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Abstract
By using particles, beam search and sequential
Monte Carlo can approximate distributions in
an extremely flexible manner. However, they
can suffer from sparsity and inadequate cover-
age on large state spaces. We present a new fil-
tering method for discrete spaces that addresses
this issue by using “abstract particles,” each of
which represents an entire region of state space.
These abstract particles are combined into a hier-
archical decomposition, yielding a compact and
flexible representation. Empirically, our method
outperforms beam search and sequential Monte
Carlo on both a text reconstruction task and a
multiple object tracking task.

1. Introduction
Sequential Monte Carlo (Cappé et al., 2007; Doucet &
Johansen, 2011), together with its deterministic analogue
beam search (Pal et al., 2006) have been incredibly success-
ful at solving a wide variety of filtering and other inference
tasks (Quirk & Moore, 2007; Görür & Teh, 2008; Carreras
& Collins, 2009; Liang et al., 2011; Bouchard-Côté et al.,
2012). However, despite their flexibility, they can perform
poorly when there are insufficiently many particles to cover
all high-probability regions of the posterior distribution; it
is then possible that all particles will assign low probabil-
ity to a new observation, which leads to estimates with very
high variance (Gilks & Berzuini, 2001).

The issue is a lack of coverage: when there are relevant re-
gions of the space that are not represented at all by the par-
ticles at hand. Motivated by this observation, we construct
“abstract particles” where each particle covers an entire re-
gion of the space. Within each particle we then perform
a local variational approximation to the target distribution
over that region (Jordan et al., 1999; Minka, 2001). More
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importantly, we also optimize over the choice of regions.
This can be thought of as adaptively choosing the structure
of the variational family. Our contributions are four-fold;
in all cases we are focused on inference in discrete spaces.

• We formally define the notion of an abstract particle
(Section 2.1).

• We identify a large but tractable family of abstract
particles based on hierarchical decompositions (Sec-
tion 2.2).

• We provide efficient algorithms for choosing particles
from this family (Section 4).

• We demonstrate improved performance over both
beam search and sequential Monte Carlo on two tasks
(Section 5).

2. Relevance-Directed Variational
Approximation

Our goal is to approximate an intractable target distribu-
tion p∗(x) by a tractable distribution p̂(x). We assume that
p∗ is given as an unnormalized product of factors. A com-
mon approach would be to parameterize p̂ as an exponential
family:

p̂θ(x)
def
=

1

Z(θ)
exp(θ>φ(x)) (1)

and then choose θ to minimize the objective function

KL (p∗ ‖ p̂θ) def
=
∑
x

p∗(x) log

(
p∗(x)

p̂θ(x)

)
. (2)

In practice, finding the optimum of (2) is intractable, but
one can still employ heuristic techniques such as expecta-
tion propagation (Minka, 2001).

Such variational approximations are useful in allowing us
to approximate otherwise intractable distributions; how-
ever, they suffer in that they are forced to approximate the
entire space by a single, coarse distribution. Sometimes,
some regions of the space are more important than others,
and we would like a way to capture this in our approxima-
tion.
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To do so, we will show how to obtain improved variational
approximations by partitioning the state space, then pro-
vide a formalism for optimizing the partition via hierarchi-
cal decompositions.

2.1. Improved Variational Approximations via
Partitions

Let Y = {Y1, . . . , Yk} be any partition of X . Given an ex-
ponential family F defined by sufficient statistics φ, define
FY to be the exponential family with sufficient statistics
{φIYj}kj=1, which corresponds to taking the outer product
of φwith the indicator functions of the partition. FY is thus
an expanded variational family that is more flexible than F
itself. Using θ = (θj)

k
j=1 to indicate the parameters ofFY ,

the resulting distributions are piecewise exponential fami-
lies on each element of the partition, with a single global
normalization constant Z(θ):

p̂θ(x) =
1

Z(θ)
exp(θ>j φ(x)) : x ∈ Yj (3)

(this is similar to the setup of split variational inference in
(Bouchard & Zoeter, 2009)). We refer to each Yj as an
abstract particle. Define f̂θj to be the unnormalized prob-
ability exp(θ>j φ(x)) over Yj . Because Y is a partition of
X , the KL divergence decouples over each Yj ∈ Y :

KL (p∗ ‖ p̂θ) =

k∑
j=1

∑
x∈Yj

p∗(x) log

(
p∗(x)

1
Z(θ) f̂θj (x)

)
(4)

= logZ(θ) +

k∑
j=1

KLYj

(
p∗
∥∥∥ f̂θj) . (5)

Here KLS (p ‖ q) def
=
∑
x∈S p(x) log

(
p(x)
q(x)

)
is the region-

specific KL divergence. Note that minimizing KL in this di-
rection is intractable; this is a general property of the prob-
lem, not a consequence of introducing a partition.

There are many techniques for heuristically minimizing the
KL, such as expectation propagation (Minka, 2001). An-
other interesting approach (though it has no justification in
terms of variational inference) is to obtain the f̂θj by us-
ing a fixed simpler model which has been trained on the
same data as p∗ (we will explain this in more detail later).
Normally, using only a subset of features of the original
model p∗ would result in a poor approximation. However,
when combined with partitions, this approach can be very
powerful, as we will demonstrate in a text reconstruction
experiment (see Section 3.1).

For now, we will simply assume that we have a function
Fit that maps Yj to θj . We will explore both the use of EP
and of lower-order models in Section 3.

X

P
Q

R

X ◦

P ◦
Q◦

R◦

Figure 1. A hierarchical decomposition (left) and its correspond-
ing partition (right). We have C(X ) = {P,Q}, C(P ) = {R},
and C(Q) = C(R) = ∅. The elements of the partition are
X ◦ = X\(P ∪Q), P ◦ = P\R, Q◦ = Q, and R◦ = R.

2.2. Optimizing the Partition via Hierarchical
Decompositions

While a fixed partition Y allows us to construct a richer ex-
ponential family FY out of F , a more interesting prospect
is to adaptively optimize the partition Y . The tool we will
use for doing so is a hierarchical decomposition:
Definition 2.1. Given a space X , a hierarchical decom-
position is a collection A ⊆ 2X of subsets satisfying: (i)
X ∈ A and (ii) if a, b ∈ A, then a ∩ b ∈ {a, b, ∅}.

Note that the elements of A form a tree. For a ∈ A, let
CA(a) denote the children of a in the tree: b ∈ CA(a) iff
b ( a and there is no b′ ∈ A with b ( b′ ( a. An example
of a decomposition is shown in the left panel of Figure 1.

Finally, let a◦ for a ∈ A denote the set of elements lying in
a but not in any of its children:

a◦
def
= a\

 ⋃
b∈CA(a)

b

 . (6)

This is illustrated in the right panel of Figure 1. Hierarchi-
cal decompositions are connected to partitions in the fol-
lowing way:
Lemma 2.2. If A is a hierarchical decomposition, then the
collection A◦ def

= {a◦}a∈A forms a partition of X .

Thus, every hierarchical decomposition gives rise to a par-
tition, as does any subset:
Lemma 2.3. Let A be a hierarchical decomposition and
let B ⊆ A such that X ∈ B. Then B is a hierarchical
decomposition.

Therefore, a hierarchical decomposition A determines a
family of 2|A|−1 partitions (some of which may end up be-
ing identical), defined by

{B◦ | {X} ⊆ B ⊆ A}. (7)

We can now cast the optimization of the partition as the
following problem: Given a (large) hierarchical decompo-
sitionA, find a subsetB of (small) size k and a distribution
p̂ ∈ FB◦ such that KL (p∗ ‖ p̂) is small.
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In equations, this is

minimize KL (p∗ ‖ p̂) (8)

subject to p̂ ∈ FB◦

{X} ⊆ B ⊆ A
|B| ≤ k

Note that p̂ will be parameterized by a variable θ =
(θa)a∈B . While there are exponentially many possibili-
ties for B, we can heuristically optimize (8) over B us-
ing a greedy algorithm, as well as exactly optimize a sur-
rogate function using dynamic programming. The greedy
algorithm is described in Section 4 and the dynamic pro-
gramming algorithm is described in the supplementary ma-
terial. In Section 4 we also provide an algorithm, analogous
to beam search, for approximately optimizing B in cases
where A itself is exponentially large.

Effect of hierarchical decomposition on approximation.
As an example to better understand how the hierarchical
decomposition affects the approximation, suppose that F
consists of distributions over (x1, x2) that do not depend
on x1: p̂(x1, x2) = q(x2). Let a be a region where x1
is fixed to a value x̂1. Then we can take f̂θa(x1, x2) =

p∗(x̂1)p∗(x2 | x̂1). Since x̂1 is a constant, f̂θa doesn’t
“depend” on x1, even though it matches p∗ exactly over a.

More generally, any factor of p∗ that is constant over a re-
gion a can be matched exactly over that region, no mat-
ter what the family F . This provides some intuition for
the role that the hierarchical decomposition B plays in im-
proving the approximation to p∗: even ifF cannot approxi-
mate a factor satisfactorily, an appropriately chosen hierar-
chical decomposition will be able to incorporate the factor
exactly, at least locally.

Note that in the limiting case where a region a consists of
a single point, all factors are incorporated exactly, and we
recover regular particle-based inference.

Computational issues. One important question is which
hierarchical decompositions A lead to a tractable family
FB◦ . Typically we will want to choose A so that each re-
gion a is “simple”, in order to compute the normalization
constant Z(θ). To elaborate, let f̂θa denote the unnormal-
ized exponential family exp(θ>a φ(x)), and note the equali-
ties

Z(θ) =
∑
a∈B

∑
x∈a◦

f̂θa(x) (9)

=
∑
a∈B

f̂θa(a)−
∑

b∈CB(a)

f̂θa(b)

 , (10)

which allows us to compute Z(θ) as long as we can com-
pute f̂θa(b) for given regions b ∈ A. If b is defined by fixing

the values of certain variables in the model, then f̂θa(b) is
just an (unnormalized) marginal probability and so is often
tractable. Note that the KL divergence decomposes simi-
larly to (10), although the individual terms in the decompo-
sition will not be tractably computable in general.

In practice, we will never work directly with a◦ from a
computational perspective, but rather use a and its children
CB(a) together with equation (10). To make this clearer
notationally, we will use Fit(a, CB(a)) to denote the value
obtained for θa (in fact, in all of our later examples θa de-
pends only on a).

2.3. Summary

We have so far presented a recipe for improving variational
approximations via partitions of the space, using hierarchi-
cal decompositions to provide an interesting family of par-
titions. The recipe consists of the following steps:

1. Take as input a target distribution p∗.

2. Choose a variational family F and a hierarchical de-
composition A.

3. Choose a fitting method Fit(a, C(a)).

4. Find a subset B of A of size k by optimizing (8).

This leaves us with two outstanding issues, which we ad-
dress in subsequent sections:

• How to pick F , A, and Fit for two concrete filtering
problems (Section 3).

• How to find a good choice of B (Section 4), since in
practice (8) can only be solved approximately.

3. Examples
We have seen how a variational family F , together with a
hierarchical decomposition of the space X , can in theory
be used to construct a much richer variational family. In
this section, we consider two filtering tasks, showing how
hierarchical decompositions are more powerful than stan-
dard particle-based methods. In each case, we will define
a generative model p(x, y) = p(x)p(y | x), and consider
the posterior inference problem p∗(x) = p(x | y). Since
y is observed, we will form our hierarchical decomposition
over X only, rather than X × Y .

We assume that X consists of ordered T -tuples
(x1, . . . , xT ) ∈ ΣT , where Σ is the alphabet. Our
task is to predict xt given y1:t for all t = 1, . . . , T . For
clarity of exposition, we focus on the t = T case.
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??

?a ?b ?c

aa ba ca ab bb cb ac bc cc

q̂1(x1)q̂1(x2)

q̂1(x1)q̂1(x2)

q̂1(x1)q̂2(x2 | x̂1)

Figure 2. A hierarchical decomposition A (all nodes) together
with a subset B (black). The underlying space X is {a, b, c}2.
The symbol ? is a wildcard, so for instance ?a indicates the set
{aa, ba, ca}. Note that the parent of ab in B is ??, even though its
parent in A is ?b. The local approximation to p∗ used at each level
of the decomposition is indicated on the left (see Equation 14).

3.1. Text Reconstruction

Setup. We consider the task of text reconstruction, where
x1:T is a string of characters and each observation yt is ei-
ther present (in which case yt = xt) or missing (in which
case yt = ‘?’). Our prior over x1:T is a character-level n-
gram model, which has been used in named-entity recog-
nition (Klein et al., 2003), authorship attribution (Kešelj
et al., 2003), and language identification (Vatanen et al.,
2010). Our generative model is as follows:

p(x1:T , y1:T ) =

T∏
t=1

p(xt | x(t−n+1):(t−1))p(yt | xt).

(11)
Optimal performance for such models is typically achieved
at relatively large values of n, around 5 or 6 (Vatanen et al.,
2010; Klein et al., 2003). In such cases, exact inference can
be quite expensive.

Approximating family (F). Our variational family F
consists of all unigram models. By itself, F would pro-
vide a very poor approximation to p∗. However, using a
hierarchical decomposition A will provide a much better
approximation.

Hierarchical decomposition (A). The 0th layer of the
decomposition consists of a single set containing all of X ;
the 1st layer partitions the space based on xT ; the 2nd layer
partitions the space based on xT−1 and xT ; and so on. Re-
calling that Σ is the alphabet, the dth layer of the hierar-
chical decomposition A can be expressed algebraically as

{
ΣT−d × {x̂(T−d+1):T } | x̂(T−d+1):T ∈ Σd

}
(12)

(so we abstract away x1:T−d but represent x(T−d+1):T con-
cretely). A simple example is given in Figure 2.

Region-specific model (Fit). Suppose the region a is
defined by a sequence x̂t0:T as in (12), where we use t0
in place of T − d+ 1 for convenience in the sequel.

To approximate p∗(x) = p(x | y), we define the follow-
ing unigram model, where f̂θa denotes the unnormalized
probability over a◦:

f̂θa(x) =

T∏
t=1

ψ̂t(xt). (13)

Then p̂θ is locally a unigram model (equal to 1
Z(θ) f̂θa ) over

each region a◦; note however that the full distribution p̂θ
has much richer structure. In particular, since xt0 is fixed
across a, we can let ψ̂t0+1(xt0+1) “depend” on xt0 by set-
ting it equal to q̂2(xt0+1 | x̂t0), where q̂2 is a bigram model.
Similarly, we can set ψ̂t0+2 to q̂3(xt0+2 | x̂t0+1, x̂t0),
where q̂3 is a trigram model. In general, we will fit lower-
order m-gram models q̂m for 1 ≤ m < n, and use the
approximation

ψ̂t(xt) =


q̂1(xt) : t ≤ t0
q̂t−t0+1(xt | x̂t0:(t−1)) : t0 < t < t0 + n− 1

p(xt | x̂(t−n+1):(t−1)) : t ≥ t0 + n− 1

(14)
(This is all for the case when yt equals ‘?’; otherwise we
would have ψ̂t(xt) = δ(xt = yt).)

So, by picking an appropriate subset B of A, we can inter-
polate as necessary between the coarse unigram model and
exact inference; for instance, if we take the entire T th layer
(i.e. all the singleton sets) then we recover the exact poste-
rior. Note that this is not necessarily true if we only take the
nth layer, despite the model being an n-gram model. This
is because ψ̂T−n+1(xT−n+1) would still be q̂1(xT−n+1),
rather than p(xT−n+1 | x̂(T−2n+2):(T−n)).

More generally, for any element of the dth layer, informa-
tion is propagated exactly for the final d time steps, while
the characters are treated completely independently (no
propagation of information) for the first T − d time steps.
By optimizing the elements of the hierarchical decomposi-
tion, we identify regions where the information to propa-
gate is important, and expend additional computational re-
sources on those regions.

3.2. Multiple Object Tracking

Setup. Another filtering problem where exact inference
is intractable is multiple object tracking. Suppose that we
have K objects following trajectories through some space,
and a sensor that can detect the location of an object but
not which object it is; the object identities must therefore
be disambiguated using knowledge about their dynamics.
For simplicity, we assume that only one object is observed
at a time; this isn’t necessary for the math to work out.

We can model this as a factorial HMM; there
are K independently evolving Markov chains
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x1,1:T , x2,1:T , . . . , xK,1:T , together with independent
hidden variables c1, . . . , cT ∼ Uniform({1, . . . ,K}) such
that ct specifies which of the objects was observed at time
t. The observed node, yt, is deterministically equal to
xct,t. Assuming xk,t takes values in [S]

def
= {1, . . . , S},

the alphabet Σ is [S]K × [K]; thus |Σ| grows exponentially
in K.

Approximating family (F). We will use independent
Markov chains over each xk,1:T as our variational fam-
ily F . This avoids the computational difficulties of the
true posterior, in which the observation potential p(yt |
x1:K,t, ct) couples all of the chains.

Hierarchical decomposition (A). Our hierarchical de-
compositionA consists of regions where some suffix of the
ct are specified; that is, the dth level is{(

[K]T−d × {ĉt0:T }
)
× [S]TK | ĉt0:T ∈ [K]d

}
, (15)

with t0 = T − d+ 1.

Region-specific model (Fit). Suppose that our region a
is defined by a sequence ĉt0:T as in (15). Our target distri-
bution is p∗(x1:T,1:K)

def
= p(x1:T,1:K | y1:T ). We can write

this as

p∗(x) ∝
T∏
t=1

[
K∏
k=1

p(xt,k | xt−1,k)× p(yt | xt,1:K)

]
.

(16)
F handles the transition potentials p(xt,k | xt−1,k) exactly,
but approximates the observation potential p(yt | xt,1:K)

by a factored potential
∏K
k=1 ψ̂t,k(xt,k). Our unnormalized

approximating distribution f̂θa over a◦ is therefore

f̂θa(x) =

T∏
t=1

[
K∏
k=1

p(xt,k | xt−1,k)×
K∏
k=1

ψ̂t,k(xt,k)

]
.

(17)
We use the following formula for ψ̂t,1:K , which corre-
sponds to a single forward pass of expectation propagation
(Minka, 2001):

ψ̂t,k =


δ(xt,k = yt) : t ≥ t0, ĉt = k

1 : t ≥ t0, ĉt 6= k
δ(xt,k=yt)+

∑
l 6=k pprior(xt,l=yt)

K : t < t0.

(18)
Here pprior(xt,l = yt) is the marginal probability that xt,l
is equal to yt under the prior.

The observations y1:(t0−1) are incorporated approximately
via the factored variational approximation, while the obser-
vations yt0:T are incorporated exactly. We therefore obtain
the ability to exactly incorporate recent information that
may be most relevant to predicting yT while still benefit-
ing from information further in the past.

4. Algorithms for Optimizing the Partition
Recall the framework introduced in Section 2; given a hier-
archical decompositionA, we choose a partition by search-
ing over subsets {X} ⊆ B ⊆ A, attempting to optimize
the objective given in (8).

In this section, we present heuristics for solving this op-
timization problem. To start, we will assume that A is
small enough for algorithms that are polynomial-time in
|A| to be feasible; in this case we present an O(|A| log |A|)
greedy algorithm. (There is also a potentially more ac-
curate O(|A|dk2) dynamic programming algorithm, de-
scribed in the supplementary material, which exactly op-
timizes a surrogate for KL (p∗ ‖ p̂).)

Then, we will consider the case where |A| is too large for
even a linear-time algorithm to be feasible, and introduce
an analogue of beam search; this is the form of the algo-
rithm that we use in our experiments.

Greedy heuristic. We define the local probability mass
of each region a to be the unnormalized mass that f̂θa as-
signs to a◦: mloc(a)

def
=
∑
x∈a◦ f̂θa(x). Then we simply

greedily include the k elements of A where mloc(a) is the
largest, together withX . This only requires sorting bymloc

and so has runtime O(|A| log |A|).

Abstract beam search. In both of the examples in Sec-
tion 3, the hierarchical decomposition A was exponen-
tially large, so we adopt an incremental refinement strategy:
write the target distribution p∗(x) as an unnormalized prod-
uct of potentials p∗(x) ∝ ∏T

t=1 ψt(x), and let A0 = {X}.
Then, for t = 1, . . . , T execute the following sequence of
steps:

1. Refine At−1 to get Ãt.

2. Prune Ãt down to a subsetAt of size k by solving (8)
with target distribution

∏t
s=1 ψs(x).

For the pruning step, we can use the greedy algorithm dis-
cussed above. For the refinement step, we need to make
sure that Ãt is a hierarchical decomposition wheneverAt−1
is. One way to do this is to set Ãt = {X}∪⋃a∈At−1

rt(a),
where rt is a refinement operator satisfying the following
properties: (i) rt(a) is a partition of a; (ii) if b ( a, then
every element of rt(b) is contained in an element of rt(a).

It is also possible to construct refinement operators satisfy-
ing weaker conditions, but the conditions above will suffice
for our purposes.

Example 4.1. In filtering, whereX = ΣT , a natural choice
for ψt(x) is p(xt | x1:t−1, yt), and a natural choice for rt
is to partition based on the value of xt. This is illustrated
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Figure 3. A hierarchical decomposition A2 (left) together with its
refinement Ã3 (right). These correspond to the refinement strat-
egy in Example 4.1. Each dotted rectangle indicates the refine-
ments of a particular region in A2.

Algorithm 1 Abstract beam search algorithm. Inputs are
the space X , a refinement function r, a fitting method Fit,
and a beam size k. Generates a sequence of hierarchical
decompositions, each of which defines a distribution over
X .

AbstractBeamSearch(X , r, Fit, k)
A0 = {X}
for t = 1 to T do
Ãt = {X} ∪⋃a∈At−1

rt(a)

for a ∈ Ãt do
θa = result of using Fit with target

∏t
s=1 ψs

mloc(a) = f̂θa(a)−∑b∈CÃt (a)
f̂θa(b)

end for
At = {X} ∪ {k items in Ãt with largest mloc}

end for

in Figure 3, where a refinement function r3 is used to tran-
sition from A2 to Ã3. It is also the choice of rt used for the
n-gram task in Section 5.

Summary. Algorithm 1 depicts the pseudocode for our
abstract beam search algorithm. The major steps at each
stage of the algorithm are to refine the particles from step
t−1, then to update the approximation to p∗ based on a new
potential ψt, then to compute the local probability mass
mloc(a) for each region a using (10), and finally to prune
the hierarchical decomposition down to size k.

5. Experiments
To test our approach, we performed experiments on both of
the filtering examples in Section 3.

For the text reconstruction task, we fit an n-gram model
for the transitions using interpolated Kneser-Ney (Kneser
& Ney, 1995) trained on The Complete Works of William
Shakespeare (about 125, 000 lines in total). The first
115, 000 lines were used to train the model and each of
the next 5, 000 lines were used as a development and test
set, respectively. Interpolated Kneser-Ney has two hyper-

parameters: the model order n and the discount parameter
λ. We fit these by minimizing perplexity on the develop-
ment set, and found that n = 8, λ = 0.9 was optimal. In
the test set, 75% of the characters were randomly replaced
with a wildcard symbol. The inference task was to recover
the original value of each of the replaced characters.

For the multiple object tracking task, we generated syn-
thetic data. Each of K objects labeled 1, . . . ,K travel
around a circle and each second one of the objects (but
not its label) is observed. The inference task is to recover
the label of the observed objects (their initial positions are
known).

Task characteristics and particle coverage. We now
study the characteristics of our tasks. Our intuition was
that the text reconstruction task is “easy” while the object-
tracking task is “hard”. This is because, even though there
are many possible 8-grams, the number of plausible 8-
grams is not too large, since there are strong correlations
between one character and the next. In contrast, the num-
ber of plausible states for the object-tracking task grows
exponentially with the number of objects. To validate this
intuition, we performed a preliminary experiment to deter-
mine the effective size of the state space for both tasks.
We performed beam search under the prior, then plotted
the amount of probability mass covered by the top k ele-
ments of the beam. The point of this was to determine how
concentrated the probability mass is under the model (a
beam size of 30, 000 was used in order to capture all high-
probability regions). The results are given in Figure 4. For
the text reconstruction task, most of the mass is covered by
relatively few elements; in contrast, for the object-tracking
task, even thousands of elements are insufficient to provide
coverage.

Quality of particles. Next, we wanted to test the hypoth-
esis that abstract particles generate a higher quality approx-
imate posterior than concrete particles. We used prediction
accuracy as our scoring metric (i.e. a score of 1 if the pos-
terior mode for an example is at the truth and 0 otherwise).

The results of our experiments are given in Figures 5 and 6.
In Figure 5, we plotted accuracy versus number of particles.
For the text reconstruction task, abstract beam search out-
performs concrete beam search, which slightly outperforms
SMC. For the object tracking task, abstract beam search
again outperforms both other methods, but this time con-
crete beam search performs poorly compared to SMC.

Measuring computation. We have demonstrated that
abstract particles are higher quality per-particle, but this
doesn’t address their additional overhead. This is espe-
cially important for the object-tracking task, where each
abstract particle requires a forward pass of HMM inference



Filtering with Abstract Particles

0 1000 2000 3000 4000 5000
number of particles

0.0

0.2

0.4

0.6

0.8

1.0

m
as

s
co

ve
re

d

n=2
n=3
n=4
n=5
n=6
n=7
n=8

0 1000 2000 3000 4000 5000
number of particles

0.0

0.2

0.4

0.6

0.8

1.0

m
as

s
co

ve
re

d

K=5, T=4
K=5, T=7
K=5, T=10
K=10, T=4
K=10, T=7
K=10, T=10

Figure 4. Left: coverage of the prior distribution over the first n characters for text reconstruction (n-gram prior). Right: coverage of
the prior distribution over the first T seconds for object-tracking (factorial HMM prior), for T ∈ {4, 7, 10}. Note that some curves
asymptote to less than 1; this happens when a non-negligible amount of probability mass falls off the beam.
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Figure 5. Number of particles (k) vs. accuracy, for abstract beam search, beam search, and SMC. Left: text reconstruction with n-gram
prior, for n = 8; right: object-tracking task for 15 objects with state size 100.
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Figure 6. Computational cost vs. accuracy, for abstract beam search, concrete beam search, and SMC. The cost metric is language model
queries for the text reconstruction task and runtime for the object-tracking task. Runtime was computed using a single core of a 3.4GHz
machine with 32GB of RAM. These plots correspond to those of Figure 5.
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and thus requires memory proportional to K ·S. We there-
fore also plotted computational costs against accuracy for
both models in Figure 6. For the text reconstruction task,
we used the number of queries to the language model to
measure cost, as this is a bottleneck in many applications.
We found that despite abstract beam search requiring more
queries per particle, the same story holds as before: abstract
beam search outperforms beam search, which outperforms
SMC. The exception is when the number of queries is large,
in which case SMC slightly outperforms our algorithm.

For the object-tracking task, we used runtime as our met-
ric, and also included a variant of our algorithm where dy-
namic programming is used in place of the greedy algo-
rithm during the pruning step. Again, the same story as
before holds: abstract beam search outperforms both con-
crete beam search and SMC. Furthermore, we found that
the greedy pruning heuristic was typically comparable to
or better than pruning with dynamic programming. This
suggests that we can use the greedy pruner without losing
accuracy.

Details of SMC sampler. We provide here the details of
our (concrete) SMC implementation to provide more con-
text to our comparisons. In both tasks, we used p(xt+1 |
xt, yt+1) as the proposal distribution. We performed re-
sampling after each step since this was not a performance
bottleneck. For the object-tracking task, one major issue
was particle collapse, wherein all of the particles received
zero mass (due to being incompatible with the observa-
tions). When this happened, we “re-initialized” the par-
ticles by sampling from the prior marginal and then ran-
domly changing the location of one of the objects for each
particle to match the current observation. We found that
this heuristic substantially improved the performance of
SMC on the object-tracking task.

6. Discussion
We have presented a new “abstract” filtering algorithm
based on hierarchical decompositions, which combines the
flexibility of particle-based algorithms (e.g., SMC) with the
compactness of parametrized approximations (e.g., varia-
tional inference). Broadly speaking, our approach shares
similar intuitions as many other coarse-to-fine methods
such as decision and density estimation trees (Ram & Gray,
2011), state-split grammars (Petrov et al., 2006), structured
prediction cascades (Weiss & Taskar, 2010), and clustering
variables in Markov logic (Kiddon & Domingos, 2011).

The work most closely related to ours is the split variational
inference framework of (Bouchard & Zoeter, 2009). Split
variational inference uses a similar decomposition to that
given in Section 2.1, but uses variational Bayes to fit the pa-
rameters. They also use soft partitions (non-negative func-

tions summing to 1) given by a continuously parameterized
family, allowing numerical optimization of the partitions in
contrast to our combinatorial approach in Section 2.2. In
this work we also make use of a beam search heuristic in
conjunction with variational approximation, which allows
us to scale our approach to difficult combinatorial inference
problems. It would be interesting to determine whether the
idea of smooth partitions could be used to extend our ideas
to continuous state spaces.

Another line of related work is logical particle filtering
(Zettlemoyer et al., 2007; Hajishirzi & Amir, 2012), which
performs sequential Monte Carlo over first order predi-
cates. This approach shares our goal of obtaining compact
representations for inference, but focuses on obtaining an
exact representation of the posterior within each region,
and also does not use a collection of regions that covers
the space. Logical predicates are a way to specify rich but
flexible hierarchical decompositions, and so would be in-
teresting to apply in our context.

Other related work includes quasi-Monte Carlo, which
uses deterministic sample placement to speed up Markov
chain convergence (Niederreiter, 1992; Caflisch, 1998);
and various hierarchical Bayesian nonparametric tech-
niques (Heller & Ghahramani, 2005; Gramacy & Lee,
2008; Fox & Dunson, 2012), which often use variational
techniques to infer a hierarchy.

Our work can also be viewed as performing a form of vari-
ational inference with feature induction in log-linear mod-
els (Pietra et al., 1997; McCallum, 2003), where base fea-
tures are conjoined with flexible features corresponding to
regions of the input space. This view strengthens the con-
nection between SMC and variational inference, and we
believe this bridge will allow us to develop new families of
inference algorithms.
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