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Abstract
LogitBoost, MART and their variant can be
viewed as additive tree regression using logis-
tic loss and boosting style optimization. We an-
alyze their convergence rates based on a new
weak learnability formulation. We show that it
has O( 1

T ) rate when using gradient descent on-
ly, while a linear rate is achieved when using
Newton descent. Moreover, introducing Newton
descent when growing the trees, as LogitBoost
does, leads to a faster linear rate. Empirical re-
sults on UCI datasets support our analysis.

1. Introduction
Boosting is a successful machine learning algorithm for bi-
nary classification. After the introduction of the first prac-
tical boosting method – AdaBoost (Freund & Schapire,
1995), many variations have been proposed. It was shown
boosting can be regarded as gradient descent in function s-
pace (Mason et al., 1999). Along this line, Friedman (2001)
equipped boosting with tree base learner and formulated it
as Multiple Additive Regression Tree (MART), where at
each iteration a tree is added to fit the gradient using least
squares. Plugging the logistic loss for binary classification,
MART becomes a concrete classification method described
in (Friedman, 2001). The procedure differs from the one in
(Friedman et al., 2000) where Hessian was employed in the
so-called LogitBoost procedure, leading to Newton steps
instead of gradient descent.

One natural question is whether it Is beneficial to introduce
Hessian instead of using only gradient. In (Friedman et al.,
2000; Friedman, 2001), where the Hessian was firstly in-
troduced into the Boosting framework, this question was
not answered. Recently, Li (2009b; 2010a); Saberian et al.
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Table 1. LogitBoost and its variants

Gain for Tree Growth Leaf Value

GBoost gradient (12) gradient (11)
MART gradient (12) Newton (15)

LogitBoost Newton (16) Newton (15)

(2011) presented empirical results showing that using Hes-
sian does lead to lower test errors; furthermore, Li (2009a;
2010b) presented empirical results that LogitBoost can de-
crease training loss faster than MART. However, a conver-
gence rate analysis was absent in previous studies. In this
paper, we attempt to fill this gap by theoretically showing
how fast the training loss decreases, with or without the
Hessian.

Looking inside the tree fitting process, we observe that gra-
dient/Hessian descent can be used either when growing the
trees or when fitting the leaf values. The combinations give
rise to LogitBoost and its two variants (GBoost and MART)
as shown in Table 1. MART and LogitBoost have already
seen many successful real world applications (e.g., Web
Page Ranking (Burges, 2010), Click-Through Rate estima-
tion for web advertisements (Trofimov et al., 2012), Optical
Digits Recognition (Shalev-Shwartz et al., 2011)). GBoost
is a different procedure considered in this paper, which can
serve as a baseline for the purpose of theoretical analysis.

Our main convergence results are: 1) GBoost only achieves
O( 1

T ) rate; 2) Both MART and LogitBoost achieve linear
rates; 3) LogitBoost has a faster linear rate than MART.

It is worth mentioning that there are two main difficulties
of the analysis. 1) The logistic loss is not strongly convex.
2) The regression tree is hard to deal with. Our analysis
begins with a one-instance toy example (Section 3), which
could be seen as a technical device to be utilized for the
analysis of other Boosting algorithms. We then general-
ize the simple analysis to the many-instance case by view-
ing the tree growth process as block coordinate descent. In
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this work we assume that the weak learnability assumption
holds, and introduce a novel weak learnability formulation
(i.e., lemma 8) that is more appropriate for the analysis of
LogitBoost than previous formulations.

1.1. Related Work

Convergence Rate. Due to the special property of exponen-
tial loss, it is well known that AdaBoost has linear conver-
gence rate (Schapire & Freund, 2012). For logistic loss,
(Bickel et al., 2006) showed a sub-linear rate. Very recent-
ly, (Telgarsky, 2012; 2013) proved linear convergence for
boosting with logistic loss.

The linear convergence rate has also been established
for boosting with strongly convex losses in the litera-
ture (Rätsch et al., 2001; Grubb & Bagnell, 2011). Unfor-
tunately logistic loss is not strongly convex. To address this
difficulty, Telgarsky (2012) proposed a technique to com-
pare the gradient of the loss and its Hessian. Inspired by
this idea, a similar technique tailored to Newton descent is
presented in this paper.

Weak Learnability. We employ a weak learnability assump-
tion in this work1. In the AdaBoost literature (Schapire &
Freund, 2012), the weak learnability is formulated with re-
spect to weighted training error. In gradient boosting (Ma-
son et al., 1999), (Grubb & Bagnell, 2011) connects the
weighted error formulation to the gradient least square fit-
ting described in (Friedman et al., 2000; Friedman, 2001).
A similar weak learnability formulation for gradient fitting
was used in (Telgarsky, 2012; 2013). However, the weak
learnability assumptions in earlier work involved only gra-
dient, making them unsuitable for our Hessian based New-
ton descent analysis.

Results most related to this paper are those of (Telgarsky,
2012; 2013). However, there are important differences: 1)
The linear rate in (Telgarsky, 2012; 2013) relies on ad hoc
step size selection which excludes the Newton descent; in
particular, the analysis there doesn’t cover MART and Log-
itBoost. In this work, we directly study Newton descent
that is adopted by MART and LogitBoost. 2) The weak
learnability assumption in (Telgarsky, 2012; 2013) is de-
fined on gradient only, which is unsuitable to the analysis
of Newton descent in the sense that it cannot reflect the con-
vergence rate observed in our experiments. In contrast, we

1This assumption seems very strong. However, it is realistic
in many real world applications. It is shown that weak learnabil-
ity is equivalent to linear separability over the base learners (see
a recent survey (Shalev-Shwartz & Singer, 2010) for this issue),
which indeed covers many classification tasks. Fox example, in
Optical Character Recognition the data with different labels can-
not overlap(say, an image cannot be both ’4’ and ’9’), thus the
raw image data can be linearly separated over trees that are deep
enough.

propose a new weak learnability assumption that is more
appropriate for Newton descent analysis, and the assump-
tion is justified both theoretically and empirically.

The rest of this paper is organized as follows. In Section
2 we review the problem setup. In Section 3 we introduce
the main techniques via a toy example. Section 4 gives the
formal analysis. Finally, in Section 5 we present empirical
results on UCI datasets to support our claims.

2. Review of LogitBoost and Its Variants
In this section we review the problem setup posed in (Fried-
man et al., 2000), including three key ingredients: the loss,
the function model and the optimization method.

The definition of Logistic loss. Given a set of training da-
ta {xi, yi}Ni=1 where the feature xi ∈ X and the label
yi ∈ {±1}, a classifier learns a predictor function F =
F (x) ∈ R by minimizing the total loss over the training
dataset

∑N
i=1 `(yi, F (xi)). In (Friedman et al., 2000), the

instance wise loss `(·, ·) adopts the so-called logistic loss:

`(y, F ) = r log

(
1

p

)
+ (1− r) log

(
1

1− p

)
, (1)

where the 0/1 response r = 1 if y = +1, r = 0 otherwise;
and the probability estimate p ∈ [0, 1] is a “surrogate” of F
via the so-called link function:

p = ψ(F ) =
eF

eF + e−F
, (2)

which is a sigmoid-like function on F .

To carry out the numerical optimization, we need the gra-
dient and the Hessian of `(·, F ) w.r.t. F . Simple calculus
gives them as:

g(y, F ) , ∇F `(y, F ) = 2(p− r), (3)

h(F ) , ∇2
F `(y, F ) = 4p(1− p), (4)

by noting the derivative of the link function is ψ′(F ) =
2p(1− p).

Note that the above formulae are all defined on the implicit
variables r and p, rather than defined directly on y and F .
This choice turns out to be very convenient for our later
development.

The Additive Tree Model. F (x) is expressed as sum of re-
gression trees: F (x) =

∑T
t=1 ut(x). Omitting the sub-

script t, a regression tree u(x) with J leaves can be written
as u(x) =

∑J
j=1 sjI(x ∈ Rj), where sj ∈ R is the fit-

ted value on the j-th leaf, Rj is the region on feature space
corresponding to the j-th leaf and the indicator function
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I(·) = 1 if its argument is true and 0 otherwise. In the
AdaBoost literature, regression tree is a domain-partition
based weak learner with confidence-rated output (Schapire
& Singer, 1999).

The Greedy Stage Wise Optimization. At each boosting it-
eration only one tree is added and the other trees previ-
ously learned are fixed. What’s special here is that when
updating F = F (x) a real value ν ∈ (0, 1] is multiplied:
F (x)← F (x) + νu(x). The fixed step size ν, designated
in advance as a tuning parameter, is called shrinkage fac-
tor controlling the learning rate (Friedman et al., 2000). In
later literature, it is found to have the effect of L1 regular-
ization (Rosset et al., 2004). In several up-to-date imple-
mentations, this choice leads to satisfactory classification
performance, e.g., in (Li, 2010a) a stable and good result
is observed by always setting ν = 0.1. The corresponding
pseudo-code in given in Algorithm 1.

Algorithm 1 LogitBoost, MART and Variant.
input {xi, yi}Ni=1: the training set; ν: the shrinkage factor;

T : the maximum number of iterations.
output the Additive Tree Model F = F (x).

1: Fi = 0, i = 1, . . . , N
2: for t = 1 to T do
3: pi = ψ(Fi) as in Eq (2) and clap on pi as in (17),

i = 1, . . . , N .
4: Grow a tree with domain partition {Rj}Jj=1.
5: Fit a value sj for the j-th leaf, j = 1, . . . , J .
6: Fi ← Fi + ν

∑J
j=1 sjI(xi ∈ Rj), i = 1, . . . , N .

7: end for

2.1. Tree Growth and Leaf Value Fitting

In Algorithm 1, it needs to specify how to grow a tree
(line 4) and how to fit the leaf value (line 5), giving
rise to the difference among GBoost, MART and Log-
itBoost. We provide greater details here. At some
iteration, denote by u = (u1, . . . , uN )> ∈ RN the fitted
leaf values over the N instances. Define the total loss
L(u) ,

∑N
i=1 `(yi, Fi+ui). Consider its tractable quadrat-

ic approximation at 0: L̂(u) =L̂(0) + g>u + 1
2u
>Hu,

where L̂(0) =L(0) =
∑N
i=1 `(yi, Fi) and the instance wise

gradient and Hessian

g = (g1, . . . , gN )> (5), H = diag(h1, . . . , hN ) (6)

are respectively calculated by (3) and (4) with p replaced
by pi at each instance i. Since typically J < N , each
component of u cannot vary independently: the in-
stances falling into the same leaf must share a common
fitted value. We can thus write down u = V s, where
RJ 3 s = (s1, . . . , sj , . . . , sJ)

> are the fitted values on

the J leaves and V ∈ RN×J is a projection matrix:

V = [v1, . . . ,vj , . . . ,vJ ], (7)

where vj,i = 1 if the j-th leaf contains the i-th instance
and 0 otherwise, j = 1, . . . , J , i = 1, . . . , N . Substituting
u = V s back to the quadratic L̂(u) and reload the notation
L̂(·) for s ∈ RJ we have

L̂(s) = L̂(0) + (g>V )s+
1

2
s>(V >HV )s. (8)

To this extent, the leaf value can be defined as the mini-
mizer s∗ = argmins L̂(s), while the total split gain2 for
growing a tree can be defined as the maximum loss reduc-
tion gain(s∗) = maxs

(
L̂(0)− L̂(s)

)
, both boiling down

to minimizing (8). There are two methods.

Gradient Descent. Because the Hessian (4) is bounded
above by h ≤ 1, we can replace H with the upper bound
I , i.e., the identity matrix. Solving the consequent quadrat-
ic problem using matrix calculus (Magnus & Neudecker,
2007), we have:

s∗ = −(V >V )−1V >g, (9)

gain(s∗) = ‖V s∗‖22 = (V >g)>(V >V )−1(V >g).
(10)

Note that V >V = diag(n1, . . . , nj , . . . , nJ) ∈ RJ×J
where nj denotes the number of instances falling into the
j-th leaf. Moreover, (9) and (10) can be rewritten in the
“scalar form”:

s∗j = −
gj
nj

(11) gain(s∗) =

J∑
j=1

g2j
nj

(12)

where gj ,
∑
i∈Ij gi should be understood as “node wise

gradient”. The geometrical meaning is straightforward: in
the subspace span(V ) we find a vector u = V s ∈ RN
that is as close to −g as possible, which in (Friedman,
2001) is described as fitting the negative gradient {−gi}Ni=1

using a least squares regression tree.

Newton Descent. Directly solving (8) we have

s∗ = −(V >HV )−1V >g, (13)

gain(s∗) = ‖V s∗‖2H = (V >g)>(V >HV )−1(V >g),
(14)

which can be rewritten in “scalar form” as:

s∗j = −
gj
~j
, (15) gain(s∗) =

J∑
j=1

g2j
~j
, (16)

2While it is difficult to directly maximize the total gain, (Fried-
man et al., 2000) suggests to grow a binary tree top-down until
J leaves are encountered, maximizing a binary split gain once a
time.
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where ~j ,
∑
i∈Ij hi should be understood as “node wise

Hessian”. The geometrical meaning is similar to the case
of gradient descent, but the Euclidean norm should be
replaced by matrix norm (the Hessian matrix H) when
talking about “close”. This is described in (Friedman
et al., 2000) as fitting the Newton step {−gi/hi}Ni=1 with
weights {hi}Ni=1 using a weighted least square regression
tree.

2.2. Clapping on pi

Normally (15) is numerically stable. When pi → ri for all
i ∈ Ij , it can be verified that sj → 1

2 although both gj → 0
and ~j → 0. However, (15) is still occasionally very large
when only ~j → 0, causing numerical problems. To tackle
this issue, (Friedman et al., 2000) suggests the Newton step
(15) to be clapped in a range, say, between [−5,+5]. In
this work, however, we implement the idea in a slightly
different way. Instead of directly clapping the Newton step
(15), we clap the pi, i = 1, . . . , N :

pi =


1− ρ, (ri = 0) ∧ (pi > 1− ρ)
ρ, (ri = 1) ∧ (pi < ρ)

pi, otherwise
(17)

for some small constant ρ in line 4 of Algorithm 1. From
(1), we observe that the clapping (17) is to prevent large
penalty of wrong probability estimate (or negative margin
in regards of F ∈ R). In this way, we can show that the
Newton step is finite as in the theorem below. The proof
is provided in Appendix B. Although motivated by mak-
ing the Newton step numerically stable, we also apply the
clapping on pi in the case of gradient descent.
Theorem 1 (Bounded Newton Step). With the value clap-
ping on pi, i = 1, . . . , N as in (17), the Newton step (15)
is bounded such that

∣∣gj/~j∣∣ ≤ 1/(2ρ).

3. One-Instance Toy Example
Having introduced the problem setup, we are ready for the
analysis. As will be seen shortly in Section 4, the con-
vergence rate heavily depends on how the leave values are
fitted, i.e., whether the gradient (11) or the Newton (15) is
adopted. In this section we present the main results and the
underlying proof techniques via a toy example.

3.1. Algorithm 1 with One Instance

Suppose there is only one training instance with label, say,
y = +1. In this case it is unnecessary to grow a tree in
Algorithm 1, and only the leaf value fitting (line 5) matters.
Consequently, Algorithm 1 boils down to performing some
numerical descent method on the function − log(p), as in
the following pseudo code:

0 100 200 300
10
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10
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10
−1

10
0

Loss

0 100 200 300
10

−15
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−10
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10
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Figure 1. How the loss decreases with iteration for the one in-
stance toy example. The vertical axis is in log scale. Left: Gradi-
ent Descent; Right: Newton Descent.

1: F = 0, p = 1/2.
2: for t = 1 to T do
3: Update: F ← F + f .
4: Compute the implicit variable via (2): p = ψ(F ).
5: Compute the loss at iteration t: Lt = − log(p).
6: end for

Obviously, the optimal loss value, 0, is achieved when F =
+∞. The step f in line 3 can be either gradient descent or
Newton descent times a shrinkage factor. Now let’s take a
closer look.

Gradient Descent. The step f = −νg, where g = 2(p− 1)
as in (3). With ν = 0.1, the result of how Lt decreases with
iteration t is shown on the left of Figure 1.

Newton Descent. The step f = −ν gh , where g = 2(p− 1),
h = 4p(1 − p) as in (3) and (4), respectively. With ν =
0.1, the result of how Lt decreases is shown on the right of
Figure 1.

From Figure 1, we can clearly see that the gradient descent
shows a sub-linear convergence rate consistent with O( 1

T ),
while the Newton descent shows a linear rate, i.e.,O(e−T ).
Next we will provide a quick theoretic explanation for this
phenomenon.

3.2. Theoretical Analysis

We follow the standard techniques in convex optimization
to derive the desired bound. First, we bound the one step
loss reduction; then we derive the recurrence relation from
iteration t − 1 to iteration t; finally we obtain the conver-
gence rate in t from the recurrence relation.

The first part is vital to our analysis. We begin with several
related theorems.

Theorem 2 (Smoothness). Let `(·) be the shorthand of
`(y, ·) and g be the shorthand of gradient (3). Then `(·)
is 1-smooth and the one step loss reduction satisfies

`(F + f) ≤ `(F ) + gf +
1

2
f2. (18)
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Figure 2. Left: |g| v.s. ` as in Theorem 3 when the label y = +1;
Right: g2

h
v.s. ` as in Theorem 4. In both graphs, the horizontal

axis is p.

We omit the proof of Theorem 2, which follows from the
standard argument in convex optimization textbooks, e.g.,
(Boyd & Vandenberghe, 2004) and the fact that the Hessian
in (4) is upper-bounded by h ≤ 1.

Theorem 3 (Comparison I). Let g and ` be the shorthand
for gradient (3) and loss (1), respectively. When p ≥ ρ in
the case of y = +1 (or p ≤ 1 − ρ in the case of y = −1),
there exists a constant α = α(ρ) > 0 such that |g| ≥ α`.
Theorem 4 (Comparison II). Let g, h and ` be the short-
hand for gradient (3), Hessian (4) and loss (1), respective-
ly. Then ∀p (and thus ∀F ), the inequality g2

h ≥ ` always
holds.

See appendix C and D for the proofs of the above two the-
orems. The loss family with the properties |g| ≥ aL and
h ≤ bL for some constants a, b was studied in (Telgarsky,
2012). This includes but not restricted to the logistic loss
(1). The properties imply the inequality g2

h ≥
a2

b L, which
is similar to theorem 4. Obviously, the results in (Telgar-
sky, 2012) are more general, while Theorem 4 in this work
is specific to the logistic loss (1). As will be seen shortly,
Theorem 4 is useful in the analysis of Newton step.

In the left of Figure 2 we demonstrate Theorem 3 with α =
1 (corresponding to ρ ≈ 0.2) when y = +1; While in the
right of Figure 2 we demonstrate Theorem 4 when y = +1.

The following two theorems establish convergence rates
from the corresponding recurrence relationships.

Theorem 5 (Recurrence to O( 1
T ) rate). If a sequence ε0 ≥

. . . ≥ εt−1 ≥ εt ≥ . . . ≥ εT > 0 has the recurrence
relation εt ≤ εt−1− cε2t−1 for a small constant c > 0, then
we have O( 1

T ) convergence rate: εT ≤ ε0
1+cε0T

.

Theorem 6 (Recurrence to linear rate). If a sequence ε0 ≥
. . . ≥ εt−1 ≥ εt ≥ . . . ≥ εT > 0 has the recurrence
relation εt ≤ cεt−1 for a small constant 0 < c < 1, then
we have linear convergence: εT ≤ ε0cT .

See appendix E for the proof of theorem 5. The proof for

theorem 6 is obvious and we omit it here. Next we are
ready to analyze the toy example.

3.2.1. GRADIENT DESCENT

Denote the loss at current iteration by L and that at next
iteration by L+. From Theorem 2, we have

L+ ≤ L+ gf +
1

2
f2. (19)

Substituting the gradient descent times a shrinkage factor
f = −νg in the right hand side, we have:

L+ ≤ L− ν(1− 1

2
ν)g2. (20)

Noting the initial value F = 0, we apply Theorem 3 with
α = 1 and get:

L+ ≤ L− ν(1− 1

2
ν)L2. (21)

This leads to a recurrence relationship from iteration t− 1
to t. Setting a proper ν such that ν(1 − 1

2ν) > 0, (21)
implies a O( 1

T ) convergence rate due to Theorem 5.

Remark. If the loss is m-strongly convex, we can show
g2 ≥ (2m)L, leading to a linear convergence rate, which
well known in convex optimization, e.g., (Boyd & Vanden-
berghe, 2004; Nesterov, 2004). However, this argumen-
t cannot be applied to logistic loss because the minimum
of the Hessian (4) is 0, implying that the strong convexity
doesn’t hold.

3.2.2. NEWTON DESCENT

For f ≥ 0, we use the Mean Value Theorem in calculus
and have

L+ = L+ gf +
1

2
hξf

2, (22)

ξ ∈ [0, f ] and hξ denotes the Hessian at ξ. Substituting the
Newton Step times a shrinkage factor f = −ν gh≥ 0, we
have

L+ = L− ν g
2

h
+

1

2
ν2
hξ
h

g2

h
. (23)

Since the initial value F = 0 and f ≥ ξ ≥ 0, it holds that

hξ
h
≤ 1 (24)

by checking the form of the Hessian (4) and the form of the
link (2). Noticing that g

2

h ≥ 0, the inequality simplifies to

L+ ≤ L− ν(1− 1

2
ν)
g2

h
. (25)

By applying Theorem 4, we obtain the recurrence relation

L+ ≤ L− ν(1− 1

2
ν)L

= (1− ν(1− 1

2
ν))L.

(26)
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By setting a proper value for ν such that 0 < (1 − ν(1 −
1
2ν)) < 1, we get the linear convergence rate according to
Theorem 6.

Remark. If the loss is strong convex and the Hessian is
strictly Lipschitz continuous, we can show that the Newton
Step leads to quadratic convergence rate, which is again a s-
tandard result in convex optimization textbook, e.g., (Boyd
& Vandenberghe, 2004; Nesterov, 2004).

We make the following remarks concerning the one-
instance example of this section. 1) The toy example be-
comes realistic if we allow a very large J such that at each
leaf there is only one training instance. In general, when
J < N we intuitively cannot expect a faster convergence
rate than what is established here. 2) The proof for the toy
example can be adapted to handle the general case, as we
shall illustrate in the next section.

4. The General Analysis
In this section we provide the full analysis for N instances
and J leaves. Basically, we extend the one-instance anal-
ysis to the one-leaf analysis and sum up for the totally J
leaves using matrix notation. The analysis in Section 4.1
covers GBoost, while that in Section 4.2 covers MART and
LogitBoost.

4.1. Gradient Descent

In Section 3.2.1 we have established convergence rates for
the toy example, and the key step is the application of Theo-
rem 3 to obtain (21) from (20). To do the same in the J-leaf
case, we need to convert “node wise gradient” to “instance
wise gradient”. This idea is captured by Definition 1 and
Lemma 7.
Definition 1 (Weak Learnability). For a set of N in-
stances with labels {±1}N and non-negative weights
{w1, . . . , wN}, there exists a J-leaf classification tree (i.e.,
outputting±1 at each leaf) such that the weighted error rate
at each leaf is strictly less than 1

2 by at least δ > 0.

This definition is the weak learnability assumption in the
AdaBoost literature (Schapire & Freund, 2012). The J-leaf
tree can be seen as a so-called domain-partition weak learn-
er (Schapire & Singer, 1999), where each leaf, an atomic
domain with output value ±1, can be regarded as a weak
classifier. Definition 1 assumes that each leaf classifier is
better than random guessing by δ > 0.
Lemma 7 (Weak Learnability I). Assume that the weak
learnability assumption as in Definition 1 holds, then for
any gradient g ∈ RN as defined in (5) and gi 6= 0,
i = 1, . . . , N , there exists a J-leaf regression tree whose
projection matrix V ∈ RN×J satisfies

(V >g)>(V >V )−1(V >g) ≥ γ2g>g (27)

for some constant γ > 0.

See appendix F for its proof. Recall the gain (10) and its
geometric meaning, Lemma 7 says that we can always find
a subspace span(V ) such that the projected g has big e-
nough norm compared with the original g. The proof of
Lemma 7 was due to (Grubb & Bagnell, 2011) which con-
tains a very similar result. In the following we will use the
second part of Lemma 7 to derive our bounds.

At some iteration, consider the stepsize vector f =
(f1, . . . , fN )> ∈ RN , and denote the total current loss
by L ,

∑N
i=1 `(yi, Fi) and the total loss at next iteration

by L+ ,
∑N
i=1 `(yi, Fi + fi). Using Theorem 2, we can

bound the loss reduction as

L+ ≤ L+ g>f +
1

2
f>f . (28)

Replacing f by the gradient descent in (9) times the shrink-
age factor ν:

f = −νV s = −νV (V >V )−1g, (29)

we have:

L+ ≤ L− ν(V >g)>(V >V )−1(V >g)

+
1

2
ν2(V >g)>(V >V )−1(V >V )(V >V )−1(V >g).

(30)

Noting that V >V is invertible and eliminating
(V >V )>(V >V )−1, we obtain

L+ ≤ L− ν(1− 1

2
ν)(V >g)>(V >V )−1(V >g). (31)

With the help of Lemma 7, it yields

L+ ≤ L− ν(1− 1

2
ν)γ2‖g‖22. (32)

Recall the norm inequality ‖g‖22 ≥ 1
N ‖g‖

2
1 and multiply

both sides by 1
N , we obtain

L+

N
≤ L

N
− ν(1− 1

2
ν)γ2

(
‖g‖1
N

)2

. (33)

Recall the clapping operation (17) and Theorem 3, we can
compare ‖g‖1 to L as

‖g‖1 ≥ αL (34)

for some α = α(ρ). Substituting back, we obtain the re-
currence relation:

L+

N
≤ L

N
− ν(1− 1

2
ν)γ2α2

(
L

N

)2

. (35)

Viewing L+

N as εt, L
N as εt−1 and setting proper ν so that

ν(1 − 1
2ν)γ

2α2 > 0, we establish the O( 1
T ) convergence

rate with the help of Theorem 5.
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4.2. Newton Descent

In Section 3.2.2 we have established convergence rate for
the toy example by using the following two ideas:
• The application of the comparison theorem 4 so as to
transit from (25) to (26). To do the same in the J-leaf N -
instance case, we need to convert the “node wise Newton
Decrement” to “instance wise Newton Decrement”. This
idea is captured by Lemma 8 below.
• The upper bound of the term hξ

h given by (24). In the
general J-leaf N -instance case, a similar upper bound is
available as in Lemma 9 and Corollary 10 below.

We are now ready to present lemmas needed for our subse-
quent analysis.

Lemma 8 (Weak Learnability II). Let g ∈ RN (gi 6= 0, i =
1, . . . , N ) be defined in (5) and H ∈ RN×N be defined in
(6), where pi is clapped as in (17). If the weak learnability
assumption 1 holds, then there exists a J-leaf regression
tree whose projection matrix V ∈ RN×J satisfies

(V >g)>(V >HV )−1(V >g) ≥ γ2∗g>H
−1g, (36)

for some constant γ∗ > 0.

See appendix G for its proof. Lemma 8 is a new weak
learnability result that can be used to analyze Newton de-
scent. It says that with the same weak learnability assump-
tion in Lemma 7, we can find a subspace span(V ) such
that the projection of g in the subspace has a sufficiently
large matrix norm induced by the Hessian matrix H . The
geometric meaning is given in (14).

Lemma 9 (Change of Hessian). For the current F ∈ R
and a step f ∈ R, the change of the Hessian (4) can be
bounded in terms of step size |f |:

h(F + f)

h(F )
≤ e2|f |. (37)

See appendix H for its proof. The role of Lemma 9 is
similar to that of equation (24) in the toy example of Sec-
tion 3.2.2.

We are now ready to derive our general results similar to
what we have shown in Section 3.2.2. We define L+, L,
and f with the same meanings of the corresponding quan-
tities in Section 4.1. Using second order Taylor expansion,
we obtain

L+ = L+ g>f +
1

2
f>Hξf , (38)

where ξ ∈ RN such that each of its component ξi lies with-
in Fi and Fi+ fi (i = 1, . . . , N ), and Hξ is a shorthand of
the Hessian matrix at ξ. Replacing f with the Newton step
(13) times a shrinkage factor ν:

f = −νV s = −νV (V >HV )−1V >g, (39)
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Figure 3. A typical convergence pattern on UCI dataset #3. The
horizontal axis indicates iterations, and the vertical axis indicates
logistic loss on training data in log scale. Left: GBoost; Right:
MART and LogitBoost.

we have:

L+ = L− ν(V >g)>(V >HV )−1V >g

+
1

2
ν2(V >g)>(V >HV )−1(V >HξV )(V >HV )−1V >g,

(40)

where we can bound the term (V >HξV )(V >HV )−1 us-
ing Theorem 9 as follows.

Corollary 10 (Node wise Hessian). Assume that the New-
ton step (39) is used with the value clapping (17). Then
(V >HξV )(V >HV )−1 ≤ µI , where µ = exp(ν/ρ).

The proof is given in Appendix I. For now we can apply
Corollary 10 to obtain the inequality

L+ ≤ L− ν(1− 1

2
νµ)(V >g)>(V >HV )(V >g). (41)

Using Lemma 8, we convert the node wise Newton decre-
ment to instance wise Newton decrement in the sense that

(V >g)>(V >HV )(V >g) ≤ γ2∗g>H
−1g. (42)

Substituting back, the inequality simplifies as:

L+ ≤ L− ν(1− 1

2
νµ)γ2∗g

>H−1g. (43)

Finally, we connect Newton objective reduction and loss
reduction using Theorem 4 as follows

g>H−1g ≥ L, (44)

which, together with (43), yields the recurrence relation:

L+ ≤ (1− ν(1− 1

2
νµ)γ2∗)L. (45)

With proper step size ν ensuring 0 < ν(1 − 1
2νµ)γ

2
∗ < 1,

we can establish the desired linear convergence rate from
Theorem 6.

Remark 1. Our analysis for Newton descent is based on the
new weak learnability result in Lemma 8. From (45), the
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quality of our bound relies on the constant γ∗ defined in
(36): the bigger the γ∗, the faster the convergence. It is
worth mentioning that the bound in the related work (Tel-
garsky, 2012) is similar to (27), a choice that is unsuitable
for Newton descent. We confirm this assertion by exper-
iments in Section 5, where we show that large γ doesn’t
lead to faster convergence while large γ∗ does.

Remark 2. According to the above discussion, we should
prefer LogitBoost to MART in order to achieve faster con-
vergence. This is because when growing a tree, MART
does not search for good γ∗.

5. Experiments
In this section we present empirical results on five binary
datasets: #1: optdigits05, #2: pendigits49, #3: zipcode38,
#4: letter01, #5: mnist10k05. These are synthesized from
the corresponding UCI datasets; e.g., “optdigits05” means
we pick class 0 and class 5 from the multiclass datasets
“optdigits”. In all of the following experiments we set ν =
0.1, J = 8 and the clapping ρ = 0.05.

Convergence rate We note that the empirical results of
(Li, 2009a; 2010b) have already demonstrated that the
training loss of LogitBoost decreases faster than that of
MART, e.g., Figure 2 in (Li, 2010b). For completeness,
we perform a similar experiment here, focusing on binary
classification and adding GBoost in our comparisons. In
Appendix A, we plot the convergence for GBoost, MART
and LogitBoost on datasets #1 to #5. Figure 3 shows the
typical convergence pattern. As in our analysis, GBoost
(i.e., the gradient descent) shows a sub-linear convergence
rate of O( 1

T ), while MART and LogitBoost (i.e., the New-
ton descent) show linear rates.

Weak Learnability and Faster Linear Rate In this work,
our analysis for Newton descent relies on the constan-
t γ∗ defined in (36): a bigger γ∗ indicates faster conver-
gence. To study this issue empirically, we look at the ra-
tio (V >g)>(V >HV )−1(V >g)

g>H−1g
over all iterations and pick the

minimum value as γ∗. Similarly, we can set γ defined in
(36) to be the minimum value of (V >g)>(V >V )−1(V >g)

g>g
—

this choice is employed by (Telgarsky, 2012) where the re-
sulting bound contains a quantity being similar to γ. Table
2 lists the values γ∗ and γ for the two algorithms Logit-
Boost and MART, and it gives the number of iterations T ′

needed to achieve 10−6 accuracy for logistic loss.

As can be seen in Table 2 and Figure 3, LogitBoost con-
verges faster than MART. Checking Table 1, we also find
that LogitBoost has bigger γ∗ than MART. However, the
faster convergence of LogitBoost cannot be captured by γ.
For example, on dataset #3 LogitBoost has a smaller γ val-
ue than that of MART while still converges faster (the third

Table 2. The weak learnability for LogitBoost and MART
MART LogitBoost

γ∗ γ T ′ γ∗ γ T ′

#1 0.565 0.317 217 0.817 0.400 206
#2 0.157 0.047 500 0.466 0.034 269
#3 0.056 0.047 865 0.219 0.039 568
#4 0.078 0.029 518 0.263 0.027 345
#5 0.042 0.037 1043 0.203 0.021 582

row in Table 2 and the right graph in Figure 3). This shows
that the analysis of Newton descent should depend on γ∗
instead of γ.
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A. Empirical Results for Convergence Rate
We show in Figure 4 the convergence rate for GBoost,
MART and LogitBoost on datasets #1 to #5, where we
stops the algorithms if either the number of iterations reach-
es up to T = 1, 000 or the total logistic loss approaches
below < 10−6.

B. Proof of theorem 1
It is easy to verify that the Newton step (15)

|sj | =

∣∣∑
i∈Ij (ri − pi)

∣∣∑
i∈Ij 2pi(1− pi)

≤
∑
i∈Ij |ri − pi|∑

i∈Ij 2pi(1− pi)

(46)

where ri = 0 if yi = −1 and ri = 1 if yi = 1. Let
qi = |ri− pi|, then the value clapping (17) is equivalent to

0 ≤ qi ≤ 1− ρ ⇒
1

1− qi
≤ 1

ρ
.

(47)

Write the Newton step with qi, recall (47), and note that
pi(1− pi) = qi(1− qi), we have

|sj | ≤
∑
i∈Ij qi∑

i∈Ij 2qi(1− qi)

=

∑
i∈Ij qi(1− qi)

1
1−qi∑

i∈Ij 2qi(1− qi)

≤
∑
i∈Ij qi(1− qi)∑
i∈Ij 2qi(1− qi)

· 1
ρ

=
1

2ρ

(48)

C. Proof of Theorem 3
Let’s consider the case when y = +1 such that |g| = 2(1−
p) and ` = − log(p). Let α(ρ) = −2(1 − ρ)/ log(ρ), and
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Figure 4. Convergence rate on the UCI datasets #1 to #5 (from left to right). The first row: GBoost; The second row: MART and
LogitBoost. Horizontal axis for iterations, vertical axis for logistic loss on training data in log scale. J = 8, ν = 0.1.

define

φ(p) = |g| − α(ρ)` = 2(1− p) + α(ρ) log(p). (49)

It is easy to verify that φ(ρ) = 0 and φ(1) = 0. Fur-
thermore, by checking the sign of φ′(p) = −2 + α(ρ)/p
we know that φ(p) increases in the interval [0, α(ρ)/2]
and φ(p) decreases in the interval [α(ρ)/2, 1]. Therefore
it holds that for p ≥ ρ, |g| ≥ α(ρ)`, as shown in the left of
Figure 2. That is, the inequality in Theorem 3 holds with
α(ρ).

The same argument applies when y = −1.

D. Proof of Theorem 4
Introducing the shorthand q = |r− p| (where r = 0, 1), we
have

g2

h
=

4(r − p)2

4p(1− p)

=
q2

q(1− q)

=
q

1− q
,

(50)

and we have for both r = 0 and r = 1:

` = log
1

1− q
. (51)

Now it suffices to show that

q

1− q
≥ log

1

1− q
⇔

q ≥ −(1− q) log(1− q).
(52)

Let φ(q) = q+ (1− q) log(1− q) for 0 ≤ q ≤ 1, it is easy
to verify that

φ(0) = 0

φ′(q) = log(
1

1− q
) ≥ 0,

(53)

which implies φ(q) ≥ 0 and completes the proof.

E. Proof of Theorem 5
The proof, standard in convex optimization (e.g., see P69
of (Nesterov, 2004)), is included here for completeness.

We divide both sides of εt ≤ εt−1 − cε2t−1 by εtεt−1 to
obtain

1

εt−1
≤ 1

εt
− cεt−1

εt
. (54)

By rearranging the terms and noticing that εt−1 ≥ εt, we
get

1

εt
≥ 1

εt−1
+ c

εt−1
εt

≥ 1

εt−1
+ c

(55)

Summing over t, we obtain

1

εT
≥ 1

ε0
+ cT, (56)

which yields
εT ≤

ε0
1 + cε0T

. (57)

F. Proof of Lemma 7
First we will prove the following lemma and corollary.
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Lemma 11. Assume that the weak learnability assumption
in Definition 1 holds, then for any gradient g ∈ RN as
defined in (5) and gi 6= 0, i = 1, . . . , N , there exists a
J-leaf regression tree such that at j-th leaf:

1) It holds ∣∣∣∣∣∣
∑
i∈Ij

gi

∣∣∣∣∣∣ > 2δ
∑
i∈Ij

|gi|, (58)

for j = 1, . . . , J .

2) It holds ∑
i∈Ij

gi

2

≥ (4δ2)
∑
i∈Ij

g2i , (59)

for j = 1, . . . , J .

Proof. Part 1). Let wi , |gi| and yi , sgn(gi). Let I+j
be the index set of weights whose yi = +1 and I−j be the
index set of weights whose yi = −1. Viewing the j-th
leaf as a classifier, let it output +1 if the sum

∑
i∈Ij gi >

0 and −1 otherwise. According to the weak learnability
assumption in Definition 1, the weighted error should be
less than 1

2 by at least δ, which is equivalent to saying that
the weighted accuracy is greater than the weighted error by
at least 2δ: ∣∣∣∑i∈I+j

wi −
∑
i∈I−j

wi

∣∣∣∑
i∈Ij wi

≥ 2δ. (60)

Using the notation gi, the above inequality becomes∣∣∣∣∣∣
∑
i∈Ij

gi

∣∣∣∣∣∣ ≥ 2δ
∑
i∈Ij

|gi|, (61)

completing the proof.

Part 2). Using the norm inequality ||x||1 ≥ ||x||2 for x ∈
Rn, part 2) is an immediate result of part 1).

We shall now prove Theorem 7. Note that gj =
∑
i∈Ij gi

and (59) in Lemma 11 we have

g2j ≥ (4δ2)
∑
i∈Ij

g2i ⇒

g2j
nj
≥ 4δ2

nj

∑
i∈Ij

g2i

≥ 4δ2

N

∑
i∈Ij

g2i ,

(62)

where the last inequality is due to nj ≤ N . Summing up
and rewriting in matrix notation, we have

(V >g)>(V >V )−1(V >g) ≥ γ2g>g, (63)

where γ2 = 4δ2

N .

G. Proof of Lemma 8
First, we prove an intermediate inequality (66). By intro-
ducing the shorthand qi = |gi|, we have∑

i∈Ij

g2i =
∑
i∈Ij

4q2i ,∑
i∈Ij

hi =
∑
i∈Ij

4qi(1− qi),

∑
i∈Ij

g2i
hi

=
∑
i∈Ij

qi
1− qi

.

(64)

Using the clapping operation (17), it holds that 1
1−qi ≤

1
ρ

and 1− qi ≤ 1. We thus have∑
i∈Ij

4qi(1− qi)

∑
i∈Ij

qi
1− qi


≤ 4

ρ

∑
i∈Ij

qi

∑
i∈Ij

qi


≤ 4

ρ
nj
∑
i∈Ij

q2i ,

(65)

where the last inequality is due to the well known Cheby-
shev sum inequality by noting that {qi} and {q2i } have the
identical order when qi ≥ 0. Substituting (65) into (64),
we have ∑

i∈Ij g
2
i∑

i∈Ij hi
≥ ρ

nj

∑
i∈Ij

g2i
hi
. (66)

Now the weak learnability assumption in Definition 1, (59)
and (66) imply that(∑

i∈Ij gi

)2
∑
i∈Ij hi

≥ (4δ2)

∑
i∈Ij g

2
i∑

i∈Ij hi

≥ (4δ2)
ρ

nj

∑
i∈Ij

g2i
hi

≥ (4δ2)
ρ

N

∑
i∈Ij

g2i
hi
,

(67)

where the last inequality is due to nj ≤ N . Rewriting in
matrix notation, we obtain the desired inequality

(V >g)>(V >HV )−1(V >g) ≥ γ2∗g>H
−1g. (68)

with the constant γ2∗ =
4δ2ρ
N .

H. Proof of Lemma 9
For any z ∈ R, define

ϕ(z) , ln(h(z)) = ln(4p(1− p)), (69)
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where p = ψ(z), and ψ(·) is defined in (2). From ψ′(z) =
2p(1− p) and the chain rule, it is easy to check

ϕ′(z) =
8p(1− p)(1− 2p)

4p(1− p)
= 2(1− 2p)

. (70)

We thus have
|ϕ′(z)| ≤ 2, ∀z, (71)

by noticing that 0 ≤ p ≤ 1.

Now, for F and F+ = F + f , we apply the Mean Value
Theorem to obtain

ϕ(F+) = ϕ(F ) + ϕ′(η)f (72)

for some η between F and F + f . Therefore,

|ϕ(F+)− ϕ(F )| = |ϕ′(η)||f |
≤ 2|f |

, (73)

which gives the desired bound

h(F+)

h(F )
≤ e2|f |. (74)

I. Proof of Theorem 10
For the j-th leaf (j = 1, . . . , J), the node wise total Hessian
before update is

~j =
∑
i∈Ij

h(Fi) (75)

while that at the mean value is

~ξ,j =
∑
i∈Ij

h(Fi + ηj), (76)

where ηj lies between 0 and the shrinking Newton step νsj .
Using lemma 9, we have

h(Fi + ηj) ≤ h(Fi)e2ηj . (77)

Substituting back into (76), we have∑
i∈Ij hξ(Fi + ηj)∑

i∈Ij h(Fi)
≤
∑
i∈Ij h(Fi) · e

2ηj∑
i∈Ij h(Fi)

= e2ηj .

(78)

According to Theorem 1 and the fact ηj is a mean value,
we have

|ηj | ≤ ν|sj |

≤ ν
∣∣∣∣ 12ρ

∣∣∣∣ . (79)

Substituting (79) back into (76) yields

~ξ,j
~j
≤ e

ν
ρ . (80)

Rewriting in matrix notation with j = 1, . . . , J , we have

(V >HξV )(V >HV )−1 ≤ (e
ν
ρ )I, (81)

which completes the proof with the constant µ = e
ν
ρ .


