
Structured Prediction of Network Response
Supplementary Material

Hongyu Su HONGYU.SU@AALTO.FI

Aristides Gionis ARISTIDES.GIONIS@AALTO.FI

Juho Rousu JUHO.ROUSU@AALTO.FI

Helsinki Institute for Information Technology (HIIT)
Department of Information and Computer Science, Aalto University, Finland

1. NP-hardness of the inference problem
Lemma 1 Finding the graph that maximizes Eq.(2) is an NP-hard problem.

Proof (Sketch) The inference problem of SPIN can be stated as searching for an optimal configuration of node labels.
The node labels {yv ∈ {p, n}}v∈V induce edge labels {ye ∈ {nn, pn, pp}}e∈E . For each edge e and its label ye in the
graph, a score sye

(e) is defined. The goal is to find a set of node labels that maximizes the sum of scores
∑

e∈E sye
(e).

This inference problem can be seen as a generalization of the MAX-CUT problem (Garey & Johnson, 1979), where the
objective is to partition the nodes of a given undirected graph into two parts so that the number of edges cut is maximized.
The MAX-CUT problem is known to be NP-hard.

We give a reduction from the MAX-CUT problem to the inference problem. Given an instance of MAX-CUT, i.e., a undi-
rected graph G = (V,E), we create an instance to our problem as follows. We first create a directed graph G′ = (V,E′)
by considering both directions of the edges of G, i.e., for each (u, v) ∈ E we add (u, v) and (v, u) in E′. Then, for each
directed edge e ∈ E′ we set the scores spp(e) = snn(e) = 0 and spn(e) = 1. In addition, the two partitions in MAX-CUT
are represented via the label {p, n}. It is not difficult to see that the reduction only requires linear time and space, and an
optimal solution to the MAX-CUT problem is also optimal to this special case of the inference problem. �

2. Derivation and pseudo-code of GREEDY inference algortihm
The original inference problem is stated as maximizing the sum over the scores of consistent edge labels. To tackle
the inference problem, one has to work with all edges and labels. We show in Eq. 1 that the inference problem can be
equivalently expressed only in term of activated vertices and the associated scores by initializing the search from a negative
network. The alternative expression of the inference problem enables us to design an iterative greedy search algorithm that
works on the nodes of the network.

Pseudocode for greedy inference algorithm is shown in Algorithm 1. The algorithm starts with an activated vertex set
V H
p = {r} that only contains root node r (line 1). It also maintains a priority list of vertices by their current scores Fm(v)

(line 2). In each iteration (line 4), the algorithm pops from the top of the priority list the vertex vi that is the current
maximizer of the marginal gain

vi = argmax
vi∈V/V H

p

Fm(vi).

Then, for all neighbours of vi, the algorithm updates their scores Fm(v) and positions in the list (line 6). The procedure
terminates if Fm(vi) < 0 (line 7). EH can be obtained by adding edges e = (vi, vj) ∈ E, if vi, vj ∈ V H

p and vi was added
to V H

p prior to vj (line 13).

Structured Prediction of Network Response

It is easy to see that it takes at most O(log |V |) to update the score and the position of one child node of current activated
node (line 6). In addition, we notice that each update corresponds to an edge in the network. Once the edge is used for
update, it will never be used again. Thus, the complexity for greedy search is O(|E| log |V |).

H∗(a) = argmax
H∈H(G)

∑
vi∈V H

p

vj∈V H
p

spp(vi,vj)

︸ ︷︷ ︸
activated network

+
∑

vi∈V H
p

vj∈V H
n

spn(vi,vj)

︸ ︷︷ ︸
boundary

+
∑

vi∈V H
n

vj∈V H
n

snn(vi,vj)

︸ ︷︷ ︸
inactivated network

(1)

= argmax
H∈H(G)

∑
vi∈V H

p

vj∈V H
p

spp(vi,vj) +
∑

vi∈V H
p

vj∈V H
n

spn(vi,vj) +
∑

vi∈V H
n

vj∈V H
n

snn(vi,vj)−
∑

vi∈V H

vj∈V H

snn(vi,vj)

= argmax
H∈H(G)

∑
vi∈V H

p

vj∈V H
p

[spp(vi,vj)− snn(vi,vj)] +
∑

vi∈V H
p

vj∈V H
n

[spn(vi,vj)− snn(vi,vj)]

= argmax
H∈H(G)

∑
vi∈V H

p

vj∈V H
p

[spp(vi,vj)− spn(vi,vj)] +
∑

vi∈V H
p

vj∈V H
p

[spn(vi,vj)− snn(vi,vj)]

︸ ︷︷ ︸
activated network

+
∑

vi∈V H
p

vj∈V H
n

[spn(vi,vj)− snn(vi,vj)]

︸ ︷︷ ︸
boundary

= argmax
H∈H(G)

∑
vi∈V H

p

∑

vp∈pa(vi)

[spp(vp,vi)− spn(vp,vi)]︸ ︷︷ ︸
incoming edges

+
∑

vc∈chi(vi)

[spn(vi,vc)− snn(vi,vc)]︸ ︷︷ ︸
outgoing edges

= argmax

H∈H(G)

∑
vi∈V H

p

Fm(vi).

References
Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman & Co., 1979.

Structured Prediction of Network Response

Algorithm 1 Greedy Inference(a,G, sue
(e))

Input: Action a. Network G = (E, V). The score function sue
(e) defined on edge e and label ue.

Output: A rooted DAG H = (V H , EH) that maximizes the score function

H∗(a) = argmax
H∈H(G)

∑
vi∈V H

p

Fm(vi)

1: V H
p = {r}, EH = {}, T (r) = 0, t = 1

2: Initialize a priority list V ′ = {v|v ∈ V } ordered by Fm(v).
3: while true do
4: Pop up the first element from V ′ such that

v = argmax
v∈V/V H

p

Fm(v)

5: V ′ = V ′ − {v}
6: Updated scores Fm(v) and positions for all neighbours of v.
7: if Fm(v) ≥ 0 then
8: V H

p = V H
p ∪ {v}

9: T (v) = t
10: t = t+ 1
11: else
12: break
13: for vi ∈ V H

p , vj ∈ V H
p do

14: if (vi, vj) ∈ E and T (vi) < T (vj) then
15: EH = EH ∪ {(vi, vj)}
16: H = (EH , V H)

