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Abstract

Spectral methods have greatly advanced the es-
timation of latent variable models, generating a
sequence of novel and efficient algorithms with
strong theoretical guarantees. However, current
spectral algorithms are largely restricted to mix-
tures of discrete or Gaussian distributions. In
this paper, we propose a kernel method for learn-
ing multi-view latent variable models, allowing
each mixture component to be nonparametric and
learned from data in an unsupervised fashion.
The key idea of our method is to embed the joint
distribution of a multi-view latent variable model
into a reproducing kernel Hilbert space, and then
the latent parameters are recovered using a ro-
bust tensor power method. We establish that the
sample complexity for the proposed method is
quadratic in the number of latent components and
is a low order polynomial in the other relevant
parameters. Thus, our nonparametric tensor ap-
proach to learning latent variable models enjoys
good sample and computational efficiencies. As
a special case of our framework, we also obtain
a first unsupervised conditional density estima-
tor of the kind with provable guarantees. In both
synthetic and real world datasets, the nonpara-
metric tensor power method compares favorably
to EM algorithm and other spectral algorithms.

1. Introduction
Recently, there is a surge of interest in designing spec-
tral algorithms for estimating the parameters of latent vari-
able models (Hsu et al., 2009; Song et al., 2010; Parikh
et al., 2011; Song et al., 2011; Foster et al., 2012; Anand-
kumar et al., 2012a;b). Compared to the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) tra-
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ditionally used for this task, spectral algorithms are bet-
ter in terms of their computational efficiency and prov-
able guarantees. However, current spectral algorithms are
largely restricted to mixture of discrete or Gaussian distri-
butions, e.g. (Anandkumar et al., 2012a; Hsu & Kakade,
2013). When the mixture components are distributions
other than these standard distributions, the theoretical guar-
antees for these algorithms are no longer applicable, and
their empirical performance can be very poor.

We propose a kernel method for obtaining sufficient statis-
tics of a multi-view latent variable model (for ` � 3),

P
�{Xt}t2[`]

�
=

X
h2[k]

P(h) ·
Y

t2[`]
P(Xt|h), (1)

given samples only from the observed variables {Xt}t2[`],
but not the hidden variable H . These statistics allow us
to answer integral query,

R
X f(xt) dP(xt|h), for functions

f from a reproducing kernel Hilbert space (RKHS) with-
out the need to assume any parametric form for the in-
volved latent component P(Xt|h) (we call this setting “un-
supervised”). Note that this is a very challenging problem,
since we do not have samples to directly estimate P(Xt|h).
Hence traditional kernel density estimator does not apply.
Furthermore, the nonparametric form of P(Xt|h) renders
previous spectral methods inapplicable.

Our solution is to embed the distribution of the observed
variables in such a model into a reproducing kernel Hilbert
space, and exploit tensor decomposition of the embed-
ded distribution (or covariance operators) to recover the
unobserved embedding µXt|h =

R
X �(x) dP(x|h) of the

mixture components. The key computation of our algo-
rithm involves a kernel singular value decomposition of the
two-view covariance operator, followed by a robust ten-
sor power method on the three-view covariance operator.
These standard matrix operations makes the algorithm very
efficient and easy to deploy.

Although kernel methods have been previously applied to
learning latent variable models, none of them can provably
recover the exact latent component P(Xt|h) or its sufficient
statitiscs to support integral query on this distribution. For
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instance, Song et al. (2010; 2011); Song & Dai (2013) es-
timated an (unknown) invertible transformation of the suf-
ficient statistics of the latent component P(Xt|h), and only
supported integral query associated with the distribution of
the observed variables. Sgouritsa et al. (2013) used kernel
independence measure to cluster data points, and treated
each cluster as a latent component. Besides computational
issues, it is also difficult to provide theoretical guarantees to
such an approach since the clustering step only finds a local
minimum. Benaglia et al. (2009) designed an EM-like al-
gorithm for learning the conditional densities in latent vari-
able models. This algorithm alternates between the E-step,
proportional assignment of data points to components, and
the M-step, kernel density estimation based on weighted
data points. Similarly, theoretical analysis of such a local
search heurstic is difficult.

The kernel algorithm proposed in this paper is also signif-
icantly more general than the previous spectral algorithms
which work only for distributions with parametric assump-
tions (Anandkumar et al., 2012a; Hsu & Kakade, 2013). In
fact, when we use the delta kernel, our algorithm recov-
ers the previous algorithm of Anandkumar et al. (2012a)
for discrete mixture components as a special case. When
we use universal kernels, such as the Gaussian RBF kernel,
our algorithm can recover Gaussian mixture components
as well as mixture components with other distributions. In
this sense, our work also provides a unifying framework for
previous spectral algorithms. We prove sample complex-
ity bounds for the nonparametric tensor power method and
show that it is both computational and sample efficient. As
a special case of our framework, we also obtain a first un-
supervised conditional density estimator of the kind with
provable guarantees. Furthermore, our approach can also
be generalized to other latent variable learning tasks such as
independent component analysis and latent variable models
with Dirichlet priors.

Experimentally, we corroborate our theoretical results by
comparing our algorithm to the EM algorithm and previous
spectral algorithms. We show that when the model assump-
tions are correct for the EM algorithm and previous spectral
algorithms, our algorithm converges in terms of estimation
error to these competitors. In the opposite cases when the
model assumptions are incorrect, our algorithm is able to
adapt to the nonparametric mixture components and beat-
ing alternatives by a very large margin.

2. Notation
We denote by X a random variable with domain X , and
refer to instantiations of X by the lower case character, x.
We endow X with some �-algebra A and denote a distri-
butions (with respect to A ) on X by P(X). For the multi-
view model in equation (1), we also deal with multiple
random variables, X

1

, X
2

, . . . , X`, with joint distribution

P(X
1

, X
2

, . . . , X`). For simplicity of notation, we assume
that the domains of all Xt, t 2 [`] are the same, but the
methodology applies to the cases where they have different
domains. Furthermore, we denote by H a hidden variable
with domain H and distribution P(H).

A reproducing kernel Hilbert space (RKHS) F on X with
a kernel (x, x0

) is a Hilbert space of functions f(·) : X 7!
R with inner product h·, ·iF . Its element (x, ·) satisfies
the reproducing property: hf(·),(x, ·)iF = f(x), and
consequently, h(x, ·),(x0, ·)iF = (x, x0

), meaning that
we can view the evaluation of a function f at any point
x 2 X as an inner product. Alternatively, (x, ·) can be
viewed as an implicit feature map �(x) where (x, x0

) =

h�(x),�(x0
)iF . In this paper, we will focus on X = Rd,

and the normalized Gaussian RBF kernel

(x, x0
) = exp(�kx� x0k2 /(2s2))/(

p
2⇡sd). (2)

But kernel functions have also been defined on graphs, time
series, dynamical systems, images and other structured ob-
jects (Schölkopf et al., 2004). Thus the methodology pre-
sented below can be readily generalized to a diverse range
of data types as long as kernel functions are defined.

3. Kernel Embedding of Distributions
Kernel embeddings of distributions are implicit mappings
of distributions into potentially infinite dimensional RKHS.
The kernel embedding approach represents a distribution
by an element in the RKHS associated with a kernel func-
tion (Smola et al., 2007),

µX := EX [�(X)] =

Z

X
�(x) dP(x), (3)

where the distribution is mapped to its expected feature
map, i.e., to a point in a potentially infinite-dimensional
and implicit feature space. By the reproducing property of
an RKHS, the kernel embedding is a sufficient statistic for
integral query 8f 2 F , i.e.,

R
X f(x) dP(x) = hµX , fiF .

Kernel embedding of distributions has rich representational
power. The mapping is injective for characteristic ker-
nels (Sriperumbudur et al., 2008). That is, if two distri-
butions, P(X) and Q(X), are different, they are mapped
to two distinct points in the RKHS. For domain Rd, many
commonly used kernels are characteristic, such as the nor-
malized Gaussian RBF kernel.

Kernel embeddings can be readily generalized to joint dis-
tributions of two or more variables using tensor product
feature maps. We can embed the joint distribution of two
variables X

1

and X
2

into a tensor product feature space
F ⇥ F by CX1X2 :=

R
X⇥X �(x1

) ⌦ �(x
2

) dP(x
1

, x
2

),
where the reproducing kernel for the tensor product fea-
tures satisfies h�(x

1

)⌦ �(x
2

),�(x0
1

)⌦ �(x0
2

)iF⇥F =

(x
1

, x0
1

)(x
2

, x0
2

). By analogy, we can also define
CX1X2X3 := EX1X2X3 [�(X1

)⌦ �(X
2

)⌦ �(X
3

)].
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Given a sample DX =

�
x1, . . . , xm

 
of size m

drawn i.i.d. from P(X), the empirical kernel embedding
can be estimated simply as bµX =

1

m

Pm
i=1

�(xi
) with an

error kbµX � µXkF scaling as Op(m� 1
2
) (Smola et al.,

2007). Similarly, CX1X2 and CX1X2X3 can be estimated
as bCX1X2 =

1

m

Pm
i=1

�(xi
1

) ⌦ �(xi
2

), and bCX1:3 =

1

m

Pm
i=1

�(xi
1

)⌦�(xi
2

)⌦�(xi
3

) respectively. Note that we
never explicitly compute the feature maps �(x) for each
data point. Instead, most of the computation required for
subsequent statistical inference using kernel embeddings
can be reduced to the Gram matrix manipulation.

3.1. Kernel Embedding as Multi-Linear Operator
The joint embeddings can also be viewed as an uncen-
tered covariance operator CX1X2 : F 7! F by the stan-
dard equivalence between a tensor product feature and a
linear map. That is, given two functions f

1

, f
2

2 F , their
covariance can be computed by EX1X2 [f1(X1

)f
2

(X
2

)] =

hf
1

, CX1X2f2iF , or equivalently hf
1

⌦ f
2

, CX1X2iF⇥F ,
where in the former we view CXY as an operator while in
the latter we view it as an element in tensor product feature
space. By analogy, CX1X2X3 (with shorthand CX1:3 ) can be
regarded as a multi-linear operator from F ⇥ F ⇥ F to R.
It will be clear from the context whether we use CX1:3 as an
operator between two spaces or as an element from a tensor
product feature space. For generic introduction to tensors,
please see (Kolda & Bader, 2009).

In the multi-linear operator view, the application of CX1:3 to
a set of elements {f

1

, f
2

, f
3

2 F} can be defined using the
inner product from the tensor product feature space, i.e.,

CX1:3 ⇥1

f
1

⇥
2

f
2

⇥
3

f
3

:= hCX1:3 , f1 ⌦ f
2

⌦ f
3

iF3

which is further equal to EX1X2X3 [

Q
t2[3]

h�(Xt), ftiF ].
Furthermore, we can define the Hilbert-Schmidt norm k·k
as kCX1:3k2 =

P1
i1,i2,i3=1

(CX1:3 ⇥1

ui1 ⇥2

ui2 ⇥3

ui3)
2

using three collections of orthonormal bases {ui1}1i1=1

,
{ui2}1i2=1

, and {ui3}1i3=1

.

The joint embedding, CX1X2 , can be viewed as infinite di-
mensional matrices. For instance, we can perform singu-
lar value decomposition CX1X2 =

P1
i=1

�i · ui1 ⌦ ui2 ,
where �i 2 R are singular values ordered in nonincreasing
manner, and {ui1}1i1=1

⇢ F , {ui2}1i2=1

⇢ F are singular
vectors and orthonormal bases. The rank of CX1X2 is the
smallest k such that �i = 0 for i > k.

4. Multi-View Latent Variable Models
Multi-view latent variable models studied in this paper
are a special class of Bayesian networks in which (i) ob-
served variables X

1

, X
2

, . . . , X` are conditionally inde-
pendent given a discrete latent variable H , and (ii) the con-
ditional distributions, P(Xt|H), of the Xt, t 2 [`] given the
hidden variable H can be different. The conditional in-
dependent structure of a multi-view latent variable model

H

X
1

X
2

· · · X`

(a) Naı̈ve Bayes model

H
1

H
2

· · · H`

X
1

X
2

X`

(b) Hidden Markov model

Figure 1. Examples of multi-view latent variable models.

is illustrated in Figure 1(a), and many complicated graph-
ical models, such as the hidden Markov model in Fig-
ure 1(b), can be reduced to a multi-view latent variable
model. For simplicity of exposition, we will explain our
method using the model with symmetric view. That is
the conditional distribution are the same for each view, i.e.,
P(X|h) = P(X

1

|h) = P(X
2

|h) = P(X
3

|h). In Ap-
pendix 9, we will show that multi-view models with dif-
ferent views can be reduced to ones with symmetric view.

4.1. Conditional Embedding Operator
For simplicity of exposition, we focus on a simple model
with three observed variables (` = 3). Suppose H 2 [k],
then we can embed each conditional distribution P(X|h)
corresponding to a particular value of H = h as

µX|h =

Z

X
�(x) dP(x|h). (4)

If we vary the value of H , we obtain the kernel embed-
ding for different P(X|h). Conceptually, we can tile these
embeddings into a matrix (with infinite number of rows)

CX|H =

�
µX|h=1

, µX|h=2

, . . . , µX|h=k

�
, (5)

which is called the conditional embedding operator. If we
use the standard basis eh in Rk to represent each value of
h, we can retrieve each µX|h from CX|H by

µX|h = CX|Heh (6)

Once we have the conditional embedding µX|h, we can
compute the conditional expectation of a function f 2 F
as
R
X f(x) dP(x|h) = ⌦f, µX|h

↵
F .

Remarks. For data from Rd and the normalized Gaus-
sian RBF kernel in (2), the conditional density p(x|h)
exists, and it can be approximated by the embedding as
ep(x|h) :=

⌦
�(x), µX|h

↵
F = EX|h[(x,X)]. Essentially,

this is the convolution of the conditional density with the
kernel function. For continuous density p(x|h) with suit-
able smoothness conditions, the approximation error is of
the order (Wasserman, 2006)

|p(x|h)� ep(x|h)| = O(s2). (7)

4.2. Factorized Kernel Embedding
For multi-view latent variable models, P(X

1

, X
2

) and
P(X

1

, X
2

, X
3

), can be factorized respectively as

P(x
1

, x
2

) =

X
h2[k]

P(x
1

|h)P(x
2

|h)P(h), and

P(x
1

, x
2

, x
3

) =

X
h2[k]

P(x
1

|h)P(x
2

|h)P(x
3

|h)P(h).
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Since we assume the hidden variable H 2 [k] is discrete,
we let ⇡h := P(h). Furthermore, if we apply Kronecker
delta kernel �(h, h0

) with feature map eh, then the embed-
dings for P(H)

CHH = EH [eH ⌦ eH ] =

�
⇡h�(h, h0

)

�
h,h02[k]

, and

CHHH = EH [eH ⌦ eH ⌦ eH ]

=

�
⇡h �(h, h0

) �(h0, h00
)

�
h,h0,h002[k]

are diagonal tensors. Making use of CHH and CHHH ,
and the factorization of the distributions P(X

1

, X
2

) and
P(X

1

, X
2

, X
3

), we obtain the factorization of the embed-
ding of P(X

1

, X
2

) (second order embedding)

CX1X2 =

X
h2[k]

�
µX1|h ⌦ µX2|h

�
P(h)

=

X
h2[k]

�CX|Heh
�⌦ �CX|Heh

�
P(h)

= CX|H

✓X
h2[k]

eh ⌦ eh P(h)
◆

C>
X|H

= CX|H CHH C>
X|H , (8)

and that of P(X
1

, X
2

, X
3

) (third order embedding)

CX1X2X3 = CHHH ⇥1

CX|H ⇥2

CX|H ⇥3

CX|H . (9)

4.3. Identifiability of Parameters
We note that CX|H =

�
µX|h=1

, µX|h=2

, . . . , µX|h=k

�
,

and the kernel embeddings for CX1X2 and CX1X2X3 can be
alternatively written as

CX1X2 =

X
h2[k]

⇡h · µX|h ⌦ µX|h, (10)

CX1X2X3 =

X
h2[k]

⇡h · µX|h ⌦ µX|h ⌦ µX|h. (11)

Allman et al. (2009) showed that, under mild conditions,
a finite mixture of nonparametric product distributions is
identifiable. The multi-view latent variable model in (10)
and (11) has the same form as a finite mixture of nonpara-
metric product distribution, and therefore we can adapt All-
man’s results to the current setting.
Proposition 1 (Identifiability) Let P(X

1

, X
2

, X
3

) be a
multi-view latent variable model, such that the condi-
tional distributions {P(X|h)}h2[k] are linearly indepen-
dent. Then, the set of parameters

�
⇡h, µX|h

 
h2[k]

are
identifiable from CX1X2X3 , up to label swapping of the hid-
den variable H .
Example 1. The probability vector of a discrete variable
X 2 [n], and the joint probability table of two discrete
variables X

1

2 [n] and X
2

2 [n], are both kernel embed-
dings. To see this, let the kernel be the Kronecker delta
kernel (x, x0

) = �(x, x0
) whose feature map �(x) is the

standard basis of ex in Rn. The x-th dimension of ex is 1
and 0 otherwise. Then

µX =

�
P(x = 1) . . . P(x = n)

�>
,

CX1X2 =

�
P(x

1

= s, x
2

= t)
�
s,t2[n]

.

We require that the conditional probability table
{P (X|h)}h2[k] to have full column rank for identifi-
ability in this case.

Example 2. Suppose we have a k-component mixture
of one dimensional spherical Gaussian distributions. The
Gaussian components have identical covariance �2, but
their mean values are distinct. Note that this model is
not identifiable under the framework of Hsu & Kakade
(2013) since the mean values are just scalars and therefore,
rank deficient. However, if we embed the density func-
tions using universal kernels such as Gaussian RBF kernel,
it can be shown that the mixture model becomes identifi-
able. This is because we are working with the entire density
function which are linearly independent from each other in
this case. Thus, the non-parametric framework allows us to
incorporate a wider range of latent variable models.

Finally, we remark that the identifiability result in Propo-
sition 1 can be extended to cases where the conditional
distributions do not satisfy linear independence, i.e., they
are overcomplete, e.g. (Kruskal, 1977; De Lathauwer et al.,
2007; Anandkumar et al., 2013b). However, in general, it
is not tractable to learn such overcomplete models and we
do not consider them here.

5. Kernel Algorithm
We first design a kernel algorithm to recover the param-
eters,

�
⇡h, µX|h

 
h2[k]

, of the multi-view latent variable
model based on CX1X2 and CX1X2X3 . This can be eas-
ily extended to the sample versions and this is discussed
in Section 5.2. Again for simplicity of exposition, the al-
gorithm is explained for symmetric view case. The more
general version is presented in Appendix 9.

5.1. Population Case
We first derive the algorithm for the population case as if
we could access the true operator CX1X2 and CX1X2X3 . Its
finite sample counterpart will be presented in the next sec-
tion. The algorithm can be thought of as a kernel general-
ization of the algorithm in Anandkumar et al. (2013a) using
embedding representations.

Step 1. We perform eigen-decomposition of CX1X2 ,

CX1X2 =

X1

i=1

�i · ui ⌦ ui

where the eigen-values are ordered in non-decreasing man-
ner. According to the factorization in Eq. (8), CX1X2 has
rank k. Let the leading eigenvectors corresponding to the
largest k eigen-value be Uk := (u

1

, u
2

, . . . , uk), and the
eigen-value matrix be Sk := diag(�

1

,�
2

, . . . ,�k). We de-
fine the whitening operator W := UkS

�1/2
k which satisfies

W>CX1X2W = (W>CX|HC1/2
HH)(C1/2

HHC>
X|HW) = I,

and M := W>CX|HC1/2
HH is an orthogonal matrix.
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Step 2. We apply the whiten operator to the 3rd order ker-
nel embedding CX1X2X3

T := CX1X2X3 ⇥1

(W>
)⇥

2

(W>
)⇥

3

(W>
).

According to the factorization in Eq. (9), T = C�1/2
HHH ⇥1

M ⇥
2

M ⇥
3

M, which is a tensor with orthogonal factors.
Essentially, each column vi of M is an eigenvector of T .

Step 3. We use tensor power method to find the leading
k eigenvectors M for T (Anandkumar et al., 2012a). The
corresponding k eigenvalues � = (�

1

, . . . ,�k)> will then
be equal to (P(h = 1)

�1/2, . . . ,P(h = k)�1/2
). The ten-

sor power method is provided in the Appendix in Algo-
rithm 2 for completeness.

Step 4. We recover the conditional embedding operator by
undoing the whitening step

CX|H = (W>
)

†M diag(�).

5.2. Finite Sample Case
Given m observation DX1X2X3 = {(xi

1

, xi
2

, xi
3

)}i2[m]

drawn i.i.d. from a multi-view latent variable model
P(X

1

, X
2

, X
3

), we now design a kernel algorithm to esti-
mate the latent parameters from data. Although the empir-
ical kernel embeddings can be infinite dimensional, we can
carry out the decomposition using just the kernel matrices.
We denote the implicit feature matrix by

� := (�(x1

1

), . . . ,�(xm
1

),�(x1

2

), . . . ,�(xm
2

)),

 := (�(x1

2

), . . . ,�(xm
2

),�(x1

1

), . . . ,�(xm
1

)),

and the corresponding kernel matrix by K = �

>
� and

L =  

>
 respectively. And we denote K

:x := �

>�(x)
as a column vector containing the kernel between x and
data points in �. For three vectors ⇠

1

, ⇠
2

and ⇠
3

, denote the
symmetric tensor obtained from their outer product

⌦ [⇠
1

, ⇠
2

, ⇠
3

] := ⇠
1

⌦ ⇠
2

⌦ ⇠
3

+ ⇠
3

⌦ ⇠
1

⌦ ⇠
2

+ ⇠
2

⌦ ⇠
3

⌦ ⇠
1

.

Then the steps in the population case can be mapped one-
by-one into kernel operations.

Step 1. We perform a kernel eigenvalue decomposition of
the empirical 2nd order embedding

bCX1X2 :=

1

2m

Xm

i=1

�
�(xi

1

)⌦ �(xi
2

) + �(xi
2

)⌦ �(xi
1

)

�
,

which can be expressed succinctly as bCX1X2 =

1

2m� 
>.

Its leading k eigenvectors bUk = (bu
1

, . . . , buk) lie in the
span of the column of �, i.e., bUk = �(�

1

, . . . ,�k) with
� 2 R2m. Then we can transform the eigen-value de-
composition problem for an infinite dimensional matrix to
a problem involving finite dimensional kernel matrices,

bCX1X2
bC>
X1X2

u = b�2 u ) 1

4m2

� 

>
 �

>
�� = b�2

��

) 1

4m2

KLK� = b�2 K�.

Algorithm 1 Kernel Spectral Algorithm
In: Kernel matrices K and L, and desired rank k
Out: A vector b⇡ 2 Rk and a matrix A 2 R2m⇥k

1: Cholesky decomposition: K = R>R
2: Eigen-decomposition: 1

4m2RLR>e� = b�2 e�
3: Use k leading eigenvalues: bSk = diag(b�

1

, . . . , b�k)
4: Use k leading eigenvectors (

e�
1

, . . . , e�k) to compute:
(�

1

, . . . ,�k) = R†
(

e�
1

, . . . , e�k)
5: Form tensor: bT =

1

3m

Pm
i=1

⌦ ⇥⇠(xi
1

), ⇠(xi
2

), ⇠(xi
3

)

⇤

where ⇠(xi
1

) =

bS�1/2
k (�

1

, . . . ,�k)>K
:xi

1

6: Power method: eigenvectors cM := (bv
1

, . . . , bvk), and
the eigenvalues b� := (

b�
1

, . . . , b�k)> of bT
7: A = (�

1

, . . . ,�k)bS1/2
k
cM diag(

b�)
8: b⇡ = (

b��2

1

, . . . , b��2

k )

>

Let the Cholesky decomposition of K be R>R. Then by
redefining e� = R�, and solving an eigenvalue problem

1

4m2

RLR>e� = b�2 e�, and obtain � = R†e�. (12)

The resulting eigenvectors satisfy u>
i ui0 = �>

i �
>
��i0 =

�>
i K�i0 = e�>

i
e�i0 = �ii0 .

Step 2. We whiten the empirical 3rd order embedding

bCX1X2X3 :=

1

3m

Xm

i=1

⌦ ⇥�(xi
1

),�(xi
2

),�(xi
3

)

⇤

using cW :=

bUk
bS�1/2
k , and obtain

bT :=

1

3m

Xm

i=1

⌦ ⇥⇠(xi
1

), ⇠(xi
2

), ⇠(xi
3

)

⇤

where ⇠(xi
1

) :=

bS�1/2
k (�

1

, . . . ,�k)>K
:xi

1
2 Rk.

Step 3. We run tensor power method (Anandkumar et al.,
2012a) on the finite dimension tensor bT to obtain its lead-
ing k eigenvectors cM := (bv

1

, . . . , bvk) and the correspond-
ing eigenvalues b� := (

b�
1

, . . . , b�k)>.

Step 4. The estimates of the conditional embeddings are
bCX|H = �(�

1

, . . . ,�k)bS1/2
k
cM diag(

b�).
The overall kernel algorithm is summarized in Algorithm 1.

6. Sample Complexity
Let ⇢ := supx2X (x, x), k · k be the Hilbert-Schmidt
norm, ⇡

min

:= mini2[k] ⇡i and �k(CX1X2) be the k-th
largest singular value of CX1X2 . In the following, we pro-
vide sample complexity bounds for the estimated condi-
tional embedding µX|h and the corresponding prior distri-
bution ⇡ (the proof is in Appendix 11).

Theorem 2 Pick any � 2 (0, 1). When the number of sam-
ples m satisfies

m >
✓⇢2 log 2

�

�2

k(CX1X2)

, ✓ := max

 
C

3

k2⇢

�k(CX1X2)

,
C

4

k2/3

⇡1/3
min

!
,
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for some constants C
3

, C
4

> 0, and the number of itera-
tions N and the number of random initialization vectors L
(drawn uniformly on the sphere Sk�1) satisfy

N � C
2

·
✓
log(k) + log log

⇣
1p

⇡
min

✏T

⌘◆
,

for constant C
2

> 0 and L = poly(k) log(1/�), the robust
power method in (Anandkumar et al., 2012a) yields eigen-
pairs (

b�i, bvi) such that there exists a permutation ⌘, with
probability 1� 4�, we have

k⇡�1/2
j µX|h=j � (�

1

, . . . ,�k)bS1/2
k bv⌘(j)kF  8✏T · ⇡�1/2

j ,

|⇡�1/2
j � b�⌘(j)|  5✏T , 8j 2 [k],

and kT �Pk
j=1

ˆ�j ˆ�
⌦3

j k  55✏T where ✏T := kbT � T k
is the tensor perturbation bound

✏T 
8⇢1.5

q
log

2

�p
m�1.5

k (CX1X2)

+

512

p
2⇢3

�
log

2

�

�
1.5

m1.5 �3

k(CX1X2)
p
⇡
min

Proof Sketch: Our proof is different from those in Anand-
kumar et al. (2012a) which only analyze the perturbation
of the tensor decomposition. Our proof further takes into
account the error introduced by the approximate whitening
step, and its effects to the tensor decomposition.

Remark 1: We note that the sample complexity is
poly(k, ⇢, 1/⇡

min

, 1/�k(CX1X2)) of a low order, and in
particular, it is O(k2), when the other parameters are fixed.
For the special case of discrete measurements, where the
kernel (x, x0

) = �(x, x0
), we have ⇢ = 1. Note that the

sample complexity depends in this case only on the num-
ber of components k and not on the dimensionality of the
observed state space.

Remark 2: Theorem 2 also gives us an error bound for
estimating the integral of a function f 2 F with respect to
a mixture component in unsupervised fashion. Under the
conditions specified in the theorem, we have

����
Z

X
f(x) dP(x|h)� ⌦f, bµX|h

↵
F

����

kfkF
��µX|h � bµX|h

��
F = O

⇣
1p
m

⌘

assuming kfkF is bounded and ⇢/�k = O(1). We are not
aware of any other result of the similar type in this unsu-
pervised setting.

Remark 3: For x 2 Rd and the normalized Gaussian RBF
kernel in (2), the recovered conditional embedding bµX|h
can be used to estimate the conditional density, p(x|h) ⇡
bp(x|h) :=

⌦
�(x), bµX|h

↵
F . In this case, the error can be

decomposed into two terms

|p(x|h)� bp(x|h)|  |p(x|h)� ep(x|h)|| {z }
O(s2) bias as in (7)

+ |ep(x|h)� bp(x|h)|| {z }
estimation error

where s is kernel bandwidth and ep is the density convolved
with the kernel function. The estimation error is bounded
by |ep(x|h) � bp(x|h)|  k�(x)kFkµX|h � bµX|hkF =

O(⇢1/2 · m�1/2
) = O(s�d/2m�1/2

) assuming ⇢/�k =

O(1) and using ⇢ = O(s�d
). Under the conditions spec-

ified in Theorem 2, we combine the analysis for the two
sources of errors, and obtain the bound

|p(x|h)� bp(x|h)| = O(s2 + s�d/2m�1/2
)

Then we have |p(x|h) � bp(x|h)| = O(m�2/(4+d)
) if we

balance the two terms by setting s = O(m�1/(4+d)
). We

are not aware of any other result of the similar type in this
unsupervised setting.

7. Discussion
Our algorithm and theoretical results can also be gen-
eralized to the settings of latent variable models with
Dirichlet priors and nonparametric independent compo-
nent analysis (ICA) as in Anandkumar et al. (2012a). In
the first setting, a Dirichlet prior is placed on the mix-
ing weights ⇡ of the multi-view latent variables, P(⇡) =

�(✓0)Q
i2[k] �(✓i)

Q
i2[k] ⇡

✓i�1

i where ✓
0

=

P
i2[k] ✓i with ✓i >

0, and �(·) is the Gamma function. In this case, we only
need to modify the second and third order kernel embed-
ding CX1X2 and T respectively, and then Algorithm 1 ap-
plies. In the nonparametric ICA setting, the feature map
�(X) of an observed variable X is assumed to be generated
from a latent vector H 2 Rk with independent coordinates
via an operator A : Rk 7! F , �(X) := AH + Z, where
Z is a zero mean random vector independent of H . In this
case, we need to start with a modified 4-th order kernel
embedding, and then reduce to a multi-view problem and
estimate A via Algorithm 1.

8. Experiments
Methods. We compared our kernel spectral algorithm with
four alternatives

1. The EM algorithm for mixture of Gaussians. The EM
algorithm is not guaranteed to find the global solution
in each trial. Thus we randomly initialize it 10 times.

2. The EM-like algorithm for mixture of nonparametric
densities (Benaglia et al., 2009). We initialize the al-
gorithm with k-means as Benaglia et al. (2009).

3. The spectral algorithm for mixture of spherical Gaus-
sians (Hsu & Kakade, 2013). Their assumption is re-
strictive: the centers of the Gaussian need to span a k-
dimension subspace, thus it is not applicable for rank
deficiency case where k � l.

4. A discretization based spectral algorithm (Kasahara
& Shimotsu, 2010). This algorithm approximates the
joint distribution of the observed variables with his-
togram and then applies the spectral algorithm to re-
cover the discretized conditional density.
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Both our method and the (Benaglia et al., 2009) have a
hyper-parameter, kernel bandwidth, which we selected for
each view separately using cross-validation.

8.1. Synthetic Data
We generated three-dimensional synthetic data from vari-
ous mixture models. The variables corresponding to the
dimensions are independent given the latent component in-
dicator. More specifically, we explored two settings (1)
Gaussian conditional densities with different variances; (2)
Mixture of Gaussian and shifted Gamma conditional den-
sities. The shifted Gamma distribution has density

p(x|h) = (x� µ)(d�1)e�x/✓

✓d�(d)
, x � µ

where we chose the shape parameter d  1 such that den-
sity is very skewed. Furthermore, we chose the mean and
variance parameters of the Gaussian/Gamma density such
that component pair-wise overlap is relatively small ac-
cording to the Fisher ratio (µ1�µ2)

2

�2
1+�2

2
.

We also varied the number of samples m for the observed
variables X

1

, X
2

and X
3

from 50 to 10, 000, and exper-
imented with k = 2, 3, 4 or 8 mixture components. The
mixture proportion for the h-th component is set to be
⇡h =

2h
(k+1)

, 8h 2 [k] (unbalanced). It is worth noting
that as k becomes larger, it is more difficult to recover pa-
rameters. This is because only a small number of data will
be generated for the first several clusters. For every n, k
in each setting, we randomly generated 10 sets of samples
and reported the average results. We note that the values
for the latent variables are not given to the algorithms,
and hence this is an unsupervised setting to recover the
conditional density p(x|h) and the ratio p(h).

Error measure. We measured the performance of al-
gorithms by the following weighted `

2

norm difference
MSE :=

Pk
h=1

⇡h
qPm0

j=1

(p(xj |h)� bp(xj |h))2, where
{xj}j2[m]

is a set of uniformly-spaced test points.

Results. We first illustrated the actual recovered condi-
tional densities of our method and EM-GMM in Figure 2
as a concrete example. The kernel spectral algorithm re-
covers nicely both the Gaussian and Gamma components,
while the EM-GMM fails to fit the Gamma component.

More quantitative results are plotted in Figure 3. It is clear
that the kernel spectral method converges rapidly with the
data increment in all experiment settings. In the mixture of
Gaussians setting, the EM algorithm is best since the model
is correctly specified. The spectral algorithm for spherical
Gaussians does not perform well since the assumption of
the method is too restricted. The performance of our ker-
nel method converges to that of the EM algorithm. In the
mixture of Gaussian and Gamma setting, our kernel spec-
tral algorithm achieves superior results compared to other
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(a) EM Gaussians Mixture
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(b) Kernel Spectral
Figure 2. Kernel spectral algorithm is able to adapt to the shape
of the mixture components, while EM algorithm for mixture of
Gaussians misfits the Gamma distribution.

algorithms. These results demonstrate that our algorithm is
able to automatically adapt to the shape of the density.

It is worth noting that both the discretized spectral algo-
rithm and nonparametric EM-like algorithm did not per-
form as well. In the discretized spectral method, the joint
distribution is estimated by histogram. It is well-known
that the histogram estimation suffers from poor perfor-
mance even for 3 dimensional data. In the nonparametric
EM-like algorithm, besides the issue of local minima, its
performance also highly depends on the initialization. And
the flexibility of nonparametric densities without regular-
ization makes the issue of overfitting quite severe, often
leading to a single component in the algorithm.

We also note that the our method outperforms the EM-
GMM more as the number of components increases. This
is the key advantage of our method in that it has favorable
performance in higher dimensions, which agrees with the
theoretical result in Theorem 2 that the sample complexity
depends only quadratically in the number of components,
when other parameters are held fixed.

8.2. Flow Cytometry Data
Flow cytometry (FCM) data are multivariate measurements
from flow cytometers that record light scatter and fluores-
cence emission properties of hundreds of thousands of indi-
vidual cells. They are important to the studying of the cell
structures of normal and abnormal cells and the diagnosis
of human diseases. Aghaeepour et al. (2013) introduced the
FlowCAP-challenge whose main task is grouping the flow
cytometry data automatically. Clustering on the FCM data
is a difficult task because the distribution of the data is non-
Gaussian and heavily skewed. We use the DLBCL Lym-
phoma dataset collection from (Aghaeepour et al., 2013)
to compare our kernel algorithm with the four alternatives.
This collection contains 24 datasets with two or three clus-
ters, and each dataset consists of tens of thousands of cell
measurements in 5 dimensions. Each dataset is a separate
clustering task, so we fit a multi-view model to each dataset
separately and use the maximum-a-posteriori assignment
to obtain the cluster labels. All the cell measurements have
been manually labeled, therefore we can evaluate the clus-
tering performance using f-score (Aghaeepour et al., 2013).
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Figure 3. (a)-(d) Mixture of Gaussian distributions with k = 2, 3, 4, 8 components. (e)-(h) Mixture of Gaussian/Gamma distribution
with k = 2, 3, 4, 8. For the former case, the performances of kernel spectral algorithm converge to those of EM algorithm for mixture of
Gaussian model. For the latter case, the performances of kernel spectral algorithm are consistently much better than EM algorithm for
mixture of Gaussian model. Spherical Gaussian spectral algorithm does not work for k = 4, 8 since k > l(= 3) causes rank deficiency.
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Figure 4. Clustering results on the datasets from the DLBCL flow cytometry data. The results for spherical Gaussian spectral algorithm
(Hsu et al.) are not plotted for datasets on which it has rank deficiency problem. The datasets are ordered by increasing sample size.

We split the 5 dimensions into three views: dimension 1
and 2 as the first view, 3 and 4 the second, and 5 the third
view based on correlation between views, since we would
like the views to satisfy the conditional independence as-
sumptions to ensure good performance for the kernel spec-
tral method. For each dataset, we select the best kernel
bandwidth by 5-fold cross validation using log-likelihood.
Figure 4 presents the results sorted by the number of clus-
ters. Since the data are collapsed in most cases, the cen-
ters cannot span a subspace with enough rank. Thus, the
method in (Hsu & Kakade, 2013) is not applicable. How-
ever, our method (kernel spectral) outperforms EM-GMM
as well as the other algorithms in a majority of datasets.
There are also datasets where kernel spectral algorithm has
a large gap in performance compared to GMM. These are

the datasets where the multi-view assumptions are heavily
violated. For example, in some datasets, the correlation co-
efficient between dimensions 3 and 5 is as high as 0.927
given a particular cluster label, suggesting strong correla-
tion between the two views. Obtaining improved and ro-
bust performance in these datasets will be a subject of our
future study where we plan to develop even more robust
kernel spectral algorithms.
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