
A new Q(�) with interim forward view and Monte Carlo equivalence

Supplementary material
Here we prove the theorems and derive the recursive relationships stated but not proved in the main text. First we prove
the recursions in the time horizon t for the forward-view errors used by PTD(�) and PQ(�). We then prove a recursion in
k for PTD (Lemma 1) and use it to prove Theorem 3 for PTD. Next we prove an analogous recursion in k (Lemma 2) and
theorem (Theorem 5) for PQ and for action values. Finally, we provide some further detail on a key step in the derivations
of the update of the provisional weights, ut, for both algorithms.

S.1 Derivation of Equation (11), the PTD recursion in t

From (6), for k < t, we immediately have

��⇢
k,t+1 = ⇢k

tX

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ ⇢kCt

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i

= ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ ⇢kCt�1

k

h
(1 � �t)✏

t
k + �t(1 � �t)

¯�t
k

i

+ ⇢kCt
k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i

= ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ ⇢kCt�1

k

h
(1 � �t)✏

t
k + �t

¯�t
k

i

| {z }
��⇢
k,t

� ⇢kCt�1
k �t�t

¯�t
k + ⇢kCt

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i

= ��⇢
k,t � ⇢kCt�1

k �t�t
¯�t
k + ⇢kCt

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i
. (28)

Although this is already a recursion of the desired form, expressing ��⇢
k,t+1 in terms of ��⇢

k,t, we are not done yet. The
recursion can be simplified further by noting that

(1 � �t+1)✏
t+1
k + �t+1

¯�t+1
k = (1 � �t+1)

t+1X

i=k+1

Ri � ✓>�k

!
+ �t+1

t+1X

i=k+1

Ri + ✓>�t+1 � ✓>�k

!

=

t+1X

i=k+1

Ri � ✓>�k + �t+1✓
>�t+1

=

tX

i=k+1

Ri � ✓>�k + Rt+1 + �t+1✓
>�t+1 � ✓>�t + ✓>�t

=

tX

i=k+1

Ri � ✓>�k + �t + ✓>�t

=

¯�t
k + �t .

Substituting this in (28), we obtain our final recursion:

��⇢
k,t+1 = ��⇢

k,t � ⇢kCt�1
k �t�t

¯�t
k + ⇢kCt

k

�
¯�t
k + �t

�

= ��⇢
k,t � ⇢kCt�1

k �t�t
¯�t
k + ⇢kCt�1

k �t�t⇢t
¯�t
k + ⇢kCt

k�t

= ��⇢
k,t + ⇢kCt

k�t + (⇢t � 1)�t�t⇢kCt�1
k

¯�t
k. (11)

A new Q(�) with interim forward view and Monte Carlo equivalence

S.2 Derivation of Equation (24), the PQ recursion in t

The first steps of this derivation are directly analogous to those in the previous section leading to (28), except here using
the definitions for the action-value case in Section 5. We do not repeat these steps here. In this case they lead to

��⇢
k,t+1 = ��⇢

k,t � Ct�1
k �t�t

¯�t
k + Ct

k

h
(1 � �t+1)✏

t+1
k + �t+1

¯�t+1
k

i
, (29)

for all k < t. Note that, compared to (28), ⇢k is absent.

Again, this recursion can be simplified. Using (20–22) we get

(1 � �t+1)✏
t+1
k + �t+1

¯�t+1
k = (1 � �t+1)

t+1X

i=k+1

Ri � ✓>�k

!
+ �t+1

t+1X

i=k+1

Ri + ✓>
¯�⇡

t+1 � ✓>�k

!

=

t+1X

i=k+1

Ri � ✓>�k + �t+1✓
>

¯�⇡
t+1

=

tX

i=k+1

Ri � ✓>�k + Rt+1 + �t+1✓
>

¯�⇡
t+1 � ✓>�t + ✓>�t

= ✏t
k + �t + ✓>�t

=

¯�t
k � ✓>

¯�⇡
t + �t + ✓>�t

=

¯�t
k + �t + ✓>

(�t � ¯�⇡
t) .

Using this in (29), we obtain our final recursion:

��⇢
k,t+1 = ��⇢

k,t � Ct�1
k �t�t

¯�t
k + Ct

k

�
¯�t
k + �t + ✓>

(�t � ¯�⇡
t)

�

= ��⇢
k,t � Ct�1

k �t�t
¯�t
k + Ct�1

k �t�t⇢t
¯�t
k + Ct

k�t + Ct
k✓

>
(�t � ¯�⇡

t)

= ��⇢
k,t + Ct

k�t + Ct
k✓

>
(�t � ¯�⇡

t) + (⇢t � 1)�t�tC
t�1
k

¯�t
k . (24)

S.3 Lemma 1: PTD recursion in k

The following lemma, used in proving Theorem 3 in the next section, shows how ��⇢
k,t depends on ��⇢

k+1,t. All definitions
are from Sections 2–4 (the state-value or PTD case).

Lemma 1 (PTD error recursion in k). For all k < t � 1,

��⇢
k,t = ⇢k

⇣
�k +

�
Dt

k � 1

�
¯�k+1
k + �k+1�k+1�

�⇢
k+1,t

⌘
, (30)

where

Dt
k =

t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k . (31)

A new Q(�) with interim forward view and Monte Carlo equivalence

Proof. First note that from definitions (3) and (4) it is clear that

¯�i
k = ✏i

k + ✓>�i (32)

and
✏i
k = Rk+1 + Rk+2 + · · · + Ri � ✓>�k (3)

= Rk+1 + Rk+2 + · · · + Ri � ✓>�k+1 + ✓>�k+1 � ✓>�k

= Rk+1 + ✏i
k+1 + ✓>�k+1 � ✓>�k

=

¯�k+1
k + ✏i

k+1. (33)

Using these, the lemma can be directly derived:

��⇢
k,t = ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ Ct�1

k

h
(1 � �t)✏

t
k + �t

¯�t
k

i!
(as in (6))

= ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

�
✏i
k + ✓>�i

�i
+ Ct�1

k

h
(1 � �t)✏

t
k + �t

�
✏t
k + ✓>�t

�i
!

(using (32))

= ⇢k

t�1X

i=k+1

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
✏t
k + �t✓

>�t

i!
(34)

= ⇢k

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
✏t
k + �t✓

>�t

i

+ Ck
k

h
(1 � �k+1�k+1)✏

k+1
k + �k+1(1 � �k+1)✓

>�k+1

i!

= ⇢k

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
¯�k+1
k + ✏i

k+1

�
+ �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
¯�k+1
k + ✏t

k+1 + �t✓
>�t

i
(using (33))

+ (1 � �k+1�k+1)
�
Rk+1 � ✓>�k

�
+ �k+1(1 � �k+1)✓

>�k+1

!
(using Ck

k = 1)

= ⇢k

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>�i

i
+ Ct�1

k

h
✏t
k+1 + �t✓

>�t

i
+

t�1X

i=k+2

Ci�1
k (1 � �i�i)

¯�k+1
k + Ct�1

k
¯�k+1
k

+ Rk+1 � ✓>�k + �k+1✓
>�k+1 � �k+1�k+1

�
Rk+1 � ✓>�k + ✓>�k+1

�
!

= ⇢k

t�1X

i=k+2

�k+1�k+1⇢k+1C
i�1
k+1

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>�i

i
+ �k+1�k+1⇢k+1C

t�1
k+1

h
✏t
k+1 + �t✓

>�t

i

+

t�1X

i=k+2

Ci�1
k (1 � �i�i)

¯�k+1
k + Ct�1

k
¯�k+1
k + �k � �k+1�k+1

¯�k+1
k

!

= ⇢k

�k+1�k+1�

�⇢
k+1,t +

"
t�1X

i=k+2

Ci�1
k (1 � �i�i) + 1 � �k+1�k+1 + Ct�1

k � 1

#
¯�k+1
k + �k

!
(using (34))

= ⇢k

�k+1�k+1�

�⇢
k+1,t +

"
t�1X

i=k+2

Ci�1
k (1 � �i�i) + Ck

k (1 � �k+1�k+1) + Ct�1
k � 1

#
¯�k+1
k + �k

!

= ⇢k

�k+1�k+1�

�⇢
k+1,t +

"
t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k � 1

#
¯�k+1
k + �k

!

= ⇢k

⇣
�k +

⇥
Dt

k � 1

⇤
¯�k+1
k + �k+1�k+1�

�⇢
k+1,t

⌘
.

A new Q(�) with interim forward view and Monte Carlo equivalence

S.4 Proof of Theorem 3 (On-policy and off-policy expectations for PTD)
All definitions here are from Sections 2-4 (the state-value or PTD case).

Theorem 3 (On-policy and off-policy expectations). For any state s,

Eb

h
��⇢
k,t

���Sk = s
i

= E⇡

h
��1
k,t

���Sk = s
i
, (35)

where Eb and E⇡ denote expectations under the behavior and target policies, and ��1
k,t denotes ��⇢

k,t with ⇢t = 1 for all t.

Proof. First we note that

Eb

⇥
⇢kCt

k

��Sk = s
⇤

= Eb

"
⇢k

tY

i=k+1

�i�i⇢i

�����Sk = s

#

=

X

a

b(a|s)
X

s0

p(s0|s, a)

⇡(a|s)
b(a|s) �(s0

)�(s0
)Eb

"
tY

i=k+2

�i�i⇢i

�����Sk = s, Ak = a, Sk+1 = s0

#

=

X

a

⇡(a|s)
X

s0

p(s0|s, a)�(s0
)�(s0

)Eb

"
⇢k+1

tY

i=k+2

�i�i⇢i

�����Sk+1 = s0

#

=

X

a

⇡(a|s)
X

s0

p(s0|s, a)�(s0
)�(s0

)

X

a0

⇡(a0|s0
)

X

s00

p(s00|s0, a0
)�(s00

)�(s00
) · · ·

= E⇡

"
tY

i=k+1

�i�i

�����Sk = s

#
,

from which one can show

Eb

⇥
⇢kDt

k

��Sk = s
⇤

= Eb

"
⇢k

t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k

!�����Sk = s

#
(using (31))

= E⇡

"
t�1X

i=k+1

iY

i=k+1

�i�i(1 � �i�i) +

tY

i=k+1

�i�i

�����Sk = s

#

= 1 . (36)

Now we can start directly from the left-hand side of the theorem statement:

Eb

h
��⇢
k,t

���Sk = s
i

= Eb

h
⇢k

⇣
�k +

�
Dt

k � 1

�
¯�k+1
k + �k+1�k+1�

�⇢
k+1,t

⌘���Sk = s
i

(using Lemma 1)

= Eb

h
⇢k

⇣
�k + �k+1�k+1�

�⇢
k+1,t

⌘���Sk = s
i

(using (36))

=

X

a

b(a|s)⇡(a|s)
b(a|s)

⇣
Eb[�k|Sk = s, Ak = a] + Eb

h
�k+1�k+1�

�⇢
k+1,t

���Sk = s, Ak = a
i⌘

=

X

a

⇡(a|s)
⇣
Eb[�k|Sk = s, Ak = a] + Eb

h
�k+1�k+1�

�⇢
k+1,t

���Sk = s, Ak = a
i⌘

= E⇡[�k|Sk = s] +

X

a

⇡(a|s)
X

s0

p(s0|s, a)�(s0
)�(s0

)Eb

h
��⇢
k+1,t

���Sk+1 = s0
i

= E⇡

h
�k + �k+1�k+1Eb

h
��⇢
k+1,t

���Sk+1

i���Sk = s
i

= E⇡

h
�k + �k+1�k+1�k+1 + �k+2�k+2Eb

h
��⇢
k+2,t

���Sk+2

i���Sk = s
i

...

A new Q(�) with interim forward view and Monte Carlo equivalence

= E⇡

2

4
t�1X

j=k

jY

i=k+1

�i�i

!
�j

������
Sk = s

3

5 .

It thus only remains to show that ��1
k,t is equal to this sum, which we can show directly from (11) and the definition of ��1

k,t:

��1
k,t = ��1

k,t�1 +

t�1Y

i=k+1

�i�i

!
�t�1

= ��1
k,t�2 +

t�2Y

i=k+1

�i�i

!
�t�2 +

t�1Y

i=k+1

�i�i

!
�t�1

...

=

t�1X

j=k

jY

i=k+1

�i�i

!
�j .

S.5 Lemma 2: PQ recursion in k

This lemma is the analog of Lemma 1 for the action-value case, showing how ��⇢
k,t depends on ��⇢

k+1,t when these errors
are defined by (18–24). This lemma assists in proving Theorem 5 below. All definitions here are as in Section 5 (the
action-value or PQ case), plus Dt

k as in Lemma 1.

Lemma 2 (PQ error recursion in k). For all k < t � 1,

��⇢
k,t = �k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

�
. (37)

Proof. The proof is analogous to that of Lemma 1. Here we have the helper identities

¯�i
k = ✏i

k + ✓>
¯�⇡

i , (38)

and
✏i
k = ✏i

k+1 + ✏k+1
k + ✓>�k+1. (39)

Then we can proceed directly:

��⇢
k,t =

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

¯�i
k

i
+ Ct�1

k

⇥
(1 � �t)✏

t
k + �t

¯�t
k

⇤
(as in (23))

=

t�1X

i=k+1

Ci�1
k

h
(1 � �i)✏

i
k + �i(1 � �i)

�
✏i
k + ✓>

¯�⇡
i

�i
+ Ct�1

k

h
(1 � �t)✏

t
k + �t

�
✏t
k + ✓>

¯�⇡
t

�i
(using (38))

=

t�1X

i=k+1

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k + �t✓

>
¯�⇡

t

i
(40)

=

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k + �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k + �t✓

>
¯�⇡

t

i

+ Ck
k

h
(1 � �k+1�k+1)✏

k+1
k + �k+1(1 � �k+1)✓

>
¯�⇡

k+1

i

=

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
✏i
k+1 + ✏k+1

k + ✓>�k+1

�
+ �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k+1 + ✏k+1

k + ✓>�k+1 + �t✓
>

¯�⇡
t

i

+ (1 � �k+1�k+1)
�
Rk+1 � ✓>�k

�
+ �k+1(1 � �k+1)✓

>
¯�⇡

k+1 (using (39) and Ck
k = 1)

A new Q(�) with interim forward view and Monte Carlo equivalence

=

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>
¯�⇡

i

i
+ Ct�1

k

h
✏t
k+1 + �t✓

>
¯�⇡

t

i

+

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
✏k+1
k + ✓>�k+1

�i
+ Ct�1

k

h
✏k+1
k + ✓>�k+1

i

+ Rk+1 � ✓>�k + �k+1✓
>

¯�⇡
k+1 � �k+1�k+1

�
Rk+1 � ✓>�k + ✓>

¯�⇡
k+1

�

=

t�1X

i=k+2

�k+1�k+1⇢k+1C
i�1
k+1

h
(1 � �i�i)✏

i
k+1 + �i(1 � �i)✓

>
¯�⇡

i

i
+ �k+1�k+1⇢k+1C

t�1
k+1

h
✏t
k+1 + �t✓

>
¯�⇡

t

i

+

t�1X

i=k+2

Ci�1
k

h
(1 � �i�i)

�
✏k+1
k + ✓>�k+1

�i
+ Ct�1

k

h
✏k+1
k + ✓>�k+1

i
+ �k � �k+1�k+1

¯�k+1
k

= �k+1�k+1⇢k+1�
�⇢
k+1,t +

t�1X

i=k+2

Ci�1
k (1 � �i�i) + Ct�1

k

!
�
✏k+1
k + ✓>�k+1

�
+ �k � �k+1�k+1

¯�k+1
k

(using (40); now add and subtract (1 � �k+1�k+1)(✏
k+1
k + ✓>�k+1), the first element of the summation)

= �k+1�k+1⇢k+1�
�⇢
k+1,t +

t�1X

i=k+1

Ci�1
k (1 � �i�i) + Ct�1

k � 1 + �k+1�k+1

!
�
✏k+1
k + ✓>�k+1

�
+ �k � �k+1�k+1

¯�k+1
k

= �k+1�k+1⇢k+1�
�⇢
k+1,t +

�
Dt

k � 1 + �k+1�k+1

� �
✏k+1
k + ✓>�k+1

�
+ �k � �k+1�k+1

¯�k+1
k

= �k + �k+1�k+1⇢k+1�
�⇢
k+1,t + �k+1�k+1(✏

k+1
k + ✓>�k+1 � ¯�k+1

k) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

�

= �k + �k+1�k+1⇢k+1�
�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

�
. (using (38))

S.6 Theorem 5: On-policy and off-policy expectations for PQ
All definitions here are from Section 5 (the state-value or PQ case), plus Dt

k from Lemma 1.

Theorem 5 (On-policy and off-policy expectations). For any state s,

Eb

h
��⇢
k,t

���Sk = s, Ak = a
i

= E⇡

h
��1
k,t

���Sk = s, Ak = a
i
,

where Eb and E⇡ denote expectations under the behavior and target policies, and ��1
k,t denotes ��⇢

k,t with ⇢t = 1 for all t.

Proof. The proof is analogous to that for Theorem 3. Using Lemma 2, the left-hand side can be written

Eb

h
��⇢
k,t

���Sk = s, Ak = a
i

= Eb

h
�k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + (Dt
k � 1)

�
✏k+1
k + ✓>�k+1

����Sk = s, Ak = a
i

= Eb

h
�k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk = s, Ak = a
i

(using Eb[X|Sk = s, Ak = a] = E⇡[Eb[X|Sk+1]|Sk = s, Ak = a])

= E⇡

h
Eb

h
�k + �k+1�k+1⇢k+1�

�⇢
k+1,t + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk+1

i���Sk = s, Ak = a
i

(using E⇡[Eb[X|Sk+1]|Sk = s, Ak = a] = E⇡[X|Sk = s, Ak = a] for all X not depending on Ak+1)

= E⇡

h
�k + �k+1�k+1Eb

h
⇢k+1�

�⇢
k+1,t

���Sk+1

i
+ �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk = s, Ak = a
i

(using, as in Theorem 3, Eb[⇢kX|Sk = s] = E⇡[Eb[X|Ak = a]|Sk = s])

= E⇡

h
�k + �k+1�k+1E⇡

h
��⇢
k+1,t

���Sk+1, Ak+1

i
+ �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1)

���Sk = s, Ak = a
i

A new Q(�) with interim forward view and Monte Carlo equivalence

... (repeatedly expand the ��⇢ term until, finally, ��⇢
t�1,t = �t�1)

= E⇡

2

4
t�1X

j=k

jY

i=k+1

�i�i

!
�
�j + ✓>

(�j � ¯�⇡
j)

�
� ✓>

(�k � ¯�⇡
k)

������
Sk = s, Ak = a

3

5 .

It thus only remains to show that ��1
k,t is equal to the quantity whose expectation is being taken here:

��1
k,t = �k + �k+1�k+1✓

>
(�k+1 � ¯�⇡

k+1) + �k+1�k+1�
�⇢
k+1,t

= �k + �k+1�k+1�k+1 + �k+1�k+1✓
>
(�k+1 � ¯�⇡

k+1) + �k+1�k+1�k+2�k+2✓
>
(�k+1 � ¯�⇡

k+1) + �k+2�k+2�
�⇢
k+2,t

...

=

t�1X

j=k

jY

i=k+1

�i�i

!
�
�j + ✓>

(�j � ¯�⇡
j)

�
� ✓>

(�k � ¯�⇡
k) .

The last term is there because ��1
t�1,t = �t�1, so in the summation the indices of the � range from k to t � 1, but the indices

on the other terms range from k + 1 to t.

S.7 Additional detail on the provisional-weight updates (15) and (27)
A key step in the derivation of (15) is the transition from the second to the third equation, involving a re-writing of ¯�t

k in
terms of ¯�t�1

k . Here we spell it out more fully:

¯�t
k = Rk+1 + · · · + Rt�1 + Rt + ✓>�t � ✓>�k (from (4))

= Rk+1 + · · · + Rt�1 + Rt + ✓>�t � ✓>�k + ✓>�t�1 � ✓>�t�1

= Rk+1 + · · · + Rt�1 + ✓>�t�1 � ✓>�k| {z }
¯�t�1
k

+ Rt + ✓>�t � ✓>�t�1| {z }
¯�t
t�1

(regrouping)

=

¯�t�1
k +

¯�t
t�1.

The derivation for PQ’s provisional weight update (27) is similar to that for PTD, but was not included in the main text to
save space. We include it here:

ut = ↵�t�t

t�1X

k=0

Ct�1
k

¯�t
k�k

= ↵�t�t

"
t�2X

k=0

Ct�1
k

¯�t
k�k + Ct�1

t�1
¯�t
t�1�t�1

#

= ↵�t�t

"
t�2X

k=0

Ct�1
k

h
¯�t�1
k +

¯�t
t�1 + ✓>

(�t�1 � ¯�⇡
t�1)

i
�k +

¯�t
t�1�t�1

#

= �t�t

⇣
⇢t�1ut�1 + ↵¯�t

t�1et�1 + ↵✓>��t�1 � ¯�⇡
t�1

�
(et�1 � �t�1)

⌘
. (27)

As in the PTD derivation, the key step is moving from the second to the third equation by writing ¯�t
k in terms of ¯�t�1

k , as
follows:

¯�t
k = Rk+1 + · · · + Rt�1 + Rt + ✓>

¯�⇡
t � ✓>�k (from (21))

= Rk+1 + · · · + Rt�1 + Rt + ✓>
¯�⇡

t � ✓>�k + ✓>
¯�⇡

t�1 � ✓>
¯�⇡

t�1 + ✓>�t�1 � ✓>�t�1

= (Rk+1 + · · · + Rt�1 + ✓>
¯�⇡

t�1 � ✓>�k) + (Rt + ✓>
¯�⇡

t � ✓>�t�1) � ✓>
¯�⇡

t�1 + ✓>�t�1 (regrouping)

=

¯�t�1
k +

¯�t
t�1 + ✓>��t�1 � ¯�⇡

t�1

�
.

