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Abstract
Rank breaking is a methodology introduced
by Azari Soufiani et al. (2013a) for applying
a Generalized Method of Moments (GMM) al-
gorithm to the estimation of parametric ranking
models. Breaking takes full rankings and breaks,
or splits them up, into counts for pairs of alter-
natives that occur in particular positions (e.g.,
first place and second place, second place and
third place). GMMs are of interest because they
can achieve significant speed-up relative to max-
imum likelihood approaches and comparable sta-
tistical efficiency. We characterize the breakings
for which the estimator is consistent for random
utility models (RUMs) including Plackett-Luce
and Normal-RUM, develop a general sufficient
condition for a full breaking to be the only con-
sistent breaking, and provide a trichotomy theo-
rem in regard to single-edge breakings. Exper-
imental results are presented to show the com-
putational efficiency along with statistical perfor-
mance of the proposed method.

1. Introduction
A standard approach to aggregation and inference with
rank order data is to adopt a parametric model and use
a maximum likelihood estimator (MLE) to fit model pa-
rameters. Based on these parameters we can then per-
form inference, for example, estimate the modal ranking.
This approach has been widely studied in recent years in
econometrics (Berry et al., 1995), computational social
choice (Conitzer & Sandholm, 2005), and in rank learning
settings (Liu, 2011).

However, for many parametric ranking models the MLE is
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hard to compute. For example, computing MLE for the
Mallows models is PNP

‖ -complete (Hemaspaandra et al.,
2005). Among the Random Utility Models (RUMs), only
the Plackett-Luce (PL) model (Plackett, 1975; Luce, 1959)
is known to have an analytical solution to the likelihood
function. Some previous work has focused on computing
specific parametric ranking models. For example, Hunter
(2004) propose an Minorize-Maximization (MM) algo-
rithm for MLE in the PL model. Others propose an Monte-
Carlo Expectation-Maximization (MC-EM) algorithm to
compute MLE for a general class of RUMs (Azari Soufiani
et al., 2012). While this extends the computational reach to
more expressive RUMs beyond PL, the running time may
still be too large for data sets of practical interest.

An alternative to MLE is to adopt a Generalized Method of
Moments (GMM) algorithm for estimation.1 Azari Soufi-
ani et al. (2013a) introduce the idea of rank-breaking as a
way to apply GMM to full ranking data. In rank-breaking,
each ranking in the data is decomposed into a subset of
pairwise comparisons, to which GMM is then applied; e.g.,
one breaking might take as the statistics used for GMM a
count of all pairs of alternatives that appear in first posi-
tion and second position, another full breaking considers
all possible pairs of positions.

Rank breaking is of interest because it can allow for
estimation methods that are considerably faster than
MLE. Azari Soufiani et al. (2013a) develop sufficient con-
ditions for the breaking to be consistent, such that the
GMM is consistent for PL. Consistency is a desired sta-
tistical property that says as the size of data generated ac-
cording to a model within the class assumed by the estima-
tor grows without bound, the output of the estimator con-
verges to the true parameters. In addition, they provide ex-
perimental results that demonstrate high computational and
statistical efficiency on both synthetic and real world data

1The method of Negahban et al. (2012) is in this spirt, propos-
ing a graph-based Markov chain algorithm that provides a consis-
tent estimator for pairwise-comparison data.
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sets.

But left open was how to extend rank-breaking to other
parametric ranking models beyond PL, and whether other
consistent breakings beyond a full breaking exist for PL.
Finding consistent, partial breakings is interesting because
computing the statistics that are used for GMM becomes
the bottleneck as the size of datasets grows. We address
these questions. For the first question we propose a GMM
algorithm (Algorithm 1) for any model in the location fam-
ily of RUMs, which includes PL (Azari Soufiani et al.,
2013a) and Normal-RUM and develop a general condition
for when the breaking will provide a consistent estimator.

Based on this, and focusing on the location family, we:

(1) Characterize consistent breakings for PL, RUMs with
a flipped Gumbel distribution, and RUMs with symmetric
utility distributions , providing a negative answer to the sec-
ond question of (Azari Soufiani et al., 2013a), and showing
that for Normal-RUM the full breaking is the only consis-
tent breaking.

(2) Provide a trichotomy theorem that characterizes what is
required for single-edge breakings, which are simple break-
ings with only a particular pair of rank positions, to be con-
sistent.

We conduct experimental studies to compare our algo-
rithm to the MC-EM algorithm for RUMs. We consider
RUMs with normal distributions and study running time
and Kendall correlation. Experimental results show that
our algorithm runs much faster than the MC-EM algorithm
while achieving comparable, and sometimes even better
Kendall correlation.

2. Preliminaries
Let A = {a1, . . . , am} denote the set of alternatives. Let
Dr = (d1, . . . , dn) denote the data, where each dj is a full
ranking overA. Let L(A) denote the set of all full rankings
(that is, all antisymmetry, transitive, and complete binary
relationships) over A. For any d ∈ L(A) and any pair of
alternatives a, a′, we a �d a′ if and only if a is preferred
to a′ in d, i.e., (a, a′) ∈ d. In a parametric ranking model
Mr, we let Ω ⊆ Rs denote the parameter space and for
any ~γ ∈ Ω, let PrMr

(·|~γ) denote a distribution over L(A).
Sometimes the subscript in PrMr

is omitted when it does
not cause confusion.

Random Utility Models (RUMs)

In a RUM, each alternative a is characterized by a utility
distribution µa, parameterized by a vector ~γa. Given any
ground truth ~γ = (~γ1, . . . , ~γm), an agent generates a full
ranking over A in the following way: she independently
samples a random utility Uj for each alternative aj with

conditional distribution Pra(·|~γa), then ranks the alterna-
tives according to their respective perceived utilities, such
that she prefers a to a′ if and only if Ua > Ua′ .2 The prob-
ability for a ranking d is the following, where d(j) is the
index of the alternative ranked in the jth position:

Pr(d|~γ) = Pr(Ud(1) > Ud(2) > . . . > Ud(m))

In this paper, the location family refers to the class of
RUMs where each distribution is only parameterized by its
mean. In other words, the shapes of utility distributions
are fixed, though they are not necessarily identical. A ho-
mogeneous location family is a location family where the
shapes of the distributions are identical.3 In this paper, we
will study homogeneous location families with the follow-
ing distributions:

• Gumbel distribution with λ = 1, whose PDF is PrG =
e−xe−e

−x

: the corresponding homogeneous location fam-
ily is PL.

• Flipped Gumbel distribution: the PDF is PrG(−x),
where PrG is the PDF of the Gumbel distribution with
λ = 1. Fliped Gu,mbel is not the same as the Gumbel
distribution. However it can be seen as a Gumbel distribu-
tion case where the smaller the x the better the alternative
in ranking (e.g. x can be the time each horse takes to finish
the race in a horse race competition).

•Normal distribution: no analytic solution to the likelihood
function is known.

Generalized Method-of-Moments

The Generalized Method-of-Moments (GMM)4 provides a
wide class of algorithms for parameter estimation. In
GMM, we are given a parametric model whose paramet-
ric space is Ω ⊆ Rs, an infinite series of q × q matrices
W = {Wn : n ≥ 1}, and a column-vector-valued func-
tion g(d,~γ) ∈ Rq . For any vector ~h ∈ Rq and any q × q
matrix W , we let ‖~h‖W = (~h)TW~h. For any data Dr, let
g(Dr, ~γ) = 1

n

∑
d∈Dr

g(d,~γ), and the GMM method com-
putes parameters ~γ′ ∈ Ω that minimize ‖g(Dr, ~γ

′)‖Wn ,
formally defined as follows:

GMMg(Dr,W) =

{~γ′ ∈ Ω : ‖g(Dr, ~γ
′)‖Wn

= inf
~γ∈Ω
‖g(Dr, ~γ)‖Wn

}
(1)

Since Ω may not be compact (as in PL), the set of param-
eters GMMg(Dr,W) can be empty. A GMM is consistent
if and only if for any ~γ∗ ∈ Ω, GMMg(Dr,W) converges
in probability to ~γ∗ as n → ∞ when the data is drawn

2We ignore the case of ties whereUa = Ua′ since this happens
with negligible probability for popular utility distributions.

3In this paper we will use Pr(d|~γ) and Pr(d) exchangeably.
4Also known as Z-estimators (Vaart, 1998).
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(a) Full breaking. (b) Position-2 breaking. (c) Position*-3 breaking.

Figure 1. Some breaking graphs for m = 6.

i.i.d. given ~γ∗.

In this paper, we let Wn = I for all n. Let ‖ · ‖2 denote the
L-2 norm. Equation (1) becomes

GMMg(Dr) = {~γ′ ∈ Ω : ‖g(Dr, ~γ
′)‖2 = inf

~γ∈Ω
‖g(Dr, ~γ)‖2}

(2)

3. Breakings
In this paper, a rank-breaking (breaking for short) BG is
defined as a function L(A) → 2{a�a

′:a,a′∈A} that is rep-
resented by an undirected breaking graph G, whose ver-
tices are {1, . . . ,m} that represents the m positions in a
full ranking (rather than the subscripts of the m alterna-
tives). For any full ranking d = [ai1 � ai2 � · · · � aim ],
BG(d) = {aij � ail : aij �d ail and {j, l} ∈ G}. That
is, BG breaks d into pairwise comparisons for all pairs of
alternatives at position j and l such that {j, l} is an edge in
G. If G only contains a single edge, then BG is called a
single-edge breaking.5

We extend BG definition to apply to data D, so for any
data Dr composed of full rankings, we let BG(Dr) =⋃
d∈Dr

BG(d) where the union is in multiset sense.

We are interested in the following breakings, illustrated in
Figure 1:

• Full breaking: GF is the complete graph.

• Position-k breaking: for any k ≤ m − 1, GkP =
{{k, i} : i > k}.

• Position*-k breaking: for any k ≥ 2, GkP∗{{k, i} :
i < k}.

These breakings are of interest because they are easy to be

5The direction is implicit in graph G; e.g., edge 2-4 will only
ever generate a count for the alternative in position 2 being ahead
of that in position 4. It doesn’t also include a count for the one in
position 4 being behind the one in position 2.

characterized analytically and we can generate other break-
ings using unions of them. We emphasize again that in
a breaking BG, the edges (j, l) in G represents the pair-
wise comparisons between the alternative ranked in posi-
tions j and position l of the input ranking, rather than aj
and al. Therefore, even though some edges are missing in
G, it does not mean that some pairs of alternatives are never
compared, since they can be compared in another ranking
in the data where there is an edge in G between their corre-
sponding positions.

Example 1. Let Dr = {[a1 � a2 � a3], [a2 � a1 � a3]}.
We have:

BGF
(Dr) = {a1 � a2, a1 � a3, a2 � a3, a2 � a1, a2 �

a3, a1 � a3}.

BG1
P

(Dr) = {a1 � a2, a1 � a3, a2 � a1, a2 � a3}.

BG3
P∗

(Dr) = {a1 � a3, a2 � a3, a2 � a3, a1 � a3}.

4. A GMM Algorithm for the Location
Family of RUM

We recall that in the location family, each utility distribu-
tion has only one parameter (its mean). Therefore, we can
write ~γ = (γ1, . . . , γm), where for any i ≤ m, γi is the
mean parameter of the utility distribution for ai. W.l.o.g. let
γm = 0.

To specify the GMM, it suffices to specify the moment con-
ditions. Given a parametric ranking modelMr in the loca-
tion family, for any two alternatives a 6= a′, any ~γ ∈ Ω, and
any breakingBG, we let faa

′

G (~γ) denote the probability that
given ~γ, a � a′ in BG(d). That is, faa

′

G (~γ) = PrMr (a �
a′ ∈ BG(d)|~γ). When G = GF , that is, G is the com-
plete graph, we use shorthand notation faa

′
= faa

′

G . Since
the perceived utilities are generated independently, faa

′
is

a function of γa − γa′ . Therefore, we sometimes write
faa

′
(γa − γa′). We note that in general faa

′

G may depend
on other components of ~γ.

Definition 1. Given any breaking BG, any d ∈ L(A), and
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any a, a′ ∈ A, we let:

• Xa�a′
G (d) =

{
1 a � a′ ∈ BG(d)
0 otherwise ,

• Xa�a′
G (Dr) = 1

n

∑
d∈Dr

Xa�a′
G (d), and

In words, Xa�a′
G (Dr) is the normalized frequency of times

that alternative a is preferred to alternative a′ (i.e., a � a′).
By definition, E[Xa�a′

G (d)] = faa
′

G . We now present the
moment conditions used in our algorithm, and then com-
ment on why we do not use other seemingly more natural
ones. Our moment conditions are: for a 6= a′,

gaa
′

G (d,~γ) = Xa�a′
G (d)× fa

′a(~γ)−Xa′�a
G (d)× faa

′
(~γ)

(3)

We are now ready to present our algorithm as Algorithm 1.

Algorithm 1 GMMG(Dr)

For all a, a′, compute Xa�a′
G (Dr).

Compute GMMG(Dr) according to (2) using the mo-
ment conditions in (3) (e.g. using gradient descent).
return GMMG(Dr).

We note that in (3) we use faa
′

and fa
′a instead of faa

′

G

and fa
′a

G . Therefore it is not immediately clear whether the
moment conditions equal to 0 in expectation for a graph G
that is not the complete graph. The next definition provides
a condition used to guarantee that when a consistent break-
ing G is used in Algorithm 1, the moment conditions (3)
equal to 0 in expectation.

Definition 2. A breaking BG is consistent for a location
family RUM, if G has at least one edge and for any ~γ and
any a 6= a′,6

faa
′

G (~γ)

fa
′a

G (~γ)
=
faa

′
(~γ)

fa′a(~γ)

Where,
faa

′
(~γ)

fa′a(~γ)
=

PrMr
(a � a′|~γ)

PrMr (a′ � a|~γ)

We will be interested in understanding when breakings are
consistent. By definition, the full breaking is consistent.
Let CDFa denote the CDF of Pra(·|0). For the location
family we have:

6The definition of consistent breakings is more general than
the definition in (Azari Soufiani et al., 2013a), which was defined
only for PL.

faa
′
(~γ) =faa

′
(γa − γa′) =∫ ∞

−∞
Pra′(y)(1− CDFa(y − γa + γa′))dy

(4)

We have the following proposition for faa
′
(γa − γa′). All

omitted proofs can be found in Appendix A in the supple-
ment material.

Proposition 1. For any model in the location family
where each utility distribution has support (−∞,∞),
faa

′
is monotonic increasing (as a function of γa −

γa′ ) on (−∞,∞) with limx→−∞ faa
′
(x) = 0 and

limx→∞ faa
′
(x) = 1. Moreover, if Pra and Pra′ are

continuous then faa
′

is continuously differentiable with
faa

′
(x)′ =

∫∞
−∞ Pra′(y) Pra(y − x)dy.

Theorem 1. For any model in the location family with
(possibly) inhomogeneous distributions and any consistent
breakingBG, if the PDF of every utility distribution is con-
tinuous, then Algorithm 1 is consistent.

Proof. We prove the theorem by verifying the conditions
in Theorem 2.1 in (Hansen, 1982).

Assumption 2.1: The distribution on D is stationary and
ergodic. This holds because in any RUM, data in D are
generated i.i.d.

Assumption 2.2: Ω is a separable metric space. Since Rm
is a metric separable space and Ω is an subset of Rm, Ω is
also separable.

Assumption 2.3: gaa
′

G (·, ~γ) is Borel measurable for any
a 6= a′ and each ~γ ∈ Ω and gaa

′

G (d, ·) is continuous on
Ω for each d. Since the domain of gaa

′

G (·, ~γ) is discrete,
gaa

′

G (·, ~γ) is continues, which means that gaa
′

G (·, ~γ) is Borel
measurable. We note that gaa

′

G (d, ·) is linear in faa
′
(~γ) and

by Proposition 1, faa
′

is continuous in ~γ.

Assumption 2.4: Ed|~γ∗ [gaa
′

G (d,~γ)] exists and is finite for
all ~γ ∈ Ω, and Ed|~γ∗ [gaa

′

G (d,~γ∗)] = 0. The former is be-
cause Ed|~γ∗ [gaa

′

G (d,~γ)] is linear in faa
′
(~γ) and by Propo-

sition 1, faa
′
(Ω) is bounded above by 1. The second

part holds because Ed|~γ∗ [Xa�a′
G (d)] = faa

′

G (~γ∗), which
means that Ed|~γ∗ [gaa

′

G (d,~γ∗)] = faa
′

G (~γ∗)fa
′a(~γ∗) −

fa
′a

G (~γ∗)faa
′
(~γ∗) = 0.

Assumption 2.5: The sequenceW converges almost surely
to a positive semi-definite matrix. This holds sinceWn = I
for all t.

Premise (1): gaa
′

G (d,~γ) is first moment continuous. Since
|gaa′G (d,~γ)| ≤ 2, by Lemma 2.1 of (Hansen, 1982), we
have that gaa

′

G (d,~γ) is first moment continuous.
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Premise (2): Ω is compact, which is the assumption of our
theorem.

Premise (3): Ed|~γ∗ [gaa
′

G (d,~γ)] has a unique zero at ~γ∗. By
Proposition 1 we have that faa

′
(γa − γa′) is monotonic

increasing in γa − γa′ and fa
′a(γa′ − γa) is monotonic in-

creasing in γa′ − γa. Therefore,
faa

′
(γa − γa′)

fa′a(γa − γa′)
is mono-

tonic increasing in γa − γa′ . Hence if ~γ′ is another zero
point for Ed|~γ∗ [gaa

′

G (d,~γ)] with γ′m = 0, then we must
have that for all pairs (a, a′), γ′a − γ′a′ = γ∗a − γ∗a′ . Given
that γ′m = γ∗m = 0, this means that ~γ′ = ~γ∗, which is
a contradiction. Therefore, ~γ∗ is the only zero point of
Ed|~γ∗ [g

aa′

G (d,~γ)].

A direct result of the above theorem, for any consistent
breaking BG for PL, RUM with flipped Gumbel distri-
butions, and RUM with normal distributions (e.g. the full
breaking), Algorithm 1 is consistent for PL, RUM with
flipped Gumbel distributions, and RUM with normal dis-
tributions respectively.

Compared to the MC-EM algorithm (Azari Soufiani et al.,
2012), Algorithm 1 runs faster since optimizing Equa-
tion (2) is much easier through e.g., gradient descent or
Newton-Raphson. This is because faa

′
(x)′ is usually easy

to compute, and sometimes has a concise analytic solution,
as shown in the following example. Breaking is particu-
larly helpful here since it enables analytic expression for
gradient.

Example 2. Consider RUM with normal distributions
whose variances are 1. For any a 6= a′ we have:

faa
′
(x)′ =

1

2π

∫ ∞
−∞

e−
y2

2 e−
(y−x)2

2 dy =
1

2
√
π
e−

x2

4

A similar formula exists for location families with normal
distributions whose variances are not identical.

Why do we use the moment conditions in (3)? The fol-
lowing moment conditions seem to be more natural.

gaa
′

G (d,~γ) =

Xa�a′
G (d)× fa

′a
G (~γ)−Xa�a′

G (d)× faa
′

G (~γ)
(5)

The only difference between (5) and (3) is that the former
uses faa

′

G and fa
′a

G while the latter uses faa
′

and fa
′a.

However, for models in the location family, usually opti-
mizing (5) is hard due to the lack of analytical solutions to
faa

′

G or (faa
′

G )′. As shown in Example 2, (faa
′
)′ is easy to

compute. This is the main reason we choose (3) over (5).

Why are we interested in breakings beyond the
full breaking? The optimization problem (2) is

m−dimensional, but requires as input the counts in equa-
tion 3 to be computed for every ordered pair of alternatives.
Computing these counts scales a O(m2n) for full breaking
but as O(mn) for adjacent breaking or position-k break-
ing. For large n this can become the bottleneck with the
difference between O(m2n) and O(mn) making a mean-
ingful difference and starting to become the bottleneck in
computation Azari Soufiani et al. (2013a). In such cases
we may would prefer to use a partial breaking and explore
the tradeoff between computational efficiency and statisti-
cal efficiency. However, it is important to do this while
maintaining consistency of the estimator.

5. Which Breakings are Consistent?
This section provides theoretical results on the consistency
of partial breakings (breakings which take only part of
the available ranks) for the location family. We will first
present the theorems, then introduce four lemmas in Sec-
tion 5.1, and finally in Section 5.2 use them as building
blocks to provide proofs for the theorems. We start with
the following positive results.

Theorem 2. For PL, a breaking BG is consistent if and
only if G is the union of position-k breakings.

In a similar way the following Theorem holds if we change
PL to PL∗.

Theorem 3. For the RUM with flipped Gumbel distribu-
tions (PL∗), BG is consistent if and only if G is the union
of position*-k breakings.

Therorem 2 gives a complete characterization of consis-
tent breakings for PL (thus answering an open question
in (Azari Soufiani et al., 2013a)) and Theorem 3 gives a
complete characterization of consistent breakings for the
RUM with flipped Gumbel distributions.

Theorem 4. LetMr be a model in the (possibly) inhomo-
geneous location family where each utility distribution has
support (−∞,∞). If the PDF of each utility distribution in
Mr is symmetric around its mean, then the only consistent
breaking is the full breaking.

Since the normal distribution is symmetric, we immedi-
ately have the following corollary of Theorem 4.

Corollary 1. For the RUM with normal distributions (the
variances are not necessary identical), the only consistent
breaking is the full breaking.

Theorem 4 and Corollary 1 tell us that for certain natural
models in the location family, the only consistent breaking
is the full breaking. This will also be demonstrated by ex-
perimental results in the next section. The next theorem
provides a quick check to see if the full-break is the only
consistent breaking by just checking the m = 3 case.
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Theorem 5. For any model in the homogeneous loca-
tion family where each utility distribution has support
(−∞,∞), if the full breaking is the only consistent break-
ing for m = 3, then the full breaking is the only consistent
breaking for any m.

The last result of this section is a trichotomy theorem for
single-edge breakings to be consistent for the homoge-
neous location family.

Theorem 6. For anym and any model in the homogeneous
location family (with support (−∞,∞)), one and exactly
one of the following holds.

1. No single-edge breaking is consistent.

2. Among all single-edge breakings, only {1, 2} is consis-
tent.

3. Among all single-edge breakings, only {m − 1,m} is
consistent.

This theorem corresponds to a symmetry notion in the spe-
cific location family. Using this theorem and Theorem 4
we know that case (1) corresponds to the symmetric loca-
tion families and we conjecture that the cases (2) and (3)
correspond to negative and positive skewness in the loca-
tion family distributions respectively.

The next example shows that each of the three cases in The-
orem 6 (but not any two of them) holds for some natural
location family.

Example 3. By Corollary 1, the location family with nor-
mal distributions belongs to Case 1 in Theorem 6; by The-
orem 2, PL belongs to Case 2 in Theorem 6; by Theorem 3,
PL∗ belongs to Case 3 in Theorem 6.

5.1. Four Core Lemmas

To prove the theorems we introduce some notation and four
core lemmas in this subsection. For any modelMr in the
location family, let M∗r denote the model in the location
family where the PDF of each distribution (conditioned
on the mean parameter being 0) is flipped around the y-
axis. That is, for any i ≤ m and any x, PrMr,i(x|0) =
PrM∗r ,i(−x|0). For any breaking BG, we let BG∗ de-
note the breaking such that (i, j) ∈ G∗ if and only if
(m+ 1− i,m+ 1− j) ∈ G.

Example 4. PL∗ is the RUM with flipped Gumbel distri-
bution. Let MN denote the RUM with normal distribu-
tions. We have MN = M∗N . For any k ≥ 2, we have
(GkP )∗ = Gm−kP∗ .

Lemma 1. For any Mr in the location family, if BG is
consistent forMr, then BG∗ is consistent forM∗r .

For any graphG and any 1 ≤ k1 < k2 ≤ m, we letG[k1,k2]

denote the subgraph of G where the vertices 1, . . . , k1 − 1

and k2+1, . . . ,m are removed,and the vertices are renamed
to 1, . . . , k2 +1−k1 by subtracting k1−1 from all vertices.

Example 5. For m = 6, a breaking BG and its restriction
to [2, 4] are shown in Figure 2.
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Figure 2. A breaking graph G and G[2,4] for m = 6.

Lemma 2. For any model Mr in the location family, if
BG is consistent then for any 1 ≤ k1 < k2 ≤ m, either
G[k1,k2] = ∅, or BG[k1,k2]

is consistent for any location
family for k2 − k1 + 1 alternatives where the utility dis-
tributions can be any combination of k2 − k1 + 1 utility
distributions inMr.

Lemma 3. For any location family where each utility dis-
tribution has support (−∞,∞), the single-edge breaking
B{{1,m}} is not consistent.

The last lemma (specifically, part (3), (4), (5)) is a natural
extension of Theorem 4 in (Azari Soufiani et al., 2013a).

Lemma 4. Let BG1
, BG2

be a pair of breakings.

• Suppose both BG1
and BG2

are consistent,

(1) if G1 ∩G2 = ∅, then BG1∪G2
is also consistent;

(2) if G1 ( G2, then BG2\G1
is also consistent.

• Suppose BG1 is consistent but BG2 is not consistent,

(3) if G1 ∩G2 = ∅, then BG1∪G2
is not consistent;

(4) if G1 ( G2, then BG2\G1
is not consistent.

(5) if G2 ( G1, then BG1\G2
is not consistent.

Proof. The proof is based on the following two observa-
tions. 1) If G1 ∩ G2 = ∅, then faa

′

G1∪G2
(d) = faa

′

G1
(d) +

faa
′

G2
(d) and Xa�a′

G1∪G2
(d) = Xa�a′

G1
(d) + Xa�a′

G2
(d). 2)

If G1 ( G2, then faa
′

G1\G2
(d) = faa

′

G1
(d) − faa

′

G2
(d) and

Xa�a′
G1\G2

(d) = Xa�a′
G1

(d)−Xa�a′
G2

(d).

5.2. Proofs of the Theorems

We are now ready to prove the theorems in this section.
Proof of Theorem 2. The “if” direction was proved
in (Azari Soufiani et al., 2013a). We now prove the “only
if” part by induction on m. When m = 3, the theorem
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obviously holds. Suppose the theorem holds for l. When
m = l + 1, we first apply Lemma 2 to G[2,m]. By the
induction hypothesis, G[2,m] must be the union of position-
k breakings for some k ≥ 2. Now apply Lemma 2 to
G[1,m−1]. There are two cases.

Case 1: for all i ≤ m − 1, {1, i} ∈ G. We claim that
{1,m} ∈ G. This is because B{1,m}∪G is consistent, and
B{1,m} is not consistent due to Lemma 3. HenceBG\{1,m}
is not consistent.

Case 2: for all i ≤ m−1, {1, i} 6∈ G. In this case {1,m} 6∈
G following a similar argument as in Case 1.

This means that the theorem holds for m = l + 1, which
proves the theorem. 2

Proof of Theorem 3. The proof follows immediately after
Theorem 2 and Lemma 1. 2

Proof of Theorem 4. Let BG denote a consistent breaking.
We prove the theorem by induction on m. When m = 3,
the full breaking is consistent and by Lemma 3, the single
edge-breaking B{(1,3)} is not consistent. By Lemma 4 part
(5), B{(1,2),(2,3)} is not consistent.

We now prove that the single-edge breaking B{(1,2)} is
not consistent. For the sake of contradiction suppose it
is. By Lemma 1, B{(1,2)}∗ = B{(2,3)} is consistent for
M∗r . Since all utility distributions in Mr are symmetric,
M∗r = Mr. Therefore, B{(2,3)} is consistent forMr. By
Lemma 4 part (1), B{(1,2),(1,3)} is consistent, which is a
contradiction.

Similarly the single-edge breaking B{(2,3)} is not consis-
tent. It follows from Lemma 4 part (5) that B{(1,2),(1,3)}
and B{(1,3),(2,3)} are not consistent. Therefore, the only
consistent breaking for m = 3 is the full breaking.

Suppose the theorem holds for m = l. When m = l + 1,
we first apply Lemma 2 to G[2,m] and G[1,m−1]. By the
induction hypothesis, G[2,m] (G[1,m−1]) is either empty or
the full graph. We have the following two cases.

Since m > 3, if G[2,m] is empty, then G[1,m−1] is empty as
well. Since G is non-empty, G = {(1,m)}, which contra-
dicts Lemma 3.

If G[2,m] is full, then G[1,m−1] is full as well. Hence G can
be either the full graphGF , orGF \{(1,m)}. By Lemma 3,
B{(1,m)} is inconsistent, which means that BGF \{(1,m)} is
not consistent (Lemma 4 part (5)).

Therefore, the only remaining case is that G is the
full breaking, which means that the theorem holds for
m = l + 1, which proves the theorem. 2

Proof of Theorem 5. The proof is similar to the proof of

Theorem 4. We prove the theorem by induction onm. m =
3 is the assumption. Suppose the theorem holds for l. When
m = l + 1, we first apply Lemma 2 to G[2,m]. By the
induction hypothesis, G[2,m] is either empty or full.

If G[2,m] is empty, then G[1,m−1] is empty as well. Hence
if G is non-empty, then G = {(1,m)}, which contradicts
Lemma 3.

If G[2,m] is full, then G[1,m−1] is full as well. Hence G can
be either the full graphGF , orGF \{(1,m)}. By Lemma 3,
B{(1,m)} is inconsistent, which means that BGF \{(1,m)} is
inconsistent (since GF is always consistent by definition).

Therefore, the theorem holds for m = l + 1, which com-
pletes the proof. 2

Proof of Theorem 6. For any k2 > k1 + 1, let us first con-
sider G[k1,k2]. By Lemma 3, B{(1,k2−k1+1)} is not consis-
tent. Therefore by Lemma 2, any non-adjacent single-edge
breaking is not consistent.

Now for an adjacent single-edge graph {(k1, k1 + 1)} that
is different from {(1, 2)} and {(m − 1,m)}, by applying
Lemma 2 on G[k1−1,k1+1] and G[k1,k1+2], we have that
both B{{1,2}} and B{(2,3)} are consistent for the model
in the location family with m = 3 and any combination
of 3 utility distributions in Mr. By Lemma 4 part (1),
{(1, 2), (2, 3)} is consistent, which contradicts Lemma 4
part (5) applied to Lemma 3.

Now, we only need to prove that it is impossible for both
B{(1,2)} and B{(m−1,m)} to be consistent. If on the con-
trary both are consistent, then we apply Lemma 2 on G[1,3]

and G[m−2,m]. Following a similar argument as in the pre-
vious paragraph, we can show a contradiction. This proves
the theorem. 2

We conjecture that the converse of Theorem 1 holds for
natural models in the location family.

6. Experiments
We implemented the MC-EM algorithm (Azari Soufiani
et al., 2012), Algorithm 1 with the full breaking, and Al-
gorithm 1 with top-3 breaking for the normal with fixed
variance. We evaluate the three algorithms according to
run-time and the following two representative criteria. For
this, let ~γ∗ denote the ground truth parameters, and ~γ de-
note the output of the algorithm.

• Kendall Rank Correlation Coefficient: Let K(~γ,~γ∗)
denote the Kendall tau distance between the ranking over
components in ~γ and the ranking over components in ~γ∗.
The Kendall correlation is 1− 2 K(~γ,~γ∗)

m(m−1)/2 .

The synthetic datasets are generated as follows. Let m =
5. The ground truth ~γ∗ is generated from the Dirich-
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n F−T M−T M−F
5 −10−4 (10−3) 17 (.05) 17 (.05)

50 .004 (.005) 198 (1.3) 198 (1.3)
100 .008 (.0005) 359 (11) 359 (11)
150 .035 (.004) 970 (10) 970 (10)
200 .017 (.0015) 1021 (31) 1021 (31)

F−T M−T M−F
.09 (.55) .08 (.57) -.01 (.001)
.27 (.4) .26 (.37) -.01 (.001)

.08 (.08) .04 (.08) -.04 (.004)
.34 (.1) .33 (.11) -.01 (.001)

.29 (.027) .27 (.022) -.02 (.0057)
(a) Run time (seconds). (b) Kendall correlation.

Table 1. Paired t-tests for the three algorithms. F, T, M represents values for full breaking, top-3 breaking, and MC-EM, respectively.
Mean (std) are shown. Significance results with 95% confidence are in bold.

let distribution Dirichlet(~1) which is a distribution on an
m−dimensional unit simplex. Then, for any given ~γ∗ we
generate up to n = 200 full rankings from the location fam-
ily with normal distributions. All experiments are run on a
2.4 Ghz, Intel Core 2 duo 32 bit laptop.

Table 1 (a) shows the paired t-test on running time for the
three methods for n = 5, 50, 100, 150, 200, where F, T,
M represents values for full breaking, top-3 breaking, and
MC-EM, respectively. We clearly observe that the running
time of Algorithm 1 with full breaking and Algorithm 1
with top-3 breaking are significantly lower than the running
time of MC-EM.

Table 1 (b) show paired t-tests for the three methods, for
Kendall correlation. We note that a higher Kendall corre-
lation means that the estimation is more accurate. Surpris-
ingly, for Kendall correlation, Algorithm 1 with full break-
ing outperforms MC-EM with 95% confidence for almost
all n in our experiments despite that Algorithm 1 runs much
faster. Both algorithms are significantly better than Algo-
rithm 1 with top-3 breaking with 95% confidence when n
is not too small. The latter observation is because Algo-
rithm 1 with top-3 breaking is not consistent for the loca-
tion family with normal distributions.

7. Conclusions
This paper studies consistency of rank breaking for ran-
dom utility models and provides a fast algorithm to com-
pute parameters of a these models. The code is provided in
the R package “StatRank” (Chen & Azari Soufiani, 2013).
We plan to extend the algorithms and analysis to partial or-
ders, non-location families such as RUMs parameterized by
mean and variance, and to GRUMs (Azari Soufiani et al.,
2013c) and GRUMs with multiple types (Azari Soufiani
et al., 2013b). We also plan to study possible connections
between other rank aggregation methods e.g. (Ammar &
Shah, 2011) and GMMs and their extension.
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