Structured Prediction of Network Response

Hongyu Su
Aristides Gionis
Juho Rousu

Helsinki Institute for Information Technology (HIIT)

HONGYU.SU@AALTO.FI
ARISTIDES.GIONIS @ AALTO.FI
JUHO.ROUSU @AALTO.FI

Department of Information and Computer Science, Aalto University, Finland

Abstract

We introduce the following network response
problem: given a complex network and an ac-
tion, predict the subnetwork that responds to ac-
tion, that is, which nodes perform the action and
which directed edges relay the action to the adja-
cent nodes.

We approach the problem through max-margin
structured learning, in which a compatibility
score is learned between the actions and their ac-
tivated subnetworks. Thus, unlike the most pop-
ular influence network approaches, our method,
called SPIN, is context-sensitive, namely, the
presence, the direction and the dynamics of in-
fluences depend on the properties of the actions.
The inference problems of finding the highest
scoring as well as the worst margin violating net-
works, are proven to be NP-hard. To solve the
problems, we present an approximate inference
method through a semi-definite programming re-
laxation (SDP), as well as a more scalable greedy
heuristic algorithm.

In our experiments, we demonstrate that tak-
ing advantage of the context given by the ac-
tions and the network structure leads SPIN to
a markedly better predictive performance over
competing methods.

1. Introduction

With the widespread use and extensive availability of large-
scale networks, an increasing amount of research has been
proposed to study the structure and function of networks.
In particular, network analysis has been applied to study
dynamic phenomena and complex interactions, such as

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

information propagation, opinion formation, adoption of
technological innovations, viral marketing, and disease
spreading (De Choudhury et al., 2010; Kempe et al., 2003;
Watts & Dodds, 2007).

Influence models typically consider actions performed by
the network nodes. Examples of such actions include buy-
ing a product or (re)posting a news story in one’s social
network. Often, network nodes perform such actions as a
result of influence from neighbouring nodes, and a number
of different models have been proposed to quantify influ-
ence in a network, most notably the independent-cascade
and the linear-threshold models (Kempe et al., 2003). On
the other hand, performing an action may also come as a
result to an external (out of the network) stimulus, a sit-
uation that has also been subject to modeling and analy-
sis (Anagnostopoulos et al., 2008). A typical assumption
made by existing models is that influence among nodes de-
pends only on the nodes that perform the action and not on
the action itself.

A central question in the study of network influence, is to
infer the latent structure that governs the influence dynam-
ics. This question can be formulated in different ways. In
one case no underlying network is available (for example,
news agencies that do not link each other) and one asks
to infer the hidden network structure, e.g., to discover im-
plicit edges between the network nodes (De Choudhury
et al., 2010; Du et al., 2012; Eagle et al., 2009; Gomez-
Rodriguez et al., 2010; 2011). However, this problem is
an unnecessarily hard one to solve in many applications.
On the other hand, in many applications the network is
known (e.g., “follower” links in twitter), and the research
question is to estimate the hidden variables of the influence
model (Goyal et al., 2010; Saito et al., 2008).

The present paper is motivated by the following observa-
tion: the influence between two nodes in the network does
not depend only on the nodes and their connections, but
also depends on the action under consideration. For ex-
ample, if u and v represent users in twitter, v may be in-
fluenced from w regarding topics related to science but not

Structured Prediction of Network Response

regarding topics related to, say, politics. Thus, in our view,
the influence model needs to be context-sensitive.

We thus consider the following network response problem:
given an action, predict which nodes in the network will
perform it and along which edges the action will spread.
We approach the problem via structured output learning
that models the activated response network as a directed
graph. We learn a function for mappings between action
descriptions and the response subnetwork. Given an ac-
tion, the model is able to predict a directed subnetwork that
is most favourable to performing the action.

2. Preliminaries

We consider a directed network G = (V, E) where the
nodes v € V represent entities, and edges e = (u,v) € E
represent relationships among entities. As discussed in the
introduction, for each edge (u,v) we assume that node v
can be influenced by node u. In real applications, some
networks are directed (e.g., follower networks), while other
networks are undirected (e.g., friendship networks). For
simplicity of exposition, and without loss of generality we
formulate our problem for directed networks; indeed an
undirected edge can be modeled by considering pair of di-
rected edges. In our experiments we also consider undi-
rected networks.

In addition to other nodes, we allow the nodes to be influ-
enced by external stimuli, modelled by a roof node r, which
is connected to all other nodes in the network, namely
(r,v) € E, forallv € V \ {r}. Reversely, no node can
influence r, so (v,r) € E, forallv € V'\ {r}.

The second ingredient of our model consists of the actions
performed by the network nodes. We write A to denote
the underlying action space, that is, the set of all possible
actions, and we use a to indicate a particular action in A.
We assume that actions in A are represented using a feature
map ¢ : A—F 4 to an associated inner product space F4.
For example, F 4 can be a vector space of dimension k,
where each action a is represented by a k-dimensional vec-
tor ¢(a). In the social-network application discussed in the
introduction, where actions a correspond to news articles
posted by users, ¢(a) can be the bag-of-words representa-
tion of the news article a.

We assume that the network gets exposed to an action a €
A, and in response a subgraph G, = (Va, Ea) C G, called
the response network gets activated. The nodes V, C V are
the ones that get activated and E, C E is the set of induced
edges. We assume that the root r is always activated, i.e.,
r € V4. Note that even though r is directly connected to
each node v € V,, in every response network G5, some
nodes in V, may exercise on v stronger influence than the
influence that r exercises on v. The nodes that get directly

(u,a,t =1)
(v,a,t = 2)

(w,a,t =5)
a— ¢(a)

Ga - w(Ga) = (ap}n apmanmbpp7bpmbnmCppacpmcnmdpp:dpmdnm ..)
=(1,0, 0 1, 0,0, 0, 1, 0, 0, 0, 1, ...)

7(“) = (’Y(U; a)v’Y(u; b)v’Y(u§ C)? 7(“? d)7 .-) = (17 A A,)‘27 .-)

Figure 1. An action a perfromed by nodes u, v, w of a directed
network at times 1, 2, 5, respectively. Nodes x and y do not per-
form the action. The action a is represented by input feature
map ¢(a). The response network G, is represented by output
feature map (Ga) that encodes the propagation of the action a
with respect to edge e (details in the text). Finally, v is a scal-
ing function (see Sec. 3.4). For instance, v (u) represents a vector
of exponentially-decaying weights for node u with respect to all
edges.

activated by the root node r as a response to an action are
called the focal points or foci of the response network.

We assume a dataset {(a;,Ga,)},, of m training exam-
ples, where each example (a;, Ga,) consists of an action
a; and the output (5, encoding the response network acti-
vated by a;. Our intention is to build a model that given a
previously unobserved action a, predicts the response net-
work Gg.

3. Model for network responses
3.1. Structured-prediction model

Our method is based on embedding the input and output
into a joint feature space and learning in that space a linear
compatibility score

F(37 Ga; W) = <W7 @(av Ga)>'

The score F(a,G,;w) is given by the inner product of
parameters w and the joint feature ¢(a,G,). As the
joint feature we will use the tensor product p(a,G,) =
¢(a) ® ¥(Ga) of the input feature map ¢(a) of action a,
and the output feature map (G,) that represents the re-
sponse network G, to the action a. The tensor product
©(a, Ga) consists of all pairs of input and output features

pij(a,Ga) = ¢i(a)yj(Ga).

The output features will encode the activated subgraph in
the network. We use labels {p,n} to indicate whether
nodes perform an action (positive vs. negative). Simi-
larly, we use edge labels {pp, pn,nn} to indicate the role
of edges in the propagation of actions. In particular, for
each edge (u,v) = e of a response network G, and each
label ¢ € {pp,pn,nn} we define the feature 1. ¢(Ga) to

Structured Prediction of Network Response

be 1 if and only if e is of type £ in G, (and O otherwise).
For example, ¥,) pp(Ga) = 1 indicates that both nodes
u and v are activated in G, and u precedes v in the partial
order of activation.

An example of the model is shown in Figure 1. For the sake
of brievity in the figure, we abuse notation and we use ey
to denote v, ¢(Ga). For instance, in this example we have
app = (u,v)pp = 1 since both u and v are activated and
u precedes v in the activation order, and thus it is possible
that u has influenced v.

3.2. Maximum-margin structured learning

The feature weight parameters w of the compatibility score
function F are learned by solving a regularized structured-
output learning problem

L1 S
min o [[wll; +C Y&, ()
’ i=1

st. F(a;,Ga,;;w) > argmax (F(a;, Gl ;w)
G, €H(G) '

+€G(G;i,Gai)) — fiagi 2 O,VZ = {1, e ,m}.

The impact of the constraints on the above optimization
problem is to push the compatibility score of input a;
with output G, above the scores of all competing out-
puts G, € H(G) with a margin proportional to the loss
lc(Gy,, Ga,) between the correct G, and any competing
subgraph G7,.. H(G) is the set of directed acyclic sub-
graphs of G rooted at . The slack variable &; is used to
relax the constraints so that a feasible solution can always
be found. C'is a slack parameter that controls the amount
of regularization in the model. The objective minimizes
an Lo-norm regularizer of the weight vector and the slack
allocated to the training set. This is equivalent to maximiz-
ing the margin subject to allowing some data to be outliers.
In practice, the optimization problem (Eq. 1) is tackled by
marginal dual conditional gradient optimization (Rousu
et al., 2007).

3.3. The inference problem

In the structured prediction model, both in training and in
prediction, we need to solve the problem of finding the
highest-scoring subgraph for an action. The two problems
differ only in the definition of the score: in training we need
to iteratively find the subgraph that violates its margins the
most, whilst in prediction we need to find the subgraph with
the maximum compatibility to a given action. We explain
our inference algorithms for the latter problem and note that
the first problem is a straightforward variant.

Given feature weights w and a network G = (V,E),
the prediction for a new input action a is the maximally-

scoring response graph H* = (VH EH)

H*(a) = argmax F'(a, H;w).
HEH(Q)

Writing this problem explicitly, in terms of the parameters
and the feature maps gives

H*(a) = argmax (w, ¢(a) @ ¢(H))

HeH(G)
= argmax Z Sy, (€,), 2)
HEN(G) jcpn
where we have substituted s,_(e,a) = >, wj ey ¢i(a).

We will abbreviate s, (e,a) to s,,(e), as the action a
is fixed for an individual inference problem. The out-
put response network H can be specified by a node label
yv € {p,n}, where y, = p if and only if v is activated.
We write H, to emphasize the dependence of the output
subgraph H from labelling y. The node labels y, induce
edge labels y.. The score function s(e) can be interpreted
as a score function for the edges, given by the current in-
put a and weight vector w. The variable y. indicates the
possible labels of an edge e, and for each possible label the
score function s(e) assigns a different score. Depending
on the values that y. can take, the inference problem can
be further diverged into two modes:

Activation mode. We assume y. € {pp,pn} where y. =
pp implies node v is activated by u via a directed edge
e = (u,v), and y. = pn means that the activation cannot
pass through e. In activation mode, the inference problem
is transformed as finding the maximally scoring node la-
bel y,, and corresponding edge label y., consistent with an
activated subgraph H, given a set of edge scores s,, (e).

Negative-feed mode. In addition to the setting in activa-
tion mode, we also explicitly model the inactive network
by assume y. € {pp,pn,nn}, where by y. = nn we de-
note our belief that both » and v should be inactive given
action a. The inference problem is then to find the max-
imally scoring node labels and induced edge labels with
regards to an activated subgraph together with the inactive
counterpart given a set of edge score s, (e).

It is not difficult to show that the inference problem (Eq. 2)
is NP-hard. The proof of the following lemma, which pro-
vides a reduction from the MAX-CUT problem, is given in
the supplementary material.

Lemma 1 Finding the graph that maximizes Eq. (2) is an
NP-hard problem.

To solve the inference problem we propose two algorithms,
described on the negative-feed mode. Similar techniques
can be adapted to the activation-mode by setting edge score
sm(e) = 0. The first algorithm is based on a semidef-
inite programming (SDP) relaxation, similar to the one

Structured Prediction of Network Response

used for MAX-CUT and satisfiability problems (Goemans
& Williamson, 1995). The SDP algorithm offers a constant-
factor approximation guarantee for the inference problem.
However, it requires solving semidefinite programs. Ef-
ficient solvers do exist, but the method is not scalable to
large datasets. Besides, it cannot handle the order of acti-
vations. In contrast, our second approach is a more efficient
GREEDY algorithm that models activation order in a natural
way, but it does not provide any quality guarantee.

The sDP inference. Recall that for each edge (u,v) €
E we are given three scores: Spp(u,v), Spn(u,v), and
Smn(u,v). The inference problem is to assign a label p or
n for each vertex v € V. If a vertex u is assigned to label
p we say that u is activated. If both vertices u and v of an
edge (u,v) € E are activated, a gain spp(u, v) incurs. Re-
spectively, the assignments pn and nn yield gains spy (u, v)
and sun(u, v). The objective is to find the assignments that
maximizes the total gain.

We formulate this optimization problem as a quadratic
program. We introduce a variable z,, € {—1,+1}, for
each v € V. We also introduce a special variable xy €
{—1,41}, which is used to distinguish the activated ver-
tices. In particular, if x,, = zo we consider that the ver-
tex u is assigned to label p, and thus it is activated, while
x, = —xo implies that u is assigned to n and not activated.
The network-response inference problem can now be writ-
ten as (QP):

1
max —

Z [SPH(“’ U)(l + LTy — LTy — xuxv)
(u,v)EE
+8mn(u, V) (1 — Toxy — ToTy + TouZy)
+SPP(ua U)(]- + ZoTy + ToTy + xul‘v)}’

st o, Xy, Ty € {—1,+1}, forall u,v € V.

The intuition behind the formulation of Problem (QP) is
that there is gain spn(u,v) if 0 = z, = —x,, a gain
San(u,v) if 9 = —x, = —x,, and a gain syp(u,v) if
To = Ty = Ty

To solve the problem (QP), we use the similar technique in-
troduced by Goemans & Williamson (1995), such that each

variable x,, is relaxed to a vector v,, € R™. The relaxed
quadratic program becomes (RQP):

1
max — Z [SPD(U’7 ’U)(l + VoVy — VoVy — Vuvv)
(u,v)EE

+ 8 (U, 0) (1 — vovy, — VoV + Vi Vy)
+5pp (1, V) (1 + VoVy + VoV, + vy vy,
st. v; € R foralli =0,...,n.

Consider an (n+ 1) x (n+ 1) matrix Y whose (u, v) entry
1S Yy,w = Vy - V. If Vis the matrix having v,,’s as its

columns, i.e., V = [vq...vy], then Y = VTV, implying
that the matrix Y is semidefinite, a fact we denote by ¥ >
0. Problem (RQP) now becomes (SDP):

k
max 1 u;1 [Spn(u7 U)(]. + y(),u - y(),v - yu,v)
+8nn<ua U)(l —Yo,u — Yo,vu + yu,v)
+SPP(U7 ’U)(]_ + yO,u + y(),v + yu,v)]v
st. Y >0.

Problem (SDP) asks to find a semidefinite matrix, so that
a linear function on the entries of the matrix is optimized.
This problem can be solved by semidefinite programming
within accuracy e, in time that it is polynomial on k£ and
%. After solving the semidefinite program one needs to
round each vector v,, to the variable z,, € {—1,+1} in the

following way:

1. Factorize Y with Cholesky decomposition to find V' =
[Vo,V1...Vy].
2. Select a random vector r.

3. Foreachu = 0,1,...,n,if v, -r > O setx, = 1,
otherwise set x,, = —1.

Let Z be the value of the solution obtained by the above
algorithm. Let Z* be the optimal value of Problem (QP)
and Zp the optimal value of Problem (SDP). Since Prob-
lem (SDP) is a relaxation of Problem (QP) itis Zrp > Z*.
Furthermore, it can be shown that for the expected value
of Z it holds E[Z] > (a — €)Zg, with « > 0.796 and
where expectation is taken over the choice of r. Thus the
above algorithm is a 0.796 approximation algorithm for
Problem (QP).

The GREEDY inference. The inference (Eq. 2) is defined
on all edges of the network, which can be expressed equiva-
lently as a function of activated vertices (see details in sup-
plementary)

H*(a) = argmax Z Fr(v3),
HEW(G) | “n

where VPH is a set of activated vertices. F,(v;) is the
marginal gain on each node that is comprised partially from
changing edge label from pn to pp on incoming edges
{(vp,v;) | vp, € parents(v;)}, and partially from chang-
ing edge label from nn to pn on outgoing edges {(v;, v¢) |
v, € parents(v;)} defined as

Fm(”l’) = Z

vp Eparents(v;)

>

veEchildren(v;)

[Spp(Up, Vi) — Spn(Vp, v3)]

[SPH(Ui7 ’UC) - Snn(via Uc)}-

Structured Prediction of Network Response

It is difficult to maximize the sum of marginal gains as
the activated subnetwork is unknown. One can instead
compute for each vertex the maximized marginal gain
max,, I, (v;) in an iterative fashion as long as F,,,(v;) >
0, which leads to a greedy algorithm described as follows.
The algorithm starts with an activated vertex set VPH =
{r}. In each iteration, it chooses a vertex v; € V/ VPH
and adds to V;,H such that v; is the current maximizer of
F,.(v). The procedure terminates if the maximized gain
is smaller than 0. E¥ can be obtained by adding edges
e = (v;,v;) € B, ifv;,v; € VPH and v; was added to VPH
prior to v;. The time complexity for greedy inference al-
gorithm is O(|E|log |V]). See supplementary material for
details of the algorithm.

We note that we have not been able to show an approxi-
mation guarantee for the quality of solutions produced by
the GREEDY algorithm. A property that it is typically used
to analyse greedy methods is submodularity. However,
for this particular problem submodularity does not hold
(it only holds in the special case of MAX-CUT, i.e., when
Spp(€) = snn(e) = 0 and spp(e) = 1).

3.4. Loss functions

Instead of penalizing prediction mistakes uniformly on the
network GG, we wish to focus in the vicinity of the response
network. To achieve this effect we scale the loss accrued
on the nodes and edges by their distance to the children of
the root of the response network.

As the loss function in (1) we use symmetric-difference loss
(or Hamming loss), applied to the nodes and the edges of
the subgraphs separately, and scaled by function g (vg)
according distance to the focal point vg.

(6(Ga, Go) = Y €3 (Ga, Go)va (vk; v)

veV

+ Y 8 (Ga, Go)ra(vrsv),

(v,v")EE

where (5 (Ga, Gp) = [v € V,AV), £2(Ga,Gp) = [e €
E,AFEy], SAS’ denotes the symmetric difference of two
sets S and S’. We consider the following strategies to con-
struct the scaling function v¢ (vg):

Exponential scaling. Mistakes are penalized by A and A
is weighted exponentially according to the shortest path
distance to the focal point vj. Given focal point vy, edge
(vs,v;5), and distance matrix D between the nodes, the scal-
ing function is defined as

1 ifi =20
v (vg;visvg) = & APEDif i £ 0and D(k,i) < R
AEFD - if D(k,i) > R

where A > 0 is the scaling factor and R > 1 is a radius
parameter. Edges outside the radius have equal scalings.

Diffusion scaling. The diffusion kernel defines a distance-
based function between nodes v; and v; (Kondor & Laf-
ferty, 2002). The kernel value K (i,j) corresponds to the
probability of a random walk from node v; to node v;.
Given the adjacency matrix L of the network G, the dif-
fusion kernel is computed as

K = lim (I + BL) = exp(BL),
5—00 S
where I is the identity matrix and f3 is the a parameter that
controls how much the random walks deviate from the focal
point. Given focal node vy, edge (v;,v;), and diffusion
kernel K the scaling function is defined as

(U 0F v‘) = ; A
Ya(Vk; Vi, V5) = K (vg,v;) otherwise.

The scaling function keeps the loss value on the edges
connecting the focal point, and scale other edges by the
weights computed from diffusion kernel. Diffusion scaling
has the effect of shrinking the distance to nodes that con-
nects to the focal point by many paths.

4. Experimental evaluation

In this section, we evaluate the performance of SPIN and
compare it with the state-of-the-art methods through ex-
tensive experiments. We use two real-world datasets,
DBLP and Memetracker, described below. Statistics of the
datasets are given in Table 1.

DBLP! dataset is a collection of bibliographic information
on major computer science journals and proceedings. We
extract a subset of original data by using “inproceedings”
articles from year 2000. First, we construct an undirected
DBLP network GG by connecting pairs of authors who have
coauthored more that p papers (p = 5,10, 15). After that,
we generate a set of experimental networks of different size
by performing snowball sampling (Goodman, 1961). For
each experimental network, we extract all the documents
for which at least one of their authors is a node in the
network. We apply LDA algorithm (Blei et al., 2002) on
the titles of extracted documents to generated topics. Top-
ics are associated with publications, timestamped by pub-
lication dates, and described by bag-of-word features com-
puted from LDA. In this way, a topic can be seen as an
action and we will study the influence among authors.

Memetracker? dataset is a set of phrases propagated over
prominent online news sites in March 2009. We construct

'http://www.informatik.uni-trier.de/~ley/
db/
http://Memetracker.org

http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
http://Memetracker.org

Structured Prediction of Network Response

directed networks G for Memetracker dataset by connect-
ing two websites via a directed edge if there are at least five
phrases copying from one website to the other. A posted
phrase corresponds to an action, which again is times-
tamped and represented with bag-of-word features.

4.1. Experimental setup and metrics

SPIN can be applied to predict action-specific network re-
sponse (contenxt-aware) when action representation ¢(a)
is given as input. It is also capable of predicting edge in-
fluence scores in context-free mode when ¢(a) is treated
as unknown. For comparison purposes, we evaluate SPIN
against the following the state-of-the-art methods:

e Support Vector Machine (SVM) is used as a single tar-
get classifier used to predict the response network via
decomposing it as a bag of nodes and edges, and pre-
dicting each element in the bag.

e Max-Margin Conditional Random Field (MMCRF)
(Rousu et al., 2007; Su et al., 2010) is a multi-label
classifier that utilizes the structure of output graph G.
The model predicts the node labels of the network.

e Expectation-Maximization for the independent cas-
cade model (ICM-EM) (Saito et al., 2008) is a context-
free model that infers the influence probability of the
network given a directed network and a set of ac-
tion cascades. Here we use the implementation from
Mathioudakis et al. (2011) of this algorithm, which is
publicly available?.

e Netrate (Gomez-Rodriguez et al., 2011) models the
network influence as temporal processes occurs at dif-
ference rate. It infers the directed edges of the global
network and estimates the transmission rate of each
edge.

To quantitatively evaluate the performance of the tested
methods in predicting node and edge labels, we adopt two
popular metrics: accuracy and F score, defined as
2-P-R

P+R’
where P is precision and R is recall. We also define Pre-
dicted Subgraph Coverage (PSC) as

1 m
PSC=——% "> |G,

i=1veV;

F =

where V; is the set of focal points given action a;, n is the
number of nodes in the network, and m is the number of
actions. PSC expresses the relative size of a correctly pre-
dicted subgraph GG, in terms of node predictions that cover
the focal points v.

*https://dl.dropboxusercontent.com/u/
21620176/public_html/spine/index.html

Dataset Training | Feature Network
Example | Space V] [E]
DBLP S100 440 1190 100 204
DBLP M100 478 1127 100 151
DBLP M500 2119 3619 500 699
DBLP M700 2800 4369 699 952
DBLP M1k 3720 5281 1000 1368
DBLP M2k 6030 7183 2000 2687
DBLP L100 509 1274 100 152
DBLP L500 1869 3424 499 701
DBLP L700 2620 4300 699 960
DBLP L1k 3560 5405 1000 1368
DBLP L2k 3618 5454 1023 1402
memeS 4632 181 82 325
memeM 4804 179 182 521
memeL 4809 179 333 597
Table 1. Statistics of DBLP and Memetracker datasets.
Data Accuracy F Score Time (10%s)
SDP Neg Act SDP Neg Act SDP Neg Act
S100 | 79.9 77.6 729| 57.2 56.2 55.5| 16.0 1.5 0.2
MI100 | 75.8 73.6 68.5| 51.6 53.1 54.5| 152 1.4 0.2
L100 | 75.1 72.0 67.4| 53.5 56.9 57.2| 13.7 1.6 0.3
Geom.| 76.9 74.3 69.6| 52.0 554 55.7| 150 1.5 0.3

Table 2. Comparison of different inference algorithms. Geom. is
geometric mean of rows.

Our metrics are computed both in global context where we
pool all the nodes and edges from the background network,
as well as in local context where we only collect the nodes
and edges within certain radius R of the focal points. The
experimental results are from a five-fold cross validation.

4.2. Experimental results

We examine whether our context-sensitive structure predic-
tor can boost the performance of predicting network re-
sponses. We compare SPIN with other methods in both
context-sensitive and context-free problems. We show that
SPIN can perform significantly better in terms of predicting
action-specific network responses.

Comparison of inference algorithms. Table 2 shows the
geometric mean of node accuracy, F; and running time
over parameter space on three DBLP datasets, where “Neg”
and “Act” represent the GREEDY inference defined on the
negative-feed and the activation modes. SDP is also formu-
lated on the negative-feed mode. In general, the inference
algorithm based on negative-feed mode outperforms acti-
vation mode in terms of accuracy. The difference in F}
is smaller in comparison. SDP based inference surpasses
GREEDY inference in accuracy, however, by a small mar-
gin. In addition, GREEDY inference is almost 10 times
faster even on small datasets, where running time is total
time used for cross validation. For the following exper-
iments, we opted for GREEDY inference in negative-feed
mode as the inference engine of SPIN.

https://dl.dropboxusercontent.com/u/21620176/public_html/spine/index.html
https://dl.dropboxusercontent.com/u/21620176/public_html/spine/index.html

Structured Prediction of Network Response

Dataset Node Accuracy Node Fi Score Edge Acc PSC Time (103s)
SVM MMCRF SPIN | SVM MMCRF SPIN | SVM SPIN | SYM MMCRF SPIN | SVM MMCRF SPIN
memeS 734 68.0 72.2 | 39.0 39.8 47.1 | 62.7 45.6 | 234 25.3 33.6 | 6.6 2.9 4.1
memeM 82.1 79.0 81.5 | 29.1 30.1 38.0 | 61.1 68.8 | 186 188 283 | 13.7 3.2 7.3
memelL 89.9 88.3 89.8 | 267 27.1 350 | 455 80.0 | 17.7 189 276 | 199 59 11.8
M100 712 736 76.7 | 493 50.8 543 | 33.3 61.7 | 333 35.6 34.6 | 0.1 0.2 0.1
M500 89.0 914 92.0 | 18.8 135 14.6 | 282 92.6 | 29.3 264 29.5 | 9.0 3.8 3.2
M700 919 94.1 92.1 | 138 7.3 14.2 | 263 93.0 | 294 239 344 | 185 83 4.4
M1k 94.1 95.8 94.2 | 109 3.5 9.3 266 94.7 | 33.7 16.6 352 | 422 147 10.4
M2k 96.8 97.6 96.7 | 6.2 1.4 34 253 97.6 | 346 9.6 14.7 | 165.0 88.4 54.1
L100 694 72.2 75.7 | 51.1 53.1 574 | 316 623 | 309 31.7 334 | 0.1 0.2 0.3
L500 859 89.1 86.8 | 21.7 15.1 247 | 279 879 | 142 112 19.7 | 6.5 3.2 2.1
L700 89.7 924 89.7 | 16.2 9.4 17.3 | 26.5 904 | 9.5 6.7 125 | 160 7.8 5.3
L1k 924 944 915 | 124 64 139 | 264 923 | 6.1 4.4 84 403 137 104
L2k 92.5 94.5 919 | 12.3 54 12.7 | 26.5 93.2 | 6.0 2.9 7.2 419 219 13.1
Geom. 85.5 864 86.6 | 198 126 203 | 326 79.7 | 189 142 217 | 94 4.6 4.3

Table 3. Comparison of prediction performance on global context. The best in bold-face, the second best in italic.

Context-aware prediction. We apply SPIN with exponen-
tial scaling to predict context-sensitive network responses.
Comparison of prediction performance against SVM and
MMCREF is listed in Table 3. We show that SPIN can
dramatically boost the performance of all measures except
node accuracy: MMCRF wins in node accuracy, but SPIN
is the second best and the difference is small. In terms of
time consumption for training, SPIN is around three times
faster than SVM and two times faster than MMCRF on the
largest M2k dataset.

Context-free network influence prediction. Here we
compare SPIN to methods developed for influence network
prediction, namely Netrate and ICM-EM, on Memetracker
data. To make the comparison fair to the competition, we
convert the network to undirected network and replace ac-
tion features by a constant value. For SPIN, we further
represent each undirected edge by two directed edges. The
measure of success is Precision@ K, where we ask for top-
K percent edge predictions from each model and compute
the precision. Table 4 shows Precision@K as function
of K, where the performance of SPIN surpasses ICM-EM
and Netrate in all spectrum of K with a noticeable margin.
ICM-EM has the least accurate predictions of the three, but
achieves by far the the best running time. SPIN and Ne-
trate solve more complex convex optimization problems,
leading more accurate predictions at the cost of more CPU
time needed for training, SPIN being the more efficient on
the largest dataset, memelL.

The good performance of SPIN compared to Netrate is
mostly explained by the fact that Netrate solves a much
harder problem in which the underlying undirected network
is assumed to be unknown, while SPIN is able to leverage
the known network structure. In the experiment reported,
the edge predictions from Netrate are filtered against the
underlying complex network, in order to excessively pe-
nalize influence predictions along non-linked nodes.

Effect of loss scaling. Figure 2 depicts the effect of pa-

X X

Z o lA A Z wd
c - \ c -
< A e ——)

e 03-v- 1 v 7 £ g
o S -4A- 05-%- 3 g

g A A 0.7-%- 5 g o
g 7 "\, _g—B—uu |

£ B £ .4
> - g et - el - SR E .y)

D o fo-net AN ST IO A A <4

@ NS A S
it . —A o
3 vy ——A— A|D)

o 'V y — 9
< / w o
o g] O »
S T v 5 2
<] v <]

z T T T T T —Z

0 1 2 3 4 5

Subgraph Radius

w A& s %
18~ po) o g=
o 7, L —
s RS E %7 e
< o4 Al A ° an Ae---D----0
= - g -
€ 5 A T—Ala -
3 5 A AiiiiA p|E g A—OL—8
o v = o A
o N > 8 A
S o fonhooeiiTe B Aedents Aatabab === O —
E [|& v| € A
= Y N———gee—y———-V——"V|5]
9 7 //ﬂgkgﬁvgﬁvwv g~
a /// f_) g 4
T v/ 2
T T T T T w T T T T T T

T
0 1 2 3 4 5 0 1 2 3 4 5

Subgraph Radius Subgraph Radius

Figure 2. The improvement of prediction performance for differ-
ent scaling factor A with respect to SVM.

rameter A of the exponential loss scaling to prediction per-
formance on subgraphs of different radius. SVM (dashed
line) is used as the baseline. When 0 < A < 1, the
node prediction accuracy (top, left) and F; (top, right) de-
crease by the increasing subgraph radius, while A > 1
leads to the opposite behavior allowing larger subgraph
to be learned. Predicted subgraph coverage decreases by
incresing A. Edge prediction accuracy (bottom, right) in-
creases monotonically in A implying that predicting the
longer influence paths is a hard problem for SVM. In Ta-
ble 5 we examine the performance of diffusion scaling. The
numbers reported are geometric means over the different
Memetracker and DBLP datasets. We observe a decreased
performance when increasing the parameter 3, which cor-
responds to smoothing the distance matrix. This indicates

Structured Prediction of Network Response

R Precision @ K
Dataset |~ Model | T (0%) ' —qor——o50T30% T 40% T 50% [60% | 70% | 80% | 90% | T00%
SPIN 550 | 82.0 | SLO | 76.0 | 74.0 | 74.0 | 70.0 | 69.8 | 67.9 | 66.7 | 647
memeS | ICM-EM | 001 | 603 | 635 | 651 | 62.0 | 62.0 | 61.5 | 622 | 604 | 60.7 | 61.9
NETRATE | 583 | 762 | 73.8 | 704 | 687 | 687 | 668 | 649 | 634 | 629 | 61.9
SPIN 550 | 827 | 721 705 | 692 | 692 | 67.9 | 662 | 65.6 | 643 | 642
memeM | ICM-EM | 002 | 563 | 553 | 56.8 | 574 | 574 | 563 | 575 | 578 | 583 | 58.5
NETRATE | 1393 | 612 | 646 | 629 | 625 | 625 | 624 | 612 | 601 | 587 | 585
SPIN 775 | 822 | 73.6 | 691 | 66.7 | 66.7 | 659 | 66.1 | 659 | 639 | 63.6
memeL | ICM-EM | 001 | 521 | 557 | 542 | 565 | 565 | 567 | 574 | 580 | 57.6 | 570
NETRATE | 12.63 | 56.5 | 57.8 | 60.0 | 593 | 593 | 594 | 589 | 584 | 575 | 570

Table 4. Model performance in context-free influence network prediction.

. Node Acc Node [Edge Acc PSC Time (10%s)

Loss Scaling
Meme DBLP | Meme DBLP | Meme DBLP | Meme DBLP | Meme DBLP
Dif 5 = 0.1 80.8 86.5 | 400 286 | 63.0 805 | 302 303 | 683 2.7
Dif 3 =0.5 66.4 865 | 425 285 | 409 805 | 33.0 302 | 509 4.0
Dif 5 = 0.8 63.5 865 | 409 285 | 393 80.5 | 312 302 | 32.6 32
ExpA=05 | 8.9 839 | 397 287 | 63.1 7777 | 29.7 243 | 71.0 1038

Table 5. Comparison of diffusion scaling with exponential scaling.

that emphasizing connections between long-distance nodes
makes prediction more difficult, a finding consistent with
the results on exponential scaling. Setting 5 = 0.1 leads
to comparable performance over exponential scaling with
A = 0.5, with slight improvement on the DBLP datasets.

5. Discussion

We have presented a novel approach, based on structured
output learning, to the problem of modelling influence
in networks. In contrast to previous state-of-the-art ap-
proaches, such as Netrate and ICM-EM, our proposal,
named SPIN, is a context-sensitive model. SPIN does not
try to force global influence parameters, but instead it in-
corporates the action space into the learning process and
makes predictions tailored to the action under considera-
tion. Our method can provide a useful tool in market re-
search or other application scenarios when actions arise
from a high-dimensional space, and one wants to make
predictions for actions not seen before. Another benefit
of our approach, compared to other state-of-the-art meth-
ods, is that our method does not make explicit assumptions
regarding the underlying propagation model. Addition-
ally, action responses are explicitly formulated as directed
acyclic subgraphs, and the model is capable of predicting
the complete subgraph structure. We proved that the in-
ference problem of SPIN is NP-hard, and we provided an
approximation algorithm based on semidefinite program-
ming (SDP). In addition, we developed a greedy heuris-
tic algorithm for the inference problem that scales linearly
in the size of the network, with time consumption in the
same ballpark as Netrate. With extensive experiments we
show that SPIN can dramatically boost the performance of
action-based network-response prediction. SPIN can also

be applied in context-free prediction where it captures the
edge influence weight of the network.

References

Anagnostopoulos, Aris, Kumar, Ravi, and Mahdian, Mo-
hammad. Influence and correlation in social networks.
KDD, 2008.

Blei, D., Ng, A., and Jordan, M. Latent dirichlet allocation.
In Dietterich, T., Becker, S., and Ghahramani, Z. (eds.),
Advances in Neural Information Processing Systems 14.
MIT Press, 2002.

De Choudhury, Munmun, Mason, Winter A, Hofman,
Jake M, and Watts, Duncan J. Inferring relevant social
networks from interpersonal communication. WWW, pp.
301-310, 2010.

Du, Nan, Song, Le, Smola, Alex, and Yuan, Ming. Learn-
ing Networks of Heterogeneous Influence. NIPS, 2012.

Eagle, Nathan, Pentland, Alex Sandy, and Lazer, David.
Inferring friendship network structure by using mobile
phone data. Proceedings of the National Academy of
Sciences, 106(36):15274-15278, 2009.

Goemans, Michel and Williamson, David. Improved ap-
proximation algorithms for maximum cut and satisfiabil-
ity problems using semidefinite programming. JACM, 42
(6), 1995.

Gomez-Rodriguez, Manuel, Leskovec, Jure, and Krause,
Andreas. Inferring Networks of Diffusion and Influence.
KDD, 2010.

Structured Prediction of Network Response

Gomez-Rodriguez, Manuel, Balduzzi, David, and
Scholkopf, Bernhard. Uncovering the Temporal
Dynamics of Diffusion Networks. ICML, 2011.

Goodman, Leo A. Snowball sampling. The annals of math-
ematical statistics, 32(1):148-170, 1961.

Goyal, Amit, Bonchi, Francesco, and Lakshmanan,
Laks VS. Learning influence probabilities in social net-
works. WSDM, 2010.

Kempe, David, Kleinberg, Jon, and Tardos, Eva. Maximiz-
ing the spread of influence through a social network. In
KDD, 2003.

Kondor, L.R. and Lafferty, J. D. Diffusion kernels on graphs
and other discrete structures. In Proceedings of the
ICML, 2002.

Mathioudakis, Michael, Bonchi, Francesco, Castillo, Car-
los, Gionis, Aristides, and Ukkonen, Antti. Sparsifica-
tion of influence networks. KDD, 2011.

Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J.
Efficient algorithms for max-margin structured classifi-
cation. Predicting Structured Data, pp. 105-129, 2007.

Saito, Kazumi, Nakano, Ryohei, and Kimura, Masahiro.
Prediction of information diffusion probabilities for in-
dependent cascade model. In Knowledge-Based Intelli-
gent Information and Engineering Systems (KES), 2008.

Su, Hongyu, Heinonen, Markus, and Rousu, Juho. Struc-
tured output prediction of anti-cancer drug activity. In
Proceedings of the 5th IAPR international conference on
Pattern recognition in bioinformatics, PRIB’ 10, 2010.

Watts, Duncan J and Dodds, Peter Sheridan. Influentials,
networks, and public opinion formation. Journal of con-
sumer research, 34(4):441-458, 2007.

