentative solution b in the Lth trial.
Equivalently, let L be the minimum number such that bL = bL+1 and bi < bi+1 for
i = 1, . . . , L − 1. Note that if such a situation never happens during the execution of
GREEDYPROCEDURE, define L to be the number of iterations.

Lemma A.1. Without loss of generality, we may assume that b(sL) + kL ≤ b∗(sL).

Proof. Suppose that b(sL)+kL > b∗(sL). Let us consider a modified instance in which
the capacity of sL is decreased to b(sL) + kL − 1. The optimal value is unchanged by
this modification because b∗ is still feasible and optimal. Furthermore, GREEDYPRO-
CEDURE returns the same solution (with respect to same b0). Thus it suffices to analyze
the algorithm in the modified instance. Repeating this argument completes the proof
of this lemma.

Consider the ith iteration of the algorithm. For simplicity, we denote ∆(bi, si, ki)

by ∆i, δ(bi, si, ki) by δi, and w(si) by wi. Note that f(bi) = f(b0) +
∑i−1

j=1 ∆i for
i = 1, . . . , L. Let B′ := B − w · b0.

Lemma A.2. For i = 1, . . . , L, we have ∆i ≥
wiki
B′

(f(b∗)− f(bi)) .

Proof. Let us denote bi ∨ b∗ = bi +
∑
αsχs, where the sum is taken over s in

supp+(b∗ − bi) and αs := b∗(s) − bi(s). Since bi ∨ b∗(s)χs = bi + αsχs for each
s ∈ supp+(b∗ − bi), (4) implies

f(bi ∨ b∗) ≤ f(bi) +
∑

s∈supp+(b∗−bi)

(f(bi + αsχs)− f(bi))

≤ f(bi) +
∑

s∈supp+(b∗−bi)

w(s)αsδi,

where the last inequality follows from the fact that (f(bi+kχs)−f(bi))/(w(s)k) ≤ δi
for all s ∈ S and k. Since

∑
w(s)αs is at most B′ and f(b∗) ≤ f(bi ∨ b∗) by

the monotonicity of f , it holds that f(b∗) ≤ f(bi) + δiB
′. Therefore, we obtain

δi ≥ (f(b∗)− f(bi))/B
′.

Applying Lemma A.2 repeatedly, we have the following lemmas.
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Lemma A.3. For i = 1, . . . , L, we have f(b∗)−f(bi) ≤ (f(b∗)−f(b0))·
∏i

j=1 (1− wjkj/B
′) .

Proof. We prove this lemma by induction on i. For i = 1, then the inequality holds
because ∆1 ≥ w1k1(f(b∗)− f(b0))/B′ by Lemma A.2. For i > 1, we have

f(b∗)− f(b0)−
i∑

j=1

∆j = f(b∗)− f(b0)−
i−1∑
j=1

∆j −∆i

≤ f(b∗)− f(b0)−
i−1∑
j=1

∆j −
wiki
B′

f(b∗)− f(b0)−
i−1∑
j=1

∆j

 (by Lemma A.2)

=

(
1− wiki

B′

)f(b∗)− f(b0)−
i−1∑
j=1

∆j


≤
(

1− wiki
B′

)
· (f(b∗)− f(b0)) ·

i−1∏
j=1

(
1− wjkj

B′

)
,

(by the induction hypothesis)

which completes the proof.

Lemma A.4. It holds that f(b∗)− f(bi) ≤ (f(b∗)− f(b0))/e.

Proof. Let ϕ(x) = ln(1− x). Note that ϕ is concave in [0, 1). By Jensen’s inequality,
we have

∑L
i=1 ϕ(xi)/L ≤ ϕ(

∑L
i=1 xi/L) for x1, . . . , xL ∈ [0, 1). Putting xi :=

wiki/B
′, we obtain

1

L

L∑
i=1

ln

(
1− wiki

B′

)
≤ ln

(
1− 1

L

L∑
i=1

wiki
B′

)
≤ ln

(
1− 1

L

)
, (1)

where the last inequality follows since
∑L

i=1 wiki ≥ B′ and ϕ is a monotonically
decreasing function. Thus we have

L∏
i=1

(
1− wiki

B′

)
≤
(

1− 1

L

)L

≤ 1

e
. (2)

Combining this fact and Lemma A.3 completes the proof.

We now move to proving that the greedy procedure returns a (1−1/e)-approximate
solution for some b0 in the enumeration step. If the optimal solution b∗ satisfies
|supp+(b∗)| ≤ 3, it can be found in the enumeration step. Therefore, we assume
that all the optimal solutions have more than three positive components. Let s∗1, s

∗
2, s
∗
3

be elements in S satisfying:

s∗i ∈ argmax
s∈S\{s∗1 ,...,s∗i−1}

∆
(
∨i−1
j=1b

∗(s∗j )χs∗j
, s, b∗(s)

)
for i = 1, 2, 3. Since the size of the support of b∗ is more than three, such s∗1, s

∗
2 and s∗3

clearly exist.
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Lemma A.5. For the feasible solution b0 with the support {s∗1, s∗2, s∗3} satisfying b0(s∗i ) =
b∗(s∗i ) for 1 ≤ i ≤ 3, we have ∆L ≤ f(b0)/3.

Proof. It follows that ∆L = f(bL + kLχsL)− f(bL) ≤ f(bL ∨ b∗(sL)χsL)− f(bL)
since bL(sL) + kL ≤ b∗(sL). By Lemma 2.2, ∆L is at most f(b∗(sL)χsL)− f(0) =
f(b∗(sL)χsL), and hence ∆L ≤ f(b∗(s∗1)χs∗1

) = ∆(0, s∗1, b
∗(s∗1)) by the choice of

s∗1. Similarly, by the choices of s∗2 and s∗3, we have ∆L ≤ ∆(b∗(s∗1)χs∗1
, s∗2, b

∗(s∗2))
and ∆L ≤ ∆(b∗(s∗1)χs∗1

∨b∗(s∗2)χs∗2
, s∗3, b

∗(s∗3)). Adding these inequalities, we obtain
∆L ≤ f(b0)/3.

We are now ready to prove Theorem 2.1. Since f(b) ≥ f(b0) +
∑L

i=1 ∆i −∆L,
Lemmas A.4 and A.5 imply that

f(b) ≥ (1− 1/3)f(b0) + (1− 1/e)(f(b∗)− f(b0))

≥ (1− 1/e)f(b∗)

for the initial solution b0 described in Lemma A.5. This completes the proof of Theo-
rem 2.1.

B Proof of Lemmas

B.1 Proof of Lemma 2.2
Proof. If k ≤ x(s) then both sides are 0. If x(s) < k ≤ y(s) then the inequality (3)
is equivalent to f(x ∨ kχs) − f(x) ≥ 0, which is valid by monotonicity. Lastly, if
k > y(s) then we have f(x ∨ kχs) + f(y) ≥ f(y ∨ kχs) + f(x) by submodularity,
which directly implies (3).

B.2 Proof of Lemma 2.3
Proof. We prove this lemma by induction on the size of supp+(y−x). If |supp+(y−
x)| = 0, that is, x ∨ y = x, then (4) is trivial. Suppose that there is an index s ∈
supp+(y−x). We define y1 = y−y(s)χs. Then y = y1∨y(s)χs and y1∧y(s)χs = 0
hold. By submodularity of x ∨ y1 and x ∨ y(s)χs, we have

f(x ∨ y1) + f(x ∨ y(s)χs) ≥ f(x ∨ y) + f((x ∨ y1) ∧ (x ∨ y(s)χs)).

Since it holds that

(x ∨ y1) ∧ (x ∨ y(s)χs) = x ∨ (y1 ∧ y(s)χs) = x ∨ 0 = x,

the above inequality implies that

f(x ∨ y1) + f(x ∨ y(s)χs)− f(x) ≥ f(x ∨ y).

Therefore, applying the induction hypothesis to x and y1, we obtain (4). Thus the
statement holds.
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B.3 Proof of Lemma 4.1
Proof. By simple algebra, we can easily check that

f(b+ χs)− f(b) = p(b(s)+1)
s

∑
t∈Γ(s)

∏
v∈Γ(t)

b(v)∏
i=1

(1− p(i)
v ), (3)

f(b+ 2χs)− f(b+ χs) = (1− p(b(s)+1)
s )p(b(s)+2)

s

∑
t∈Γ(s)

∏
v∈Γ(t)

b(v)∏
i=1

(1− p(i)
v ). (4)

Let α :=
∑

t∈Γ(s)

∏
v∈Γ(t)

∏b(v)
i=1 (1 − p(i)

v ) for simplicity of notations. Then we have

f(b+χs)−f(b)−(f(b+2χs)−f(b+χs)) = p
(b(s)+1)
s α−p(b(s)+2)

s (1−p(b(s)+1)
s )α ≥

α(p
(b(s)+2)
s − p(b(s)+2)

s (1− p(b(s)+2)
s )) = α(p

(b(s)+2)
s )2 ≥ 0.

C Pseudocode of Algorithm

Algorithm 3 SIMPLEGREEDYPROCEDUREFORCOMPETITORMODEL

1: for each t ∈ T do
2: Let λ := 1
3: for k = 1 to 1 + maxs∈Γ(t) b̃(s) do
4: Let φk(t) := 1 and λt,k := λ

(
1−

∏
s∈Γ(t):b̃(s)≥k(1− p̃(k)

s )
)

.

5: Let λ := λ
∏

s∈Γ(t):b̃(s)≥k(1− p̃(k)
s ).

6: end for
7: end for
8: Let b := 0.
9: for i = 1 to B do

10: Choose s maximizing
∑

t∈Γ(s)

∑
k λt,kr

(b(s)+1)
s,k φk(t).

11: Let b(s) := b(s) + 1.
12: for t ∈ Γ(s) do
13: for k = 1 to 1 + maxs∈Γ(t) b̃(s) do
14: Let φk(t) := (1− r(b(s))

s,k )φk(t).
15: end for
16: end for
17: end for
18: return b
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