A. Pruning a hierarchical decomposition

To provide further intuition for how our method behaves, we have included the hierarchical decomposition for one of the test examples from our experiments:

```
Input: ??? n?w?th???...
```

This is the hierarchical decomposition used to infer the missing characters for the phrase ...??n?w?th???.... The decomposition doesn’t waste resources representing the first 3 unknown characters, and maintains plausible hypotheses for the hidden characters such as ...with a..., ...now thee..., and ...now this.... Each blue decimal number indicates a region in the decomposition together with the local probability mass assigned to that region.

B. Pruning a hierarchical decomposition

In our inference algorithm for choosing a good hierarchical decomposition B, we had two major steps: refining the decomposition, and pruning it back down to a given size k. In this appendix, we will provide a dynamic programming algorithm for computing an optimal pruning B of A, assuming that $\text{Fit}(a, C_B(a))$ depends only on a. Let \hat{p}_{θ_A} be the approximating distribution corresponding to A, and \hat{p}_{θ_B} be the approximating distribution corresponding to B. Our goal is to minimize $\text{KL}(p^* \parallel \hat{p}_{\theta_B})$; we will make the assumption that A and θ_A are chosen well enough that \hat{p}_{θ_A} is already close to p^*, and thus that $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ is a good surrogate for $\text{KL}(p^* \parallel \hat{p}_{\theta_B})$. We will also ignore normalization constants and instead consider the divergence $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ between the unnormalized distributions \hat{f}_{θ_A} and \hat{f}_{θ_B}. Formally, we will solve the following problem:

Given a hierarchical decomposition A, and assuming that $\text{Fit}(a, C_B(a))$ depends only on a, find the subset $B \subseteq A$ of vertices of size k such that $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ is minimized.

For a hierarchical decomposition A and a subset B of A, let $\alpha_B(a)$ denote the smallest $b \in B$ such that $a \subseteq b$. By equation (19), we have

\[
\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B}) = \sum_{a \in A} \text{KL}_{\alpha^+}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})
\]

where $\text{KL}_{\alpha}(a \parallel \alpha_B(a)) = \sum_{x \in C(a)} \hat{f}_{\theta_A}(x) \log \left(\frac{\hat{f}_{\theta_A}(x)}{\hat{f}_{\theta_B}(x)} \right)$. It is here that we make use of the assumption that $\text{Fit}(\alpha_B(a), C_B(\alpha_B(a)))$ depends only on a; otherwise, $\text{KL}_{\alpha}(a \parallel \alpha_B(a))$ would depend on the particular value of $C_B(\alpha_B(a))$. In the remainder of this appendix, we will write out a succession of recursive formulas for computing $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$, expanding the state space each time until we eventually have a recursion for optimizing $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ over all subsets $B \subseteq A$ of size k.

Computing $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ for fixed B. To make the expression in (21) more amenable to dynamic programming, we will write it out recursively. For $a \subseteq p$, define $D(a, p)$ to be the contribution of the descendants of a (including a) to $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ assuming that $\alpha_B(a) = p$. More formally, we define $D(a, p)$ recursively as

\[
D(a, p) \overset{\text{def}}{=} \left\{ \begin{array}{ll}
K_{\alpha^+}(a \parallel a) + \sum_{b \in C(a)} D(b, a) & : a \in B \\
K_{\alpha^+}(a \parallel p) + \sum_{b \in C(a)} D(b, p) & : a \notin B
\end{array} \right.
\]

(22)

(Note that $K_{\alpha^+}(a \parallel a)$ is equal to 0; we have left it in the recursion to expose the symmetry in the two cases.)

With this definition, one can verify that $D(X, X)$ expands out to (21) and hence is equal to $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$. (Recall that X is the entire state space and is always an element of A.)

Optimizing over B. Equation (22) gives us a recursive formula for $\text{KL}(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B})$ when B is fixed. However, the only dependence on B is in deciding between the two cases in the recursion, so it is easy to ex-
tend the recursion to simultaneously choose B. In particular, define the three-variable function $D(a, p, m)$ to be the minimum value of $D(a, p)$ if there are m elements in B that are contained in a (including, possibly, a itself). We then have the recursion

$$D(a, p, m) \overset{\text{def}}{=} \min \left\{ \begin{array}{l} K_{a^+}(a || a) + \min_{m_{b} = m-1} \left[\sum_{b \in C_A(a)} D(b, a, m_b) \right], \\ K_{a^+}(a || p) + \min_{m_{b} = m} \left[\sum_{b \in C_A(a)} D(b, p, m_b) \right]. \end{array} \right. \quad (23)$$

The first case corresponds to including a in B, in which case we have $m - 1$ remaining elements of B to distribute among the descendants of a. The second case corresponds to excluding a from B, in which case we have m elements of B to distribute. Now $D(X, X, k)$ is the minimum value of $D(X, X)$ across all subsets B of size k, which is the quantity we are after.

Computing the minimum tractably. We are almost done, but we need an efficient way to compute the minimum over all m_j that sum to m. To do this, number the children of a as b_1, b_2, \ldots, and define the four-variable function $D(a, p, m, j)$, which, intuitively, tracks the minimum value of $D(a, p)$ if there are m elements in B left to be distributed among children b_j, b_{j+1}, \ldots and their subtrees. More formally, define $D(a, p, m, j)$ via

$$D(a, p, m, j) \overset{\text{def}}{=} \begin{cases} \min \{ D(a, a, m - 1, 0), D(a, p, m, 0) \} : j = -1 \\ \min_{0 \leq m' \leq m} \{ D(b_j, p, m', -1) + D(a, p, m - m', j + 1) \} : 0 \leq j < |C_A(a)| \\ K_{a^+}(a || p) : j = |C_A(a)|. \end{cases} \quad (24)$$

The three cases can be thought of as follows:

- $D(a, p, m, -1)$ decides whether or not to include a in B
- $D(a, p, m, j)$ decides how many elements of B to include among the descendants of b_j
- $D(a, p, m, |C_A(a)|)$ computes the local contribution of a to $\text{KL} \left(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B} \right)$.

Overall, then, $D(X, X, k, -1)$ is equal to the minimum value of $\text{KL} \left(\hat{f}_{\theta_A} \parallel \hat{f}_{\theta_B} \right)$ over all $B \subseteq A$ with $|B| = k$.

Runtime. Suppose that the decomposition A has depth d. Then there are $O(|A|^d)$ triples (p, a, j), so the size of the state space is $O(|A|^{dk})$. Furthermore, the first case of the recursion can be computed in $O(1)$ time, the second case in $O(k)$ time, and the final case in $O(1)$ time (on average across all a). Therefore, the runtime is $O(|A|^{dk^2})$.

Filtering with Abstract Particles