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Abstract

Manifold learning seeks low-dimensional repre-
sentations of high-dimensional data. The main
tactics have been exploring the geometry in
an input data space and an output embedding
space. We develop a manifold learning the-
ory in a hypothesis space consisting of models.
A model means a specific instance of a collec-
tion of points, e.g., the input data collectively
or the output embedding collectively. The semi-
Riemannian metric of this hypothesis space is
uniquely derived in closed form based on the in-
formation geometry of probability distributions.
There, manifold learning is interpreted as a tra-
jectory of intermediate models. The volume of a
continuous region reveals an amount of informa-
tion. It can be measured to define model com-
plexity and embedding quality. This provides
deep unified perspectives of manifold learning
theory.

Manifold learning (MAL), or non-linear dimensionality re-
duction, assumes that some given high-dimensional obser-
vations yq,...,y, € R lie around a low-dimensional
sub-manifold {I'(2) : z € R} induced by a smooth map-
ping I' : R — RP (d < D). While it is possible to learn
a parametric form of I' (Hinton & Salakhutdinov, 2006),
the majority of manifold learners are non-parametric. They
learn directly a set of low-dimensional coordinates {z; }?_;
to preserve certain information in {y, }7 ;.

Depending on the choice of information to be preserved,
at least two families of MAL methods thrived in the last
decade. The spectral methods (Tenenbaum et al., 2000;
Roweis & Saul, 2000; Belkin & Niyogi, 2003) and semi-
definite embeddings (Weinberger et al., 2004; Sha & Saul,
2005) represent the family with natural convex formula-
tions. They only preserve encodings of local informa-
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NOTATIONS

— respectively, a generic model in R®,

an MAL input model in R”, and an MAL output model
in R?. The subscripts denote the sample size and can be
MX), M, Mo, O o HE 0o B 7.0

— different model manifolds. The superscripts denote
the dimension. The parameters in parentheses denote

the coordinate system. Both can be omitted; —

the (n — 1)-dimensional statistical simplex; —
semi-Riemannian metric of a model family and Fisher

X
ij

a model X. The superscript can be omitted;
— neighbourhood probabilities; |6 = (61,...,60,) ‘ —
canonical parameters of probability distributions; | | M|

— volume or scale of M; — indexes of the
£-nearest-neighbours of the ¢’th sample; —

determinant;

omitted;

information metric; |s

— pairwise dissimilarities of

diag(z,...,xs) ‘ — a diagonal matrix

with 1, ..., z, on its main diagonal.

tion on a weighted £-nearest-neighbour (ENN) graph of
{y,}. Stochastic Neighbour Embedding (SNE) (Hinton &
Roweis, 2003) and its extensions (Cook et al., 2007; Venna
& Kaski, 2007; van der Maaten & Hinton, 2008) represent
the non-convex family. They encode the input and output as
probability distributions and optimize the embedding in a
maximum-likelihood framework. By sacrificing convexity,
non-local information can be preserved as well. The latter
SNE-based family shows robustness to parameter configu-
ration and favorable performance in data visualization. It
is being actively developed (Carreira-Perpifidn, 2010; Vla-
dymyrov & Carreira-Perpifidn, 2012; Sun et al., 2012; Yang
et al., 2013) and stands as state-of-the-art MAL.

Despite such a diversity, several critical problems in the
field of MAL remain unclear. Practically, no standard ex-
ists in gauging the data complexity and the embedding
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quality. The performance is often empirically assessed
via visualization or indirectly evaluated via classification.
Theoretically, an intrinsic MAL theory with deep connec-
tions to classical statistical learning theory (Akaike, 1974;
Schwarz, 1978; Amari, 1995; Vapnik, 1998) is not estab-
lished. MAL emphasizes local information encoded into
sample-wise structures. How to describe and measure such
preservation of local information is unknown.

We attack these problems with a geometry, not in an obser-
vation space it° or an embedding space R¢, but in a very
high-dimensional hypothesis space made of models.

Definition 1. A model X ,, is a specific instance of a set of
vectors {x1,...,&n}.

Remark 1.1. By default, a model denoted by X, is a co-
ordinate matrix (x1, . .., x,)T. Alternatively, it can be im-
plicitly specified by a n x n matrix of pairwise measure-
ments, e.g., distances or (dis-)similarities.

Definition 2. A model family M is a smooth manifold con-
sisting of continuous models.

For example in MAL, the input Y,, = (y;,...,y,)7 or

the output Z,, = (21,...,2,)7 is one single model. The
model family M, = {Z, = (zl,...,zn)T DY R =
0;Vi,z; € %d} includes all possible embeddings cen-
tered at 0. Then, MAL can be described as a projection
Y — Z*(Y) € M, through convex optimization, or a
path Z°(Y), Z' (Y),..., Z*(Y) € M., along the gradi-
ent of some non-convex objective function.

1. Preliminaries

1.1. Manifold Learning

Given a model family M, any model X ,, € M, represent-
ing a collection of coordinates x1, . . ., ., can be encoded

into n distributions over {1,2,...,n}:
exp (_Six) o )
pili(X) = "5 (Vi #9), pij = 0 (Vi)
Z#i exp (*Si])
(1)
or one single distribution over {1,2,...,n}%
exp (—sf]()

pij(X) =

) (Vj #14), pii = 0 (Vi).

2
In either case, s;’j{ is a possibly non-symmetric difference
measure between x; and x;, e.g., square distance. After
normalization, p represents the probability of x; and x;
being similar. The subscript “j|i” of p in eq. (1) signifies a
conditional probability; the subscript “45” in eq. (2) signi-
fies a joint probability.

Zmﬂ#ﬂ exXp (_Sf](

It is not arbitrary but natural to employ eqs. (1) and (2) for
statistical MAL, because they encode distributed local in-

formation. The information in p is distributed in a sample-
wise manner. Each sample x; has limited knowledge en-
coded into p.;; mostly regarding its neighbours.

Equations (1) and (2) are general enough to cover
SNE (Hinton & Roweis, 2003), symmetric SNE (Cook
et al., 2007), t-SNE (van der Maaten & Hinton, 2008),
and a spectrum of extensions. For example, SNE ap-
plies s;¥ = 7i||&; — ;||? to eq. (1) for encoding the in-
put and output, where 7; > 0 is a scalar; t-SNE applies
sff = log(||z; — ;|| + 1) to eq. (2) for encoding the out-
put. From a kernel view (Ham et al., 2004), any MAL tech-
nique that encodes into kernels naturally extends to such

probabilities.

Despite a model X can have various forms, after the en-
coding p(X) is in a unified space. In eq. (1), (p;};(X)) is
a point on the product manifold (8"~ 1)", where S"~! =
{(p1,-...pn) : Vi,p; > 0; Y1, p; = 1} is a statistical
simplex consisting of all distributions over {1,2,...,n}. In
eq. (2), (ps;(X)) is a point on 8"°=1. Such a unified rep-
resentation makes it possible to measure the difference be-
tween two models Y and Z with different original forms.
It motivates us to develop an MAL theory on the statistical
simplex regardless of the original representations.

1.2. Information Geometry

We introduce the Riemannian geometry of S™~!, the (n —
1)-dimensional statistical simplex formed by all distribu-
tions in the form (p1,...,p,). The readers are referred to
(Jost, 2008; Amari & Nagaoka, 2000) for a thorough view.

Any (p1,...,pn) € S™ ! uniquely corresponds to 8 =
(61,...,0,) via the invertible mapping 0; = log(p;/pr),
Vi, where p, (1 < r < n) is a reference probability. These
canonical parameters 0 serve as a global coordinate system
of S~ Around VO € S™~1, the partial derivative oper-
ators {90/001,--- ,0/00,_1,0/00,11,--- ,0/00,} repre-
sent the velocities passing through @ along the coordinate
curves. An infinitesimal patch of S"~! around € can be
studied as a linear space TpS™ 1 = {2 iz (@i - 0/00;) :
Vi, a; € R} called the tangent space. A Riemannian met-
ric & defines a local inner product (9/96;, 8/89j>®(0) on
each tangent space TpS™ ! and varies smoothly across
different €. Locally, it is given by the positive definite
(p.d.) matrix &;;(0) = (9/06;, 8/80]-)6(9). Under cer-
tain conditions (Cencov, 1982), the Riemannian metric of
statistical manifolds, e.g. S"~!, is uniquely given by the
Fisher information metric (FIM) (Rao, 1945) &,;(0) =
S, pi(6) (91og pi(60)/96;) (9 log pi (8)/96)).

Lemma 3. On 8", &,;(0) = p;(0)d;; — pi(0)p;(6).

FIM grants us the power to measure information. With
respect to a coordinate system, e.g. the canonical pa-
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Figure 1. A geometry of statistical manifold learning.

rameters 0, the information density of a statistical model
6 € M is given by the Riemannian volume ele-

ment /det (&(0)) (Jost, 2008). It means the amount

of information a single observation possesses with re-
spect to 8. A small /det (&(0)) means that 6 con-
tains much uncertainty and requires many observations
to learn. Then, the information capacity of a statistical
model family M C S"~! is given by its volume |[M| =
Joen V/det (&(8))d6. Tt means the total amount of in-
formation, or the “number” of distinct models, contained
in M (Myung et al., 2000). This volume is an intrinsic
measure invariant to the choice of coordinate system.

To extend FIM to a general non-statistical manifold, e.g.,
a model family M" parametrized by ¢ = (¢1,...,¢r),
one need to construct a mapping from M" to S"~!. Fol-
lowing such a mapping, any tangent vector 9/0p; of
M?"™ can be pushed forward to TeS" ! as 0/0p; =
Sor_y (06x/0p; - 0/06)). In this way, the inner product
(0/0p;,0/0¢;) can be measured with FIM and used to
define the Riemannian metric of M". Such a strategy is
called pullback (Jost, 2008). This is intuitively shown in
fig. 1. M" (left) as in definition 2 mirrors the information
geometry (right) through a probabilistic encoding p.

2. An Intrinsic Geometry of MAL

The central result of this paper is summarized as follows.

Theorem 4. Consider a model family M"™ = {s;;(p) :
¢ = (¢1,..., .)€ ®}, where ® C R". The pullback
information metric with respect to Eq.(1) is given by

n

o) =3 Lgp (5) (M)T

— O O

T
- 83kl " &Skl
- Pik—m— Pilk— ;
(Eme) (Em )

the pullback metric with respect to Eq.(2) is

9(p) = zn:ipkz (?g) <O:;‘ZZ)T

k=11=1
k=11=1 o 890 k=11=1 e 0 7

where sk, pyjr, and py; vary with @ as in eqs. (1) and (2).

Remark 4.1. g(yp) is a meta-metric. Its exact form de-
pends on s;; () and the choice between eqs. (1) and (2).
Different encodings lead to different geometries of infor-
mation.

Remark 4.2. We leave the reader to verify g(yp) =
0. Therefore g(y) is called a semi-Riemannian metric.
“Semi” means g(ip) is positive semi-definite (p.s.d.) rather
than p.d '. A model X moving rigidly forms a null
space (Jost, 2008), a model family with zero volume, mean-

ing that such movements contribute zero information.

From theorem 4, the pullback metrics induced by eq. (1)
and eq. (2) are in similar forms. Both are some covariance
of Osgi1/Op. Such similarity agrees with previous stud-
ies where SNE and symmetric SNE show similar perfor-
mance (Cook et al., 2007). Because of space limitation, the
following results are derived based on the metric induced
by eq. (1) only. The subtle difference between these two
kinds of normalizations is left to a longer version.

A natural question arises as to what kind of geometry is
endowed to the ambient model family M"™® = {X, =
(x1,...,x,)T : Vi,z; € R®}. This is meaningful be-
cause a model family M of interest is often a sub-manifold
of Mv With respect to the Euclidean coordinates, its

semi-Riemannian metric § defines for any X & M an
(n® x nD) p.s.d. matrix g(X). We investigate its © X D
sub-block (0/0x;, 0/0x;) 5(x), which can be used to mea-

sure the infinitesimal length ||da;|| when «; is shifted to

'In other contexts, a semi-Riemannian metric is also defined
to be non-degenerate with full rank (Jost, 2008)
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x; + dx; while the other samples stay, or the intrinsic dif-
ference caused by such an increment dx;.

Corollary 5.

1o} 1o} >
: = 421%\] —ais)(
<8w2 awz §(X)
n n n T
+ 4ij|i (:ch - ZPN%‘) (%‘ - ijﬂa) .
j=1 j=1 j=1

Corollary 5 reveals an interesting relationship between in-
formation geometry and data geometry. The right-hand
side is like a local covariance matrix around a; with lo-
cality defined by p. If dx; is orthogonal to the data man-
ifold, the resulting ||da;|| is small. This explains: while
the data manifold is unfolded in the sense that the samples
mainly move along the normal directions, the correspond-
ing model goes along a path on M with small informa-
tion volume. Across different samples, Corollary 5 quanti-
fies the potential information in each a; with the Rieman-
nian volume element /det((0/0x;, /0x;)5x)). Such
sample-wise information provides theoretical quantities to
outlier identification or landmark selection in sub-sampling
procedures (van der Maaten & Hinton, 2008). Corollary 5
gives a geometric interpretation of manifold kernel density
estimation (Vincent & Bengio, 2003) as growing density to
maximize the information variance on M.

The target of this paper is a learning theory centered on
the above theorem 4 and supported by corollaries 5, 6
and 10 with illustrative simulations. We investigate two
independent-yet-related model families, corresponding to
information geometries of model complexity and model
quality. We do not present a systematical comparison with
other measurements. They are as many as manifold learn-
ers. None escapes the fact that it is measured in the ob-
servation space or the embedding space (Venna & Kaski,
2007; Zhang et al., 2011). In contrast, we regard all sam-
ples collectively as one point and measure information
on a differentiable manifold of such models. In the his-
tory of statistical learning, similar information geometric
theories contributed deep insights (Akaike, 1974; Amari
& Nagaoka, 2000; Myung et al., 2000; Lebanon, 2003;
Xu, 2004; Nock et al., 2011). We echo these previous
works and adapt to recent developments of MAL. Given
the uniqueness of FIM, the proposed measurements try to
estimate the true information loss in MAL. This is more
general than and fundamentally different from empirical
measurements.

3. Locally Accumulated Information

We measure the complexity of a fixed model X =
(x1,...,2,)7T given by a matrix (sff)nxn of pairwise dif-

ferences. We only study the case that s7% = [|z; — a;]|%.

To generalize to other similar cases is trivial. Our strategy
is to vary X in certain ways to form a model family. Such
variation represents different perspectives to measure and
perceive information. The scale of this model family ex-
poses the total amount of information in X with respect to
these variations.

We install on each sample x; an isotropic observer. It
perceives information encoded with eq. (1), where s;; is
parametrized as

T - 8% if j € ENN;
B _ 7 ij (2
5ij (T) { +00 if otherwise, )
or
log(r; - si5 +1) if j € ENN;
t_ . = v l'] !
$i;(T) { +o0 if otherwise. @

Vi, 7, > 0 zooms other samples near or far from x;, so
that information at different scales can be incorporated. £
(2 < £ < n—1) specifies the visual range in the maxi-
mum number of samples that can be observed by any ;.
The purpose of ¢ is to ignore distant relationships to make
related computation scalable. Datasets of different size
are measured on the same statistical manifold S*~!. Such
measurements are therefore comparable. As compared to
eq. (3), the distribution defined by eq. (4) has higher en-
tropy. Even if 7, — oo, meaning zero sight, distant pairs
still occupy some probability mass. Hence, eq. (4) puts
more emphasis on non-local information.

Once X and t are fixed, all possible configurations of
T = (71,...,7,) forms a n-dimensional model manifold
denoted as O’ ¢(7). Its geometry is given as follows.

Corollary 6. If the observers are characterized by
eq. (3), the Riemannian metric of (9}7&(7') is g(t) =
diag (g1(71), =+, gn(Tn)), where

0
gi(ﬂ') = o Z Pj\i(ﬂ') Sff

v\ jeenn;

= > ) (%) -

jEENN;

2

> opjlr)sy |

jEeNN;

if the observers in eq. (4) are used instead, the correspond-
ing metric is g' (1) = diag (¢4 (m1), - -+, ¢ (7)), where

)= % pa(n) 5 Y
1) — pjl’b Ti 1+7’1$i7(

JEENN;

X

- Z ij’L

1 T;S
JEENN; + i
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d=1
DATASET n ©® TRUEd MLE LAI | tLAI |
Spiral 200 3 1 134023 124021 | 114006
Swissroll 500 3 2 214013 2.040.08 , 2.0+0.05
Faces 698 4k ~3 384042 344027324015
Hands 481 245k ~2 224037 1.740.21 , 20£0.10 | d=2
MNIST ~ 60k 784 unknown 10.1£0.27 9.7+£0.55 ' 9.80.26 |
d=3

Table 1. Estimated intrinsic dimension (avg. £ std.) for each k € {5, 10, ...,100}.

We only discuss g(7) and leave g*(7) for future extentions.
The scale of O’ () can be measured as follows.

Definition 7. The locally accumulated information (LAI)
of X given the visual range ¢ is defined as

</Om\/mclt). (5)

O(X) =

1 n
ﬁ':

=1

Remark 7.1. O% () resembles an orthant (0,0)", and
LAI measures its average side length.

To understand LAI, one need to grasp the concept of in-
formation. Shannon’s information, i.e. entropy, measures
the absolute uncertainty of a single distribution. Fisher’s
information (Rao, 1945) measures the relative uncertainty
within a continuous region of distributions (Myung et al.,
2000). In eq. (5), each term in the sum is Fisher’s infor-
mation integrated along a statistical curve corresponding to
a local observation process. LAI measures how much in-
trinsic difference, or how “many” distinct distributions, are
observed during zooming the observation radius from O to
0.

Proposition 8. VX ,VE, VA > 0, |O¢(X) = |O¢| (A X).
Proposition 9. If Vi, x;’s I-NN is unique, then V&,
arccos (1/\/%) < |Oe|(X) < o0

LAI is invariant to scalling (proposition 8). LAI is always
finite and has a lower bound (proposition 9). This lower
bound can be approached by approximately placing X as
a regular n-simplex. This is only possible when the dimen-
sion of {x;} is large enough. In fact, LAI reflects the in-
trinsic dimensionality. In high dimension, the pairwise dis-
tances present less variance (Bellman, 1961). Correspond-
ingly, the curve of distributions defined by eqs. (3) and (4)
is straighter and shorter. In low dimension, the observer-
ations at different scales are more different. Correspond-
ingly, the curve of distributions is more bended. Consider
a line of cities (London, Paris, Geneva, Rome). As an ob-
server in London expands its sight, it discovers the other
three cities one by one. On S 2, a curve starts from the Paris
vertex, then bends towards Geneva, then bends towards

Figure 2. Local dimension estimation.

Rome. In this model, LAI ~ 5.3. A rectangular model
(Berlin, Paris, Vienna, Marseille) has “higher dimensional-
ity” and therefore a smaller value of LAI (~ 5.1).

LAI can be conveniently calculated with an off-the-shelf
numerical integrator. The computation involves n integra-
tions, which can be reduced by averaging over a random
subset of samples in eq. (5). The cost of each integration
scales with £ (£ < n). Overall, the computation is scalable.

A Dictionary-based Intrinsic Dimensionality Estimator

We generate random artificial data with different dimen-
sion ® to build a dictionary of LAI values indexed by £ and
©. This dictionary is used to map any input data to an in-
trinsic dimensionality. Table 1 shows its performance com-
pared to the maximum likelihood estimator (MLE) (Lev-
ina & Bickel, 2005) on several benchmark datasets, in-
cluding a spiral with one intrinsic dimension, a Swiss roll
with two intrinsic dimensions, an artificial face dataset®
rendered with different light directions and different ori-
entations (three degrees of freedom), an image sequence’
recording a hand holding a bowl and rotating (around two
degrees of freedom), and MNIST hand-written digits *. In
order to suppress the curse of dimensionality (Bellman,
1961), a dataset is projected to *°° with principal compo-
nent analysis (PCA) before going to the estimators. Over-
all, the LAI estimation is closer to the (estimated) ground
truth with less variance. t-LAI is based on eq. (4) with sim-
ilar definitions. It shows the best robustness to the choice of
€, because sffj is able to incorporate more non-local infor-
mation. MNIST is closer to real-world datasets, where the
ground truth is unknown and the intrinsic dimension varies
from region to region. The large variance of (t-)LAI is be-
cause the intrinsic dimension changes with €. At a small
scale (¢ = 5), the intrinsic dimension tends to be over-
estimated (~ 10) because of local high-dimensional noise.
At a larger scale (k = 100), the intrinsic dimension is esti-

http://isomap.stanford.edu/datasets.html

*http://vasc.ri.cmu.edu//idb/html/motion/
hand/index.html

‘nttp://yann.lecun.com/exdb/mnist
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mated as 8 ~ 9 as the data manifold shows up. This obser-
vation agrees with the characteristics of real-world data.

LAI can be used for local dimensionality estimation (Carter
et al., 2010) by computing a local average of fooo Vi (t)dt
around any x;. Figure 2 shows the side view of a candy bar
dataset with a 1D stick, a 2D disk, and a 3D head. Its local
dimension showed by the colors is well-estimated.

4. A Gap between Two Models

A central problem in MAL is to define the difference be-
tween an input Y',, and an output Z,,. Then, the embedding
quality can be evaluated, and MAL can be implemented
through optimization. According to section 3, Y and Z
individually extend to two families modeling their inter-
nal complexity. Our strategy is to continuously deform one
family to the other along a bridging manifold. The volume
of this bridge measures their intrinsic difference.

Fortunately, such a bridge exists for any given Y and Z.
Consider the model family 'H%ﬁ z.¢ defined by

aisl +bisZ  if j € eNNg;
- — Y] 1213 iy
i1 (€) { 400 if otherwise, ©)
or
sY +log (bisZ +1)  if j € eNN;;
st(c) — alSlJ + 0g (blsl] + ) 1 J S E 017 (7)
“ +00 if otherwise,

where Vi, €ENN; = €NN;(Y') U €NN;(Z) are the input or
output neighbours of i, a; > 0, b; > 0, and ¢ =
(a1,b1,...,an,by,) serves as a global coordinate system.
The boundary b = 0 deteriorates to a model family in-
duced by Y (similar to OF ). The boundary a = 0 deteri-
orates to a family induced by Z (similar to O7 ;). Among
all possible interpolations, eqs. (6) and (7) are simple and
natural. H3% , , defined in eq. (6) is somehow flat (Amari
& Nagaoka, 2000). Its geometry is given as follows.

Corollary 10. With respect to eq. (6) and the global co-
ordinate system ¢ = (a1,b1,...,ay,by,), the Riemannian
metric of 'H%}‘ z.¢ 18 in the block-diagonal form

1 1
g({a gcib
Jba  Gwb

n n
Yaa  Yab

n n
Iba  Gwb

where Vi,

o= Y o (5) = | D mis |

JEENN; JEENN;

2
i Ji ( Z)Q _ L GZ

Iob = Djli \Sij Djli Sij | >

JEENN; JEENN;

_ . Y Z
9ba = E ple (Sij Sij)
JEENN;

V4
E , Pjli Sij

JEENN;

Y
- § , Pjli Sij

JEENN;

The metric gt(c) with respect to eq. (7) is obtained by re-
placing 5 - with 5 (1 + bisizj) in the above equations.

Due to space limitation, the following discussion is only
based on the geometry induced by eq. (6).

’H%Zf z ¢ embeds all information regarding the intra- and
inter-complexity of Y and Z. Across this bridge, we con-
struct a low dimensional film, whose volume can be easily
computed to estimate the closeness between the input and
output boundaries. Consider the 2D sub-manifold

ﬁ%f,z_’g“% ={(a1,b1,...,an,,b,) : Vi,a; = ar;(Y, k),

b =b1i(Z,K); a € (0,00);b € (0,00); 5 < £}

with a global coordinate system (a,b). All observers in
Y (resp. Z) simultaneously zoom according to one single
parameter a (resp. b). A large value of a (resp. b) corre-
sponds to high frequency local information; a small value
of a (resp. b) corresponds to low frequency distant informa-
tion. For each 4, the scalars 7;(Y, k) and 7;(Z, k) are com-
puted by binary search, so that the distribution p.|; defined
by egs. (1), (6) and (7) has fixed entropy given by log x
and each sample has effectively the same number of neigh-
bours given by s (Hinton & Roweis, 2003). Such align-
ment is to derive two lines ¢ = 0 and b = 0 as close as
possible on each side of the gap. The volume of the film
7-_Ly, Z.¢. in between these lines approximates the minimal
efforts needed to shift a continuous spectrum of informa-
tion from one family to the other.

Proposition 11. The volume (area) of some region ) on
Hy .z e xis

Hewol(Y,Z) = //dadb (ZT Yngaa>

n n 2
x (ZT?(Z,/@)géb) <Z (Y, k)7:(Z ﬁ)gab> .
i—1 i=1

(®)
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Figure 3. Performance measurements of different embeddings.

In each sub-figure, the color-map shows the local densities

vol(a, b)do (a,b) over Q. From left to right (resp. bottom to up), the input (resp. output) observation radius expands from 5 to 50.
The x-axis (resp. y-axis) is linear in 1/a (resp. 1/b). The number below each square shows the volume, i.e. the integration of local
densities in the corresponding color-map. Note, the colors are different between the two datasets.

Proposition 12. VY ,VZ,VA, > 0,VA, >0,
Hewol(Y, Z) = [Herol(AWY, A:2Z).

The region {2 means interested information in MAL. It can
be chosen empirically as a rectangle to exclude low fre-
quency information above the radius « and high frequency
information below a minimal radius k. Given Y and Z,
the volume |He ..0|(Y, Z), shortly denoted as |Hq/|, can
be efficiently computed with a Monte Carlo integrator. It
forms a theoretical objective of MAL that is scale-invariant
(proposition 12).

We re-write eq. (8) as [Ho| = [[, vol(a,b) do(a,b). By
noting that g’,, gi;. 9%, and g} in corollary 10 are all in
the form of (co-)variances, the normalized scalar

vol(a,b)

\/ 7, 17_1(Y H)TZ(Z H)gab)2
Zz 17 Y K’)gaa Zz 1 'L(Z K;)gbb

ranges in | 0 1] and measures the overall linear correlation
between s and s . for the same ¢. The more linearly cor-
and sZ the smaller the value of vol(a, b).

(C))

related s R

Proposmon 13. [Hq| = 0iff Ja,b € Q, s.t. vol(a,b) = 0.

vol(a, b) is usually positive (proposition 13) and tells the
input-output agreement at a specific frequency. The term

do(a,b) = (\j ZTE(Y, /{)g}'mda) (\J ZTZ?(Z, /@)ggbdb)

measures the information density or interestingness at
(a,b) based on separate observations on Y and Z (see sec-
tion 3). Therefore, |Hg| can be understood as the linear
agreement at different scales weighted by information den-
sity.

Two classical datasets in MAL, Swiss roll (n = 10°%) and
MNIST (n = 5 x 103; five classes), are embedded into
2 by PCA, Isomap, SNE and t-SNE with typical config-
urations. The parameters &, x and k are empirically set to
100, 50 and 5, respectively. The gap on MNIST is com-
puted by randomly sampling 10% input-output pairs to be
comparable with Swiss roll. In fig. 3, the color-maps show
vol(a, b)do (a,b) over Q. Their appearances depend on the
coordinate system of "FLY’ z.¢.x. Here, the axises are lin-
earin 1/a and 1/b and represent the observation radii. For
example, the upper-left corner means that the input (resp.
output) information is examined at a radius of 5 (resp. 50)
samples. The gap volume |Hq| below each color-map is
independent of the coordinate system. The best method for
each dataset (Isomap for Swiss roll; t-SNE for MNIST) is
identified by the bluest square with the smallest volume.
The patterns on the color-maps tell more detailed informa-
tion. The redness on the lower-right corner (e.g. fig. 3(b))
indicates that the original neighbours are heavily invaded
in the embedding. Apparently, t-SNE outperforms SNE in
this region. This is related to an information retrieval per-
spective (Venna & Kaski, 2007). By comparing fig. 3(f)
with fig. 3(a), MNIST with high dimensional noise is closer
to random data. It is more difficult to improve over random



An Information Geometry of Statistical Manifold Learning

embeddings in this dataset. The spiky pattern in fig. 3(f-j)
shows that some structural information that distinguishes
MNIST from random data is forced to a thin band due to
the high dimensionality (Bellman, 1961).

Most MAL techniques preserve a single frequency or scale
of a specific type of local information. The result strongly
favors this frequency and this type of information. The pro-
posed gap yields a family of criteria that are less-biased to-
wards such choices. By mapping onto the statistical mani-
fold, some redundant information is factored out. By align-
ing and seeking a minimal gap, an intrinsic difference is ex-
posed. The integration over a spectrum gives accurate esti-
mation of the true information loss. In practice, to compute
the gap always faces the choice of a statistical encoding
and associated parameters, e.g., £, k, and k. However, the
relative order of the gap volumes should be robust to such
choices. Despite that the results are developed based on the
SNE encodings, the gap volume is fundamentally different
from SNE’s objective and does not necessarily favor SNE.

5. Related Works and Discussion

Information geometry (Rao, 1945; éencov, 1982; Nagaoka
& Amari, 1982) plays a vital role in statistical learning
theory. MAL has been developed along a statistical ap-
proach. It is a natural and meaningful step to bridge the
profound information geometry. Efforts (Weinberger et al.,
2007; Carreira-Perpinan, 2010; Vladymyrov & Carreira-
Perpifidn, 2012) in seeking efficient MAL implicitly used
such a geometry. There, a common technique is to bend
the gradient \/(Z) of a cost function with M ~(Z) </ (Z),
where M(Z) » 0. This is equivalent to compute the gra-
dient with respect to a Riemannian metric M (Z) on the
solution space. Such a metric, however, has not been ex-
plicitly mentioned or formally studied.

Lebanon (2003; 2005) parametrized the Riemannian met-
ric of a statistical simplex and proposed a metric learning
objective to maximize the inverse volume element. Carter
et al. (2009; 2011) studied MAL on a collections of proba-
bility density functions. In these works, the subject is still
a data geometry, where the observed data is assumed to lie
on a statistical manifold. This is different from the picture
shown here, which views all input or output information
jointly as one point and studies its dynamics.

We formally introduce a semi-Riemannian geometry of a
model manifold. It broadens our horizons so that MAL ap-
pears as a curve (figs. 1 and 4) and different manifold learn-
ers are viewed from a unified perspective. An intriguing
aspect is that any volume corresponds to an amount of in-
formation. It can be measured to define intrinsic quantities.
On two specific model manifolds, we demonstrate how to
apply the theoretical results to measure the complexity and

Y manifold learning
(project Y — Z)

Figure 4. Internal complexity of Y and Z and their gap.

quality of models. These measurements are only briefly
sketched here to testify the learning theory. They can be
further unfold into meaningful theories. This work is sum-
marized in fig. 4. A fundamental trade-off of MAL is to
minimize the volume of the gap (lost information; see sec-
tion 4) and to maximize the volume of the output (remained
information; see section 3). To unify and combine LAI and
the gap volume into one criterion and to seek parameter-
free invariants are worthy of future work.

The gap volume in proposition 11 as a theoretical objective
is hard to optimize directly. This is expected and fits in a
usual two-stage learning scheme (Akaike, 1974; Schwarz,
1978; Xu, 2010). In the parameter learning stage, a simple
objective function is optimized for each candidate model.
In the model selection stage, a sophisticated criterion that
better approximates the generalization error is computed to
select the best model. We seek to derive simple approxi-
mations of the gap volume and develop related MAL algo-
rithms.

Several possible extensions are discussed at the end of sec-
tion 2. A problem that fits in the recent advancements (Vla-
dymyrov & Carreira-Perpifian, 2012; Yang et al., 2013) of
MAL is to find efficient optimization based on generaliza-
tions of Amari’s natural gradient (Amari & Nagaoka, 2000;
Nock et al., 2011). A theoretical problem is to explore the
relationship with graph Laplacian regularization (Belkin &
Niyogi, 2003; Weinberger et al., 2007).
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