Supplementary material

Here we prove the theorems and derive the recursive relationships stated but not proved in the main text. First we prove the recursions in the time horizon t for the forward-view errors used by $\operatorname{PTD}(\lambda)$ and $\operatorname{PQ}(\lambda)$. We then prove a recursion in k for PTD (Lemma 1) and use it to prove Theorem 3 for PTD. Next we prove an analogous recursion in k (Lemma 2) and theorem (Theorem 5) for PQ and for action values. Finally, we provide some further detail on a key step in the derivations of the update of the provisional weights, \boldsymbol{u}_{t}, for both algorithms.

S. 1 Derivation of Equation (11), the PTD recursion in t

From (6), for $k<t$, we immediately have

$$
\begin{align*}
& \delta_{k, t+1}^{\lambda \rho}=\rho_{k} \sum_{i=k+1}^{t} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \bar{\delta}_{k}^{i}\right]+\rho_{k} C_{k}^{t}\left[\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1}\right] \\
& =\rho_{k} \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \bar{\delta}_{k}^{i}\right]+\rho_{k} C_{k}^{t-1}\left[\left(1-\gamma_{t}\right) \epsilon_{k}^{t}+\gamma_{t}\left(1-\lambda_{t}\right) \bar{\delta}_{k}^{t}\right] \\
& +\rho_{k} C_{k}^{t}\left[\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1}\right] \\
& =\underbrace{\rho_{k} \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \bar{\delta}_{k}^{i}\right]+\rho_{k} C_{k}^{t-1}\left[\left(1-\gamma_{t}\right) \epsilon_{k}^{t}+\gamma_{t} \bar{\delta}_{k}^{t}\right]}_{\delta_{k, t}^{\lambda \rho}} \\
& -\rho_{k} C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+\rho_{k} C_{k}^{t}\left[\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1}\right] \\
& =\delta_{k, t}^{\lambda \rho}-\rho_{k} C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+\rho_{k} C_{k}^{t}\left[\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1}\right] . \tag{28}
\end{align*}
$$

Although this is already a recursion of the desired form, expressing $\delta_{k, t+1}^{\lambda \rho}$ in terms of $\delta_{k, t}^{\lambda \rho}$, we are not done yet. The recursion can be simplified further by noting that

$$
\begin{aligned}
\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1} & =\left(1-\gamma_{t+1}\right)\left(\sum_{i=k+1}^{t+1} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right)+\gamma_{t+1}\left(\sum_{i=k+1}^{t+1} R_{i}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right) \\
& =\sum_{i=k+1}^{t+1} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\gamma_{t+1} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+1} \\
& =\sum_{i=k+1}^{t} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} \\
& =\sum_{i=k+1}^{t} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\delta_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} \\
& =\bar{\delta}_{k}^{t}+\delta_{t} .
\end{aligned}
$$

Substituting this in (28), we obtain our final recursion:

$$
\begin{align*}
\delta_{k, t+1}^{\lambda \rho} & =\delta_{k, t}^{\lambda \rho}-\rho_{k} C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+\rho_{k} C_{k}^{t}\left(\bar{\delta}_{k}^{t}+\delta_{t}\right) \\
& =\delta_{k, t}^{\lambda \rho}-\rho_{k} C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+\rho_{k} C_{k}^{t-1} \gamma_{t} \lambda_{t} \rho_{t} \bar{\delta}_{k}^{t}+\rho_{k} C_{k}^{t} \delta_{t} \\
& =\delta_{k, t}^{\lambda \rho}+\rho_{k} C_{k}^{t} \delta_{t}+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t} \rho_{k} C_{k}^{t-1} \bar{\delta}_{k}^{t} . \tag{11}
\end{align*}
$$

S. 2 Derivation of Equation (24), the $\mathbf{P Q}$ recursion in t

The first steps of this derivation are directly analogous to those in the previous section leading to (28), except here using the definitions for the action-value case in Section 5. We do not repeat these steps here. In this case they lead to

$$
\begin{equation*}
\delta_{k, t+1}^{\lambda \rho}=\delta_{k, t}^{\lambda \rho}-C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+C_{k}^{t}\left[\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1}\right] \tag{29}
\end{equation*}
$$

for all $k<t$. Note that, compared to (28), ρ_{k} is absent.
Again, this recursion can be simplified. Using (20-22) we get

$$
\begin{aligned}
\left(1-\gamma_{t+1}\right) \epsilon_{k}^{t+1}+\gamma_{t+1} \bar{\delta}_{k}^{t+1} & =\left(1-\gamma_{t+1}\right)\left(\sum_{i=k+1}^{t+1} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right)+\gamma_{t+1}\left(\sum_{i=k+1}^{t+1} R_{i}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t+1}^{\pi}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right) \\
& =\sum_{i=k+1}^{t+1} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\gamma_{t+1} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t+1}^{\pi} \\
& =\sum_{i=k+1}^{t} R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+R_{t+1}+\gamma_{t+1} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t+1}^{\pi}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} \\
& =\epsilon_{k}^{t}+\delta_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} \\
& =\bar{\delta}_{k}^{t}-\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}+\delta_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} \\
& =\bar{\delta}_{k}^{t}+\delta_{t}+\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t}-\overline{\boldsymbol{\phi}}_{t}^{\pi}\right) .
\end{aligned}
$$

Using this in (29), we obtain our final recursion:

$$
\begin{align*}
\delta_{k, t+1}^{\lambda \rho} & =\delta_{k, t}^{\lambda \rho}-C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+C_{k}^{t}\left(\bar{\delta}_{k}^{t}+\delta_{t}+\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t}-\overline{\boldsymbol{\phi}}_{t}^{\pi}\right)\right) \\
& =\delta_{k, t}^{\lambda \rho}-C_{k}^{t-1} \gamma_{t} \lambda_{t} \bar{\delta}_{k}^{t}+C_{k}^{t-1} \gamma_{t} \lambda_{t} \rho_{t} \bar{\delta}_{k}^{t}+C_{k}^{t} \delta_{t}+C_{k}^{t} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t}-\overline{\boldsymbol{\phi}}_{t}^{\pi}\right) \\
& =\delta_{k, t}^{\lambda \rho}+C_{k}^{t} \delta_{t}+C_{k}^{t} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t}-\overline{\boldsymbol{\phi}}_{t}^{\pi}\right)+\left(\rho_{t}-1\right) \gamma_{t} \lambda_{t} C_{k}^{t-1} \bar{\delta}_{k}^{t} \tag{24}
\end{align*}
$$

S. 3 Lemma 1: PTD recursion in k

The following lemma, used in proving Theorem 3 in the next section, shows how $\delta_{k, t}^{\lambda \rho}$ depends on $\delta_{k+1, t}^{\lambda \rho}$. All definitions are from Sections 2-4 (the state-value or PTD case).
Lemma 1 (PTD error recursion in k). For all $k<t-1$,

$$
\begin{equation*}
\delta_{k, t}^{\lambda \rho}=\rho_{k}\left(\delta_{k}+\left(D_{k}^{t}-1\right) \bar{\delta}_{k}^{k+1}+\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}\right) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{k}^{t}=\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+C_{k}^{t-1} \tag{31}
\end{equation*}
$$

Proof. First note that from definitions (3) and (4) it is clear that

$$
\begin{equation*}
\bar{\delta}_{k}^{i}=\epsilon_{k}^{i}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i} \tag{32}
\end{equation*}
$$

and

$$
\begin{align*}
\epsilon_{k}^{i} & =R_{k+1}+R_{k+2}+\cdots+R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} \tag{3}\\
& =R_{k+1}+R_{k+2}+\cdots+R_{i}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} \\
& =R_{k+1}+\epsilon_{k+1}^{i}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} \\
& =\bar{\delta}_{k}^{k+1}+\epsilon_{k+1}^{i} . \tag{33}
\end{align*}
$$

Using these, the lemma can be directly derived:

$$
\begin{align*}
& \delta_{k, t}^{\lambda \rho}=\rho_{k}\left(\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \bar{\delta}_{k}^{i}\right]+C_{k}^{t-1}\left[\left(1-\gamma_{t}\right) \epsilon_{k}^{t}+\gamma_{t} \bar{\delta}_{k}^{t}\right]\right) \\
& =\rho_{k}\left(\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right)\left(\epsilon_{k}^{i}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i}\right)\right]+C_{k}^{t-1}\left[\left(1-\gamma_{t}\right) \epsilon_{k}^{t}+\gamma_{t}\left(\epsilon_{k}^{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}\right)\right]\right) \\
& =\rho_{k}\left(\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i}\right]+C_{k}^{t-1}\left[\epsilon_{k}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}\right]\right) \\
& =\rho_{k}\left(\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i}\right]+C_{k}^{t-1}\left[\epsilon_{k}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}\right]\right. \\
& \left.+C_{k}^{k}\left[\left(1-\gamma_{k+1} \lambda_{k+1}\right) \epsilon_{k}^{k+1}+\gamma_{k+1}\left(1-\lambda_{k+1}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right]\right) \\
& =\rho_{k}\left(\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right)\left(\bar{\delta}_{k}^{k+1}+\epsilon_{k+1}^{i}\right)+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i}\right]+C_{k}^{t-1}\left[\bar{\delta}_{k}^{k+1}+\epsilon_{k+1}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}\right] \quad\right. \text { (using (33)) } \\
& \left.+\left(1-\gamma_{k+1} \lambda_{k+1}\right)\left(R_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right)+\gamma_{k+1}\left(1-\lambda_{k+1}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right) \quad \quad \quad\left(\text { using } C_{k}^{k}=1\right) \\
& =\rho_{k}\left(\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k+1}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i}\right]+C_{k}^{t-1}\left[\epsilon_{k+1}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}\right]+\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right) \bar{\delta}_{k}^{k+1}+C_{k}^{t-1} \bar{\delta}_{k}^{k+1}\right. \\
& \left.+R_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\gamma_{k+1} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}-\gamma_{k+1} \lambda_{k+1}\left(R_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)\right) \\
& =\rho_{k}\left(\sum_{i=k+2}^{t-1} \gamma_{k+1} \lambda_{k+1} \rho_{k+1} C_{k+1}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k+1}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{i}\right]+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} C_{k+1}^{t-1}\left[\epsilon_{k+1}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}\right]\right. \\
& \left.+\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right) \bar{\delta}_{k}^{k+1}+C_{k}^{t-1} \bar{\delta}_{k}^{k+1}+\delta_{k}-\gamma_{k+1} \lambda_{k+1} \bar{\delta}_{k}^{k+1}\right) \\
& =\rho_{k}\left(\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}+\left[\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+1-\gamma_{k+1} \lambda_{k+1}+C_{k}^{t-1}-1\right] \bar{\delta}_{k}^{k+1}+\delta_{k}\right) \tag{34}\\
& =\rho_{k}\left(\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}+\left[\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+C_{k}^{k}\left(1-\gamma_{k+1} \lambda_{k+1}\right)+C_{k}^{t-1}-1\right] \bar{\delta}_{k}^{k+1}+\delta_{k}\right) \\
& =\rho_{k}\left(\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}+\left[\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+C_{k}^{t-1}-1\right] \bar{\delta}_{k}^{k+1}+\delta_{k}\right) \\
& =\rho_{k}\left(\delta_{k}+\left[D_{k}^{t}-1\right] \bar{\delta}_{k}^{k+1}+\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}\right) .
\end{align*}
$$

S. 4 Proof of Theorem 3 (On-policy and off-policy expectations for PTD)

All definitions here are from Sections 2-4 (the state-value or PTD case).
Theorem 3 (On-policy and off-policy expectations). For any state s,

$$
\begin{equation*}
\mathbb{E}_{b}\left[\delta_{k, t}^{\lambda \rho} \mid S_{k}=s\right]=\mathbb{E}_{\pi}\left[\delta_{k, t}^{\lambda 1} \mid S_{k}=s\right] \tag{35}
\end{equation*}
$$

where \mathbb{E}_{b} and \mathbb{E}_{π} denote expectations under the behavior and target policies, and $\delta_{k, t}^{\lambda 1}$ denotes $\delta_{k, t}^{\lambda \rho}$ with $\rho_{t}=1$ for all t.
Proof. First we note that

$$
\begin{aligned}
\mathbb{E}_{b}\left[\rho_{k} C_{k}^{t} \mid S_{k}=s\right] & =\mathbb{E}_{b}\left[\rho_{k} \prod_{i=k+1}^{t} \gamma_{i} \lambda_{i} \rho_{i} \mid S_{k}=s\right] \\
& =\sum_{a} b(a \mid s) \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) \frac{\pi(a \mid s)}{b(a \mid s)} \gamma\left(s^{\prime}\right) \lambda\left(s^{\prime}\right) \mathbb{E}_{b}\left[\prod_{i=k+2}^{t} \gamma_{i} \lambda_{i} \rho_{i} \mid S_{k}=s, A_{k}=a, S_{k+1}=s^{\prime}\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) \gamma\left(s^{\prime}\right) \lambda\left(s^{\prime}\right) \mathbb{E}_{b}\left[\rho_{k+1} \prod_{i=k+2}^{t} \gamma_{i} \lambda_{i} \rho_{i} \mid S_{k+1}=s^{\prime}\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) \gamma\left(s^{\prime}\right) \lambda\left(s^{\prime}\right) \sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) \sum_{s^{\prime \prime}} p\left(s^{\prime \prime} \mid s^{\prime}, a^{\prime}\right) \gamma\left(s^{\prime \prime}\right) \lambda\left(s^{\prime \prime}\right) \cdots \\
& =\mathbb{E}_{\pi}\left[\prod_{i=k+1}^{t} \gamma_{i} \lambda_{i} \mid S_{k}=s\right]
\end{aligned}
$$

from which one can show

$$
\begin{align*}
\mathbb{E}_{b}\left[\rho_{k} D_{k}^{t} \mid S_{k}=s\right] & =\mathbb{E}_{b}\left[\rho_{k}\left(\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+C_{k}^{t-1}\right) \mid S_{k}=s\right] \tag{31}\\
& =\mathbb{E}_{\pi}\left[\sum_{i=k+1}^{t-1} \prod_{i=k+1}^{i} \gamma_{i} \lambda_{i}\left(1-\gamma_{i} \lambda_{i}\right)+\prod_{i=k+1}^{t} \gamma_{i} \lambda_{i} \mid S_{k}=s\right] \\
& =1 \tag{36}
\end{align*}
$$

Now we can start directly from the left-hand side of the theorem statement:

$$
\begin{align*}
\mathbb{E}_{b}\left[\delta_{k, t}^{\lambda \rho} \mid S_{k}=s\right] & =\mathbb{E}_{b}\left[\rho_{k}\left(\delta_{k}+\left(D_{k}^{t}-1\right) \bar{\delta}_{k}^{k+1}+\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}\right) \mid S_{k}=s\right] \\
& =\mathbb{E}_{b}\left[\rho_{k}\left(\delta_{k}+\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho}\right) \mid S_{k}=s\right] \tag{36}\\
& =\sum_{a} b(a \mid s) \frac{\pi(a \mid s)}{b(a \mid s)}\left(\mathbb{E}_{b}\left[\delta_{k} \mid S_{k}=s, A_{k}=a\right]+\mathbb{E}_{b}\left[\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho} \mid S_{k}=s, A_{k}=a\right]\right. \text {) } \\
& =\sum_{a} \pi(a \mid s)\left(\mathbb{E}_{b}\left[\delta_{k} \mid S_{k}=s, A_{k}=a\right]+\mathbb{E}_{b}\left[\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho} \mid S_{k}=s, A_{k}=a\right]\right. \text {) } \\
& =\mathbb{E}_{\pi}\left[\delta_{k} \mid S_{k}=s\right]+\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) \gamma\left(s^{\prime}\right) \lambda\left(s^{\prime}\right) \mathbb{E}_{b}\left[\delta_{k+1, t}^{\lambda \rho} \mid S_{k+1}=s^{\prime}\right] \\
& =\mathbb{E}_{\pi}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \mathbb{E}_{b}\left[\delta_{k+1, t}^{\lambda \rho} \mid S_{k+1}\right] \mid S_{k}=s\right] \\
& =\mathbb{E}_{\pi}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \delta_{k+1}+\gamma_{k+2} \lambda_{k+2} \mathbb{E}_{b}\left[\delta_{k+2, t}^{\lambda \rho} \mid S_{k+2}\right] \mid S_{k}=s\right]
\end{align*}
$$

$$
=\mathbb{E}_{\pi}\left[\sum_{j=k}^{t-1}\left(\prod_{i=k+1}^{j} \gamma_{i} \lambda_{i}\right) \delta_{j} \mid S_{k}=s\right]
$$

It thus only remains to show that $\delta_{k, t}^{\lambda 1}$ is equal to this sum, which we can show directly from (11) and the definition of $\delta_{k, t}^{\lambda 1}$:

$$
\begin{aligned}
\delta_{k, t}^{\lambda 1} & =\delta_{k, t-1}^{\lambda 1}+\left(\prod_{i=k+1}^{t-1} \gamma_{i} \lambda_{i}\right) \delta_{t-1} \\
& =\delta_{k, t-2}^{\lambda 1}+\left(\prod_{i=k+1}^{t-2} \gamma_{i} \lambda_{i}\right) \delta_{t-2}+\left(\prod_{i=k+1}^{t-1} \gamma_{i} \lambda_{i}\right) \delta_{t-1} \\
& \vdots \\
& =\sum_{j=k}^{t-1}\left(\prod_{i=k+1}^{j} \gamma_{i} \lambda_{i}\right) \delta_{j} .
\end{aligned}
$$

S. 5 Lemma 2: PQ recursion in k

This lemma is the analog of Lemma 1 for the action-value case, showing how $\delta_{k, t}^{\lambda \rho}$ depends on $\delta_{k+1, t}^{\lambda \rho}$ when these errors are defined by (18-24). This lemma assists in proving Theorem 5 below. All definitions here are as in Section 5 (the action-value or PQ case), plus D_{k}^{t} as in Lemma 1.
Lemma 2 (PQ error recursion in k). For all $k<t-1$,

$$
\begin{equation*}
\delta_{k, t}^{\lambda \rho}=\delta_{k}+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right)+\left(D_{k}^{t}-1\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right) \tag{37}
\end{equation*}
$$

Proof. The proof is analogous to that of Lemma 1. Here we have the helper identities

$$
\begin{equation*}
\bar{\delta}_{k}^{i}=\epsilon_{k}^{i}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{k}^{i}=\epsilon_{k+1}^{i}+\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1} \tag{39}
\end{equation*}
$$

Then we can proceed directly:

$$
\begin{align*}
& \delta_{k, t}^{\lambda \rho}= \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \bar{\delta}_{k}^{i}\right]+C_{k}^{t-1}\left[\left(1-\gamma_{t}\right) \epsilon_{k}^{t}+\gamma_{t} \bar{\delta}_{k}^{t}\right] \tag{23}\\
&= \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right)\left(\epsilon_{k}^{i}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi}\right)\right]+C_{k}^{t-1}\left[\left(1-\gamma_{t}\right) \epsilon_{k}^{t}+\gamma_{t}\left(\epsilon_{k}^{t}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}\right)\right] \tag{38}\\
&= \sum_{i=k+1}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi}\right]+C_{k}^{t-1}\left[\epsilon_{k}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}\right] \tag{40}\\
&= \sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi}\right]+C_{k}^{t-1}\left[\epsilon_{k}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}\right] \\
& \quad+C_{k}^{k}\left[\left(1-\gamma_{k+1} \lambda_{k+1}\right) \epsilon_{k}^{k+1}+\gamma_{k+1}\left(1-\lambda_{k+1}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right] \\
&= \sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right)\left(\epsilon_{k+1}^{i}+\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi}\right]+C_{k}^{t-1}\left[\epsilon_{k+1}^{t}+\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}+\gamma_{t} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}\right] \\
& \quad+\left(1-\gamma_{k+1} \lambda_{k+1}\right)\left(R_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right)+\gamma_{k+1}\left(1-\lambda_{k+1}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{k+1}^{\pi}
\end{align*}
$$

$$
\begin{aligned}
&=\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k+1}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi}\right]+C_{k}^{t-1}\left[\epsilon_{k+1}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}\right] \\
&+\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)\right]+C_{k}^{t-1}\left[\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right] \\
&+R_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\gamma_{k+1} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{k+1}^{\pi}-\gamma_{k+1} \lambda_{k+1}\left(R_{k+1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right) \\
&=\sum_{i=k+2}^{t-1} \gamma_{k+1} \lambda_{k+1} \rho_{k+1} C_{k+1}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right) \epsilon_{k+1}^{i}+\gamma_{i}\left(1-\lambda_{i}\right) \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{i}^{\pi}\right]+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} C_{k+1}^{t-1}\left[\epsilon_{k+1}^{t}+\gamma_{t} \boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}\right] \\
& \quad+\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left[\left(1-\gamma_{i} \lambda_{i}\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)\right]+C_{k}^{t-1}\left[\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right]+\delta_{k}-\gamma_{k+1} \lambda_{k+1} \bar{\delta}_{k}^{k+1} \\
&= \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\left(\sum_{i=k+2}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+C_{k}^{t-1}\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)+\delta_{k}-\gamma_{k+1} \lambda_{k+1} \bar{\delta}_{k}^{k+1}
\end{aligned}
$$

$$
\text { (using (40); now add and subtract }\left(1-\gamma_{k+1} \lambda_{k+1}\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right) \text {, the first element of the summation) }
$$

$$
=\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\left(\sum_{i=k+1}^{t-1} C_{k}^{i-1}\left(1-\gamma_{i} \lambda_{i}\right)+C_{k}^{t-1}-1+\gamma_{k+1} \lambda_{k+1}\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)+\delta_{k}-\gamma_{k+1} \lambda_{k+1} \bar{\delta}_{k}^{k+1}
$$

$$
=\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\left(D_{k}^{t}-1+\gamma_{k+1} \lambda_{k+1}\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)+\delta_{k}-\gamma_{k+1} \lambda_{k+1} \bar{\delta}_{k}^{k+1}
$$

$$
=\delta_{k}+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\gamma_{k+1} \lambda_{k+1}\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}-\bar{\delta}_{k}^{k+1}\right)+\left(D_{k}^{t}-1\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right)
$$

$$
\begin{equation*}
=\delta_{k}+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right)+\left(D_{k}^{t}-1\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right) \tag{38}
\end{equation*}
$$

S. 6 Theorem 5: On-policy and off-policy expectations for PQ

All definitions here are from Section 5 (the state-value or PQ case), plus D_{k}^{t} from Lemma 1.
Theorem 5 (On-policy and off-policy expectations). For any state s,

$$
\mathbb{E}_{b}\left[\delta_{k, t}^{\lambda \rho} \mid S_{k}=s, A_{k}=a\right]=\mathbb{E}_{\pi}\left[\delta_{k, t}^{\lambda 1} \mid S_{k}=s, A_{k}=a\right]
$$

where \mathbb{E}_{b} and \mathbb{E}_{π} denote expectations under the behavior and target policies, and $\delta_{k, t}^{\lambda 1}$ denotes $\delta_{k, t}^{\lambda \rho}$ with $\rho_{t}=1$ for all t.
Proof. The proof is analogous to that for Theorem 3. Using Lemma 2, the left-hand side can be written

$$
\begin{aligned}
& \mathbb{E}_{b}\left[\delta_{k, t}^{\lambda \rho} \mid S_{k}=s, A_{k}=a\right] \\
& =\mathbb{E}_{b}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right)+\left(D_{k}^{t}-1\right)\left(\epsilon_{k}^{k+1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1}\right) \mid S_{k}=s, A_{k}=a\right] \\
& =\mathbb{E}_{b}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right) \mid S_{k}=s, A_{k}=a\right]
\end{aligned}
$$

(using $\mathbb{E}_{b}\left[X \mid S_{k}=s, A_{k}=a\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{b}\left[X \mid S_{k+1}\right] \mid S_{k}=s, A_{k}=a\right]$)

$$
=\mathbb{E}_{\pi}\left[\mathbb{E}_{b}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1, t}^{\lambda \rho}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right) \mid S_{k+1}\right] \mid S_{k}=s, A_{k}=a\right]
$$

(using $\mathbb{E}_{\pi}\left[\mathbb{E}_{b}\left[X \mid S_{k+1}\right] \mid S_{k}=s, A_{k}=a\right]=\mathbb{E}_{\pi}\left[X \mid S_{k}=s, A_{k}=a\right]$ for all X not depending on A_{k+1})

$$
=\mathbb{E}_{\pi}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \mathbb{E}_{b}\left[\rho_{k+1} \delta_{k+1, t}^{\lambda \rho} \mid S_{k+1}\right]+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right) \mid S_{k}=s, A_{k}=a\right]
$$

(using, as in Theorem 3, $\mathbb{E}_{b}\left[\rho_{k} X \mid S_{k}=s\right]=\mathbb{E}_{\pi}\left[\mathbb{E}_{b}\left[X \mid A_{k}=a\right] \mid S_{k}=s\right]$)

$$
=\mathbb{E}_{\pi}\left[\delta_{k}+\gamma_{k+1} \lambda_{k+1} \mathbb{E}_{\pi}\left[\delta_{k+1, t}^{\lambda \rho} \mid S_{k+1}, A_{k+1}\right]+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\bar{\phi}_{k+1}^{\pi}\right) \mid S_{k}=s, A_{k}=a\right]
$$

$\vdots \quad$ (repeatedly expand the $\delta^{\lambda \rho}$ term until, finally, $\delta_{t-1, t}^{\lambda \rho}=\delta_{t-1}$)

$$
=\mathbb{E}_{\pi}\left[\sum_{j=k}^{t-1}\left(\prod_{i=k+1}^{j} \gamma_{i} \lambda_{i}\right)\left(\delta_{j}+\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{j}-\overline{\boldsymbol{\phi}}_{j}^{\pi}\right)\right)-\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k}-\overline{\boldsymbol{\phi}}_{k}^{\pi}\right) \mid S_{k}=s, A_{k}=a\right]
$$

It thus only remains to show that $\delta_{k, t}^{\lambda 1}$ is equal to the quantity whose expectation is being taken here:

$$
\begin{aligned}
\delta_{k, t}^{\lambda 1} & =\delta_{k}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right)+\gamma_{k+1} \lambda_{k+1} \delta_{k+1, t}^{\lambda \rho} \\
& =\delta_{k}+\gamma_{k+1} \lambda_{k+1} \delta_{k+1}+\gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right)+\gamma_{k+1} \lambda_{k+1} \gamma_{k+2} \lambda_{k+2} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k+1}-\overline{\boldsymbol{\phi}}_{k+1}^{\pi}\right)+\gamma_{k+2} \lambda_{k+2} \delta_{k+2, t}^{\lambda \rho} \\
& \vdots \\
& =\sum_{j=k}^{t-1}\left(\prod_{i=k+1}^{j} \gamma_{i} \lambda_{i}\right)\left(\delta_{j}+\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{j}-\overline{\boldsymbol{\phi}}_{j}^{\pi}\right)\right)-\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{k}-\overline{\boldsymbol{\phi}}_{k}^{\pi}\right) .
\end{aligned}
$$

The last term is there because $\delta_{t-1, t}^{\lambda 1}=\delta_{t-1}$, so in the summation the indices of the δ range from k to $t-1$, but the indices on the other terms range from $k+1$ to t.

S. 7 Additional detail on the provisional-weight updates (15) and (27)

A key step in the derivation of (15) is the transition from the second to the third equation, involving a re-writing of $\bar{\delta}_{k}^{t}$ in terms of $\bar{\delta}_{k}^{t-1}$. Here we spell it out more fully:

$$
\begin{align*}
\bar{\delta}_{k}^{t} & =R_{k+1}+\cdots+R_{t-1}+R_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} \tag{4}\\
& =R_{k+1}+\cdots+R_{t-1}+R_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1} \\
& =\underbrace{R_{k+1}+\cdots+R_{t-1}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}}_{\bar{\delta}_{k}^{t-1}}+\underbrace{R_{t}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}}_{\bar{\delta}_{t-1}^{t}} \\
& =\bar{\delta}_{k}^{t-1}+\bar{\delta}_{t-1}^{t} .
\end{align*}
$$

(regrouping)

The derivation for PQ's provisional weight update (27) is similar to that for PTD, but was not included in the main text to save space. We include it here:

$$
\begin{align*}
\boldsymbol{u}_{t} & =\alpha \gamma_{t} \lambda_{t} \sum_{k=0}^{t-1} C_{k}^{t-1} \bar{\delta}_{k}^{t} \boldsymbol{\phi}_{k} \\
& =\alpha \gamma_{t} \lambda_{t}\left[\sum_{k=0}^{t-2} C_{k}^{t-1} \bar{\delta}_{k}^{t} \boldsymbol{\phi}_{k}+C_{t-1}^{t-1} \bar{\delta}_{t-1}^{t} \boldsymbol{\phi}_{t-1}\right] \\
& =\alpha \gamma_{t} \lambda_{t}\left[\sum_{k=0}^{t-2} C_{k}^{t-1}\left[\bar{\delta}_{k}^{t-1}+\bar{\delta}_{t-1}^{t}+\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t-1}-\overline{\boldsymbol{\phi}}_{t-1}^{\pi}\right)\right] \boldsymbol{\phi}_{k}+\bar{\delta}_{t-1}^{t} \boldsymbol{\phi}_{t-1}\right] \\
& =\gamma_{t} \lambda_{t}\left(\rho_{t-1} \boldsymbol{u}_{t-1}+\alpha \bar{\delta}_{t-1}^{t} \boldsymbol{e}_{t-1}+\alpha \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t-1}-\overline{\boldsymbol{\phi}}_{t-1}^{\pi}\right)\left(\boldsymbol{e}_{t-1}-\boldsymbol{\phi}_{t-1}\right)\right) . \tag{27}
\end{align*}
$$

As in the PTD derivation, the key step is moving from the second to the third equation by writing $\bar{\delta}_{k}^{t}$ in terms of $\bar{\delta}_{k}^{t-1}$, as follows:

$$
\begin{align*}
\bar{\delta}_{k}^{t} & =R_{k+1}+\cdots+R_{t-1}+R_{t}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} \tag{21}\\
& =R_{k+1}+\cdots+R_{t-1}+R_{t}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t-1}^{\pi}-\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t-1}^{\pi}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1} \\
& =\left(R_{k+1}+\cdots+R_{t-1}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t-1}^{\pi}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}\right)+\left(R_{t}+\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t}^{\pi}-\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}\right)-\boldsymbol{\theta}^{\top} \overline{\boldsymbol{\phi}}_{t-1}^{\pi}+\boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1} \\
& =\bar{\delta}_{k}^{t-1}+\bar{\delta}_{t-1}^{t}+\boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}_{t-1}-\overline{\boldsymbol{\phi}}_{t-1}^{\pi}\right)
\end{align*}
$$

