# Supplementary material

Here we prove the theorems and derive the recursive relationships stated but not proved in the main text. First we prove the recursions in the time horizon t for the forward-view errors used by  $PTD(\lambda)$  and  $PQ(\lambda)$ . We then prove a recursion in k for PTD (Lemma 1) and use it to prove Theorem 3 for PTD. Next we prove an analogous recursion in k (Lemma 2) and theorem (Theorem 5) for PQ and for action values. Finally, we provide some further detail on a key step in the derivations of the update of the provisional weights,  $u_t$ , for both algorithms.

#### S.1 Derivation of Equation (11), the PTD recursion in t

From (6), for k < t, we immediately have

$$\delta_{k,t+1}^{\lambda\rho} = \rho_k \sum_{i=k+1}^{t} C_k^{i-1} \Big[ (1-\gamma_i)\epsilon_k^i + \gamma_i (1-\lambda_i)\bar{\delta}_k^i \Big] + \rho_k C_k^t \Big[ (1-\gamma_{t+1})\epsilon_k^{t+1} + \gamma_{t+1}\bar{\delta}_k^{t+1} \Big]$$

$$= \rho_k \sum_{i=k+1}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i)\epsilon_k^i + \gamma_i (1-\lambda_i)\bar{\delta}_k^i \Big] + \rho_k C_k^{t-1} \Big[ (1-\gamma_t)\epsilon_k^t + \gamma_t (1-\lambda_t)\bar{\delta}_k^t \Big]$$

$$+ \rho_k C_k^t \Big[ (1-\gamma_{t+1})\epsilon_k^{t+1} + \gamma_{t+1}\bar{\delta}_k^{t+1} \Big]$$

$$= \rho_k \sum_{i=k+1}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i)\epsilon_k^i + \gamma_i (1-\lambda_i)\bar{\delta}_k^i \Big] + \rho_k C_k^{t-1} \Big[ (1-\gamma_t)\epsilon_k^t + \gamma_t\bar{\delta}_k^t \Big]$$

$$\delta_{k,t}^{\lambda\rho}$$

$$- \rho_k C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + \rho_k C_k^t \Big[ (1-\gamma_{t+1})\epsilon_k^{t+1} + \gamma_{t+1}\bar{\delta}_k^{t+1} \Big]$$

$$= \delta_{k,t}^{\lambda\rho} - \rho_k C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + \rho_k C_k^t \Big[ (1-\gamma_{t+1})\epsilon_k^{t+1} + \gamma_{t+1}\bar{\delta}_k^{t+1} \Big]. \tag{28}$$

Although this is already a recursion of the desired form, expressing  $\delta_{k,t+1}^{\lambda\rho}$  in terms of  $\delta_{k,t}^{\lambda\rho}$ , we are not done yet. The recursion can be simplified further by noting that

$$(1 - \gamma_{t+1})\epsilon_{k}^{t+1} + \gamma_{t+1}\bar{\delta}_{k}^{t+1} = (1 - \gamma_{t+1})\left(\sum_{i=k+1}^{t+1} R_{i} - \boldsymbol{\theta}^{\top}\phi_{k}\right) + \gamma_{t+1}\left(\sum_{i=k+1}^{t+1} R_{i} + \boldsymbol{\theta}^{\top}\phi_{t+1} - \boldsymbol{\theta}^{\top}\phi_{k}\right)$$

$$= \sum_{i=k+1}^{t+1} R_{i} - \boldsymbol{\theta}^{\top}\phi_{k} + \gamma_{t+1}\boldsymbol{\theta}^{\top}\phi_{t+1}$$

$$= \sum_{i=k+1}^{t} R_{i} - \boldsymbol{\theta}^{\top}\phi_{k} + R_{t+1} + \gamma_{t+1}\boldsymbol{\theta}^{\top}\phi_{t+1} - \boldsymbol{\theta}^{\top}\phi_{t} + \boldsymbol{\theta}^{\top}\phi_{t}$$

$$= \sum_{i=k+1}^{t} R_{i} - \boldsymbol{\theta}^{\top}\phi_{k} + \delta_{t} + \boldsymbol{\theta}^{\top}\phi_{t}$$

$$= \bar{\delta}_{k}^{t} + \delta_{t}.$$

Substituting this in (28), we obtain our final recursion:

$$\delta_{k,t+1}^{\lambda\rho} = \delta_{k,t}^{\lambda\rho} - \rho_k C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + \rho_k C_k^t \left( \bar{\delta}_k^t + \delta_t \right) 
= \delta_{k,t}^{\lambda\rho} - \rho_k C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + \rho_k C_k^{t-1} \gamma_t \lambda_t \rho_t \bar{\delta}_k^t + \rho_k C_k^t \delta_t 
= \delta_{k,t}^{\lambda\rho} + \rho_k C_k^t \delta_t + (\rho_t - 1) \gamma_t \lambda_t \rho_k C_k^{t-1} \bar{\delta}_k^t.$$
(11)

### S.2 Derivation of Equation (24), the PQ recursion in t

The first steps of this derivation are directly analogous to those in the previous section leading to (28), except here using the definitions for the action-value case in Section 5. We do not repeat these steps here. In this case they lead to

$$\delta_{k,t+1}^{\lambda\rho} = \delta_{k,t}^{\lambda\rho} - C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + C_k^t \Big[ (1 - \gamma_{t+1}) \epsilon_k^{t+1} + \gamma_{t+1} \bar{\delta}_k^{t+1} \Big], \tag{29}$$

for all k < t. Note that, compared to (28),  $\rho_k$  is absent.

Again, this recursion can be simplified. Using (20-22) we get

$$(1 - \gamma_{t+1})\epsilon_k^{t+1} + \gamma_{t+1}\bar{\delta}_k^{t+1} = (1 - \gamma_{t+1}) \left( \sum_{i=k+1}^{t+1} R_i - \boldsymbol{\theta}^\top \boldsymbol{\phi}_k \right) + \gamma_{t+1} \left( \sum_{i=k+1}^{t+1} R_i + \boldsymbol{\theta}^\top \bar{\boldsymbol{\phi}}_{t+1}^{\pi} - \boldsymbol{\theta}^\top \boldsymbol{\phi}_k \right)$$

$$= \sum_{i=k+1}^{t+1} R_i - \boldsymbol{\theta}^\top \boldsymbol{\phi}_k + \gamma_{t+1} \boldsymbol{\theta}^\top \bar{\boldsymbol{\phi}}_{t+1}^{\pi}$$

$$= \sum_{i=k+1}^{t} R_i - \boldsymbol{\theta}^\top \boldsymbol{\phi}_k + R_{t+1} + \gamma_{t+1} \boldsymbol{\theta}^\top \bar{\boldsymbol{\phi}}_{t+1}^{\pi} - \boldsymbol{\theta}^\top \boldsymbol{\phi}_t + \boldsymbol{\theta}^\top \boldsymbol{\phi}_t$$

$$= \epsilon_k^t + \delta_t + \boldsymbol{\theta}^\top \boldsymbol{\phi}_t$$

$$= \bar{\delta}_k^t - \boldsymbol{\theta}^\top \bar{\boldsymbol{\phi}}_t^{\pi} + \delta_t + \boldsymbol{\theta}^\top \boldsymbol{\phi}_t$$

$$= \bar{\delta}_k^t + \delta_t + \boldsymbol{\theta}^\top (\boldsymbol{\phi}_t - \bar{\boldsymbol{\phi}}_t^{\pi}).$$

Using this in (29), we obtain our final recursion:

$$\delta_{k,t+1}^{\lambda\rho} = \delta_{k,t}^{\lambda\rho} - C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + C_k^t \left( \bar{\delta}_k^t + \delta_t + \boldsymbol{\theta}^\top (\boldsymbol{\phi}_t - \bar{\boldsymbol{\phi}}_t^\pi) \right) 
= \delta_{k,t}^{\lambda\rho} - C_k^{t-1} \gamma_t \lambda_t \bar{\delta}_k^t + C_k^{t-1} \gamma_t \lambda_t \rho_t \bar{\delta}_k^t + C_k^t \delta_t + C_k^t \boldsymbol{\theta}^\top (\boldsymbol{\phi}_t - \bar{\boldsymbol{\phi}}_t^\pi) 
= \delta_{k,t}^{\lambda\rho} + C_k^t \delta_t + C_k^t \boldsymbol{\theta}^\top (\boldsymbol{\phi}_t - \bar{\boldsymbol{\phi}}_t^\pi) + (\rho_t - 1) \gamma_t \lambda_t C_k^{t-1} \bar{\delta}_k^t.$$
(24)

#### S.3 Lemma 1: PTD recursion in k

The following lemma, used in proving Theorem 3 in the next section, shows how  $\delta_{k,t}^{\lambda\rho}$  depends on  $\delta_{k+1,t}^{\lambda\rho}$ . All definitions are from Sections 2–4 (the state-value or PTD case).

**Lemma 1** (PTD error recursion in k). For all k < t - 1,

$$\delta_{k,t}^{\lambda\rho} = \rho_k \left( \delta_k + \left( D_k^t - 1 \right) \bar{\delta}_k^{k+1} + \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda\rho} \right), \tag{30}$$

where

$$D_k^t = \sum_{i=k+1}^{t-1} C_k^{i-1} (1 - \gamma_i \lambda_i) + C_k^{t-1}.$$
 (31)

*Proof.* First note that from definitions (3) and (4) it is clear that

$$\bar{\delta}_k^i = \epsilon_k^i + \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\phi}_i \tag{32}$$

and

$$\epsilon_{k}^{i} = R_{k+1} + R_{k+2} + \dots + R_{i} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} 
= R_{k+1} + R_{k+2} + \dots + R_{i} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} 
= R_{k+1} + \epsilon_{k+1}^{i} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k+1} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} 
= \bar{\delta}_{k}^{k+1} + \epsilon_{k+1}^{i}.$$
(3)

Using these, the lemma can be directly derived:

$$\begin{split} \delta_{k,t}^{\lambda\rho} &= \rho_k \left( \sum_{i=k+1}^{t-1} C_i^{i-1} \left[ (1 - \gamma_i) \epsilon_k^i + \gamma_i (1 - \lambda_i) \delta_k^i \right] + C_k^{t-1} \left[ (1 - \gamma_i) \epsilon_k^i + \gamma_i \delta_k^i \right] \right) \\ &= \rho_k \left( \sum_{i=k+1}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i) \epsilon_k^i + \gamma_i (1 - \lambda_i) \left( \epsilon_k^i + \boldsymbol{\theta}^\top \phi_i \right) \right] + C_k^{t-1} \left[ (1 - \gamma_i) \epsilon_k^i + \gamma_i \left( \epsilon_k^i + \boldsymbol{\theta}^\top \phi_i \right) \right] \right) \\ &= \rho_k \left( \sum_{i=k+1}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \epsilon_k^i + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{t-1} \left[ \epsilon_k^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \right) \\ &= \rho_k \left( \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \epsilon_k^i + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{t-1} \left[ \epsilon_k^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \right) \\ &= \rho_k \left( \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \epsilon_k^i + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{t-1} \left[ \epsilon_k^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \\ &+ C_k^t \left[ (1 - \gamma_i \lambda_i) \left( \delta_k^{i+1} + \epsilon_{k+1}^i \right) + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{t-1} \left[ \delta_k^{i+1} + \epsilon_{k+1}^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \\ &= \rho_k \left( \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \left( \delta_k^{i+1} + \epsilon_{k+1}^i \right) + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{t-1} \left[ \delta_k^{i+1} + \epsilon_{k+1}^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \right) \\ &= \rho_k \left( \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) (\delta_k^{i+1} + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{t-1} \left[ \epsilon_{k+1}^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] + \sum_{i=k+2}^{t-1} C_k^{i-1} (1 - \gamma_i \lambda_i) \delta_k^{i+1} + C_k^{t-1} \delta_k^{i+1} \right) \\ &= \rho_k \left( \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) (\delta_k^{i+1} + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + C_k^{i-1} \left[ \epsilon_{k+1}^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] + \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \delta_k^{i+1} + C_k^{t-1} \delta_k^{i+1} + \gamma_i (1 - \lambda_i) \boldsymbol{\theta}^\top \phi_i \right] + \gamma_k + 1 \lambda_{k+1} \rho_{k+1} C_{k+1}^{i-1} \left[ \epsilon_{k+1}^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \\ &+ \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \delta_k^{i+1} + C_k^{t-1} \delta_k^{i+1} + \delta_k - \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \right] \left[ \epsilon_{k+1}^i + \gamma_i \boldsymbol{\theta}^\top \phi_i \right] \\ &+ \sum_{i=k+2}^{t-1} C_k^{i-1} \left[ (1 - \gamma_i \lambda_i) \delta_k^{i+1} + C_k^{t-1} \delta_k^{i+1} + \delta_k - \gamma_{k+1} \lambda_{k+1} \delta_k^{i+1} \right] \\ &= \rho_k \left( \gamma_{k+1} \lambda_{k+1} \delta_{k+1}^{\lambda_{k+1}} + \left[ \sum_{i=k+2}^{t-1} C_k^{i-1} \left( 1 - \gamma_i \lambda_i \right) + C_k^{t-1} - 1 \right] \delta_k^{i+1} + \delta_k \right) \\ &= \rho_k \left( \delta_k + \left[ D_k^i - 1 \right] \delta_k^{i+1} + \gamma_i + 1 \lambda_i + 1 \delta_k^{i+1} \right].$$

## S.4 Proof of Theorem 3 (On-policy and off-policy expectations for PTD)

All definitions here are from Sections 2-4 (the state-value or PTD case).

**Theorem 3** (On-policy and off-policy expectations). For any state s,

$$\mathbb{E}_b \left[ \delta_{k,t}^{\lambda \rho} \middle| S_k = s \right] = \mathbb{E}_\pi \left[ \delta_{k,t}^{\lambda 1} \middle| S_k = s \right], \tag{35}$$

where  $\mathbb{E}_b$  and  $\mathbb{E}_{\pi}$  denote expectations under the behavior and target policies, and  $\delta_{k,t}^{\lambda 1}$  denotes  $\delta_{k,t}^{\lambda \rho}$  with  $\rho_t = 1$  for all t.

Proof. First we note that

$$\mathbb{E}_{b}\left[\rho_{k}C_{k}^{t}\big|S_{k}=s\right] = \mathbb{E}_{b}\left[\rho_{k}\prod_{i=k+1}^{t}\gamma_{i}\lambda_{i}\rho_{i}\bigg|S_{k}=s\right]$$

$$= \sum_{a}b(a|s)\sum_{s'}p(s'|s,a)\frac{\pi(a|s)}{b(a|s)}\gamma(s')\lambda(s')\mathbb{E}_{b}\left[\prod_{i=k+2}^{t}\gamma_{i}\lambda_{i}\rho_{i}\bigg|S_{k}=s, A_{k}=a, S_{k+1}=s'\right]$$

$$= \sum_{a}\pi(a|s)\sum_{s'}p(s'|s,a)\gamma(s')\lambda(s')\mathbb{E}_{b}\left[\rho_{k+1}\prod_{i=k+2}^{t}\gamma_{i}\lambda_{i}\rho_{i}\bigg|S_{k+1}=s'\right]$$

$$= \sum_{a}\pi(a|s)\sum_{s'}p(s'|s,a)\gamma(s')\lambda(s')\sum_{a'}\pi(a'|s')\sum_{s''}p(s''|s',a')\gamma(s'')\lambda(s'')\cdots$$

$$= \mathbb{E}_{\pi}\left[\prod_{i=k+1}^{t}\gamma_{i}\lambda_{i}\bigg|S_{k}=s\right],$$

from which one can show

$$\mathbb{E}_{b}\left[\rho_{k}D_{k}^{t}\middle|S_{k}=s\right] = \mathbb{E}_{b}\left[\rho_{k}\left(\sum_{i=k+1}^{t-1}C_{k}^{i-1}(1-\gamma_{i}\lambda_{i})+C_{k}^{t-1}\right)\middle|S_{k}=s\right]$$

$$= \mathbb{E}_{\pi}\left[\sum_{i=k+1}^{t-1}\prod_{i=k+1}^{i}\gamma_{i}\lambda_{i}(1-\gamma_{i}\lambda_{i})+\prod_{i=k+1}^{t}\gamma_{i}\lambda_{i}\middle|S_{k}=s\right]$$

$$= 1.$$

$$(36)$$

Now we can start directly from the left-hand side of the theorem statement:

$$\begin{split} \mathbb{E}_b \Big[ \delta_{k,t}^{\lambda \rho} \Big| S_k &= s \Big] &= \mathbb{E}_b \Big[ \rho_k \left( \delta_k + \left( D_k^t - 1 \right) \bar{\delta}_k^{k+1} + \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda \rho} \right) \Big| S_k = s \Big] \\ &= \mathbb{E}_b \Big[ \rho_k \left( \delta_k + \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda \rho} \right) \Big| S_k = s \Big] \\ &= \mathbb{E}_b \Big[ \rho_k \left( \delta_k + \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda \rho} \right) \Big| S_k = s \Big] \\ &= \sum_a b(a|s) \frac{\pi(a|s)}{b(a|s)} \left( \mathbb{E}_b [\delta_k | S_k = s, A_k = a] + \mathbb{E}_b \Big[ \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda \rho} \Big| S_k = s, A_k = a \Big] \right) \\ &= \sum_a \pi(a|s) \left( \mathbb{E}_b [\delta_k | S_k = s, A_k = a] + \mathbb{E}_b \Big[ \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda \rho} \Big| S_k = s, A_k = a \Big] \right) \\ &= \mathbb{E}_\pi \Big[ \delta_k | S_k = s \Big] + \sum_a \pi(a|s) \sum_{s'} p(s'|s,a) \gamma(s') \lambda(s') \mathbb{E}_b \Big[ \delta_{k+1,t}^{\lambda \rho} \Big| S_{k+1} = s' \Big] \\ &= \mathbb{E}_\pi \Big[ \delta_k + \gamma_{k+1} \lambda_{k+1} \mathbb{E}_b \Big[ \delta_{k+1,t}^{\lambda \rho} \Big| S_{k+1} \Big] \Big| S_k = s \Big] \\ &= \mathbb{E}_\pi \Big[ \delta_k + \gamma_{k+1} \lambda_{k+1} \delta_{k+1} + \gamma_{k+2} \lambda_{k+2} \mathbb{E}_b \Big[ \delta_{k+2,t}^{\lambda \rho} \Big| S_{k+2} \Big] \Big| S_k = s \Big] \\ &\vdots \\ &\vdots \end{split}$$

$$= \mathbb{E}_{\pi} \left[ \sum_{j=k}^{t-1} \left( \prod_{i=k+1}^{j} \gamma_{i} \lambda_{i} \right) \delta_{j} \middle| S_{k} = s \right].$$

It thus only remains to show that  $\delta_{k,t}^{\lambda 1}$  is equal to this sum, which we can show directly from (11) and the definition of  $\delta_{k,t}^{\lambda 1}$ :

$$\begin{split} \delta_{k,t}^{\lambda 1} &= \delta_{k,t-1}^{\lambda 1} + \left(\prod_{i=k+1}^{t-1} \gamma_i \lambda_i\right) \delta_{t-1} \\ &= \delta_{k,t-2}^{\lambda 1} + \left(\prod_{i=k+1}^{t-2} \gamma_i \lambda_i\right) \delta_{t-2} + \left(\prod_{i=k+1}^{t-1} \gamma_i \lambda_i\right) \delta_{t-1} \\ &\vdots \\ &= \sum_{j=k}^{t-1} \left(\prod_{i=k+1}^{j} \gamma_i \lambda_i\right) \delta_j \,. \end{split}$$

## S.5 Lemma 2: PQ recursion in k

This lemma is the analog of Lemma 1 for the action-value case, showing how  $\delta_{k,t}^{\lambda\rho}$  depends on  $\delta_{k+1,t}^{\lambda\rho}$  when these errors are defined by (18–24). This lemma assists in proving Theorem 5 below. All definitions here are as in Section 5 (the action-value or PQ case), plus  $D_k^t$  as in Lemma 1.

**Lemma 2** (PQ error recursion in k). For all k < t - 1,

$$\delta_{k,t}^{\lambda\rho} = \delta_k + \gamma_{k+1}\lambda_{k+1}\rho_{k+1}\delta_{k+1,t}^{\lambda\rho} + \gamma_{k+1}\lambda_{k+1}\boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^{\pi}) + (D_k^t - 1)\left(\epsilon_k^{k+1} + \boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\phi}_{k+1}\right). \tag{37}$$

*Proof.* The proof is analogous to that of Lemma 1. Here we have the helper identities

$$\bar{\delta}_k^i = \epsilon_k^i + \boldsymbol{\theta}^\top \bar{\phi}_i^\pi, \tag{38}$$

(using (39) and  $C_k^k = 1$ )

and

$$\epsilon_k^i = \epsilon_{k+1}^i + \epsilon_k^{k+1} + \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\phi}_{k+1}. \tag{39}$$

Then we can proceed directly:

$$\begin{split} \delta_{k,t}^{\lambda\rho} &= \sum_{i=k+1}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i) \epsilon_k^i + \gamma_i (1-\lambda_i) \bar{\delta}_k^i \Big] + C_k^{t-1} \left[ (1-\gamma_t) \epsilon_k^t + \gamma_t \bar{\delta}_k^t \right] \\ &= \sum_{i=k+1}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i) \epsilon_k^i + \gamma_i (1-\lambda_i) \left( \epsilon_k^i + \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \right) \Big] + C_k^{t-1} \Big[ (1-\gamma_t) \epsilon_k^t + \gamma_t \left( \epsilon_k^t + \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \right) \Big] \\ &= \sum_{i=k+1}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i\lambda_i) \epsilon_k^i + \gamma_i (1-\lambda_i) \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] + C_k^{t-1} \Big[ \epsilon_k^t + \gamma_t \boldsymbol{\theta}^\top \bar{\phi}_t^\pi \Big] \\ &= \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i\lambda_i) \epsilon_k^i + \gamma_i (1-\lambda_i) \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] + C_k^{t-1} \Big[ \epsilon_k^t + \gamma_t \boldsymbol{\theta}^\top \bar{\phi}_t^\pi \Big] \\ &+ C_k^k \Big[ (1-\gamma_k\lambda_i) \epsilon_k^i + \gamma_i (1-\lambda_i) \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] + C_k^{t-1} \Big[ \epsilon_k^t + \gamma_t \boldsymbol{\theta}^\top \bar{\phi}_t^\pi \Big] \\ &= \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i\lambda_i) \epsilon_k^i + \epsilon_k^{t+1} + \epsilon_k^$$

 $+ (1 - \gamma_{k+1}\lambda_{k+1}) (R_{k+1} - \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\phi}_k) + \gamma_{k+1} (1 - \lambda_{k+1}) \boldsymbol{\theta}^{\mathsf{T}} \bar{\boldsymbol{\phi}}_{k+1}^{\pi}$ 

$$\begin{split} &= \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i \lambda_i) \epsilon_{k+1}^i + \gamma_i (1-\lambda_i) \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] + C_k^{t-1} \Big[ \epsilon_{k+1}^t + \gamma_t \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] \\ &\quad + \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i \lambda_i) \left( \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \right) \Big] + C_k^{t-1} \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] \\ &\quad + R_{k+1} - \boldsymbol{\theta}^\top \phi_k + \gamma_{k+1} \boldsymbol{\theta}^\top \bar{\phi}_{k+1}^\pi - \gamma_{k+1} \lambda_{k+1} \left( R_{k+1} - \boldsymbol{\theta}^\top \phi_k + \boldsymbol{\theta}^\top \bar{\phi}_{k+1}^\pi \right) \\ &= \sum_{i=k+2}^{t-1} \gamma_{k+1} \lambda_{k+1} \rho_{k+1} C_{k+1}^{i-1} \Big[ (1-\gamma_i \lambda_i) \epsilon_{k+1}^i + \gamma_i (1-\lambda_i) \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} C_{k+1}^{t-1} \Big[ \epsilon_{k+1}^t + \gamma_t \boldsymbol{\theta}^\top \bar{\phi}_i^\pi \Big] \\ &\quad + \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i \lambda_i) \left( \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \right) \Big] + C_k^{t-1} \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] + \delta_k - \gamma_{k+1} \lambda_{k+1} \bar{\delta}_k^{k+1} \\ &\quad + \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i \lambda_i) \left( \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \right) \Big] + C_k^{t-1} \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] + \delta_k - \gamma_{k+1} \lambda_{k+1} \bar{\delta}_k^{k+1} \\ &\quad + \sum_{i=k+2}^{t-1} C_k^{i-1} \Big[ (1-\gamma_i \lambda_i) + C_k^{t-1} \Big] \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] + \delta_k - \gamma_{k+1} \lambda_{k+1} \bar{\delta}_k^{k+1} \\ &\quad + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \left( \sum_{i=k+2}^{t-1} C_k^{i-1} (1-\gamma_i \lambda_i) + C_k^{t-1} - 1 + \gamma_{k+1} \lambda_{k+1} \right) \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] + \delta_k - \gamma_{k+1} \lambda_{k+1} \bar{\delta}_k^{k+1} \\ &\quad = \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \left( \sum_{i=k+1}^{t-1} C_k^{i-1} (1-\gamma_i \lambda_i) + C_k^{t-1} - 1 + \gamma_{k+1} \lambda_{k+1} \right) \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] + \delta_k - \gamma_{k+1} \lambda_{k+1} \bar{\delta}_k^{k+1} \\ &\quad = \delta_k + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \left( D_k^t - 1 + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top \phi_{k+1} - \bar{\delta}_k^{k+1} \right) + \left( D_k^t - 1 \right) \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] \Big] . \quad \text{(using (38))} \\ &\quad = \delta_k + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\phi_{k+1} - \bar{\phi}_{k+1}^\top - \bar{\phi}_{k+1}^\top ) + \left( D_k^t - 1 \right) \Big[ \epsilon_k^{k+1} + \boldsymbol{\theta}^\top \phi_{k+1} \Big] \Big] . \quad \text{(using (38))}$$

# S.6 Theorem 5: On-policy and off-policy expectations for PQ

All definitions here are from Section 5 (the state-value or PQ case), plus  $D_k^t$  from Lemma 1.

**Theorem 5** (On-policy and off-policy expectations). For any state s,

$$\mathbb{E}_b \left[ \delta_{k,t}^{\lambda\rho} \middle| S_k = s, A_k = a \right] = \left. \mathbb{E}_\pi \left[ \delta_{k,t}^{\lambda1} \middle| S_k = s, A_k = a \right] \right.,$$

where  $\mathbb{E}_b$  and  $\mathbb{E}_{\pi}$  denote expectations under the behavior and target policies, and  $\delta_{k,t}^{\lambda 1}$  denotes  $\delta_{k,t}^{\lambda \rho}$  with  $\rho_t = 1$  for all t.

*Proof.* The proof is analogous to that for Theorem 3. Using Lemma 2, the left-hand side can be written

$$\begin{split} &\mathbb{E}_b \left[ \delta_{k,t}^{\lambda \rho} \middle| S_k = s, A_k = a \right] \\ &= \mathbb{E}_b \left[ \delta_k + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) + (D_k^t - 1) \left( \boldsymbol{\epsilon}_k^{k+1} + \boldsymbol{\theta}^\top \boldsymbol{\phi}_{k+1} \right) \middle| S_k = s, A_k = a \right] \\ &= \mathbb{E}_b \left[ \delta_k + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) \middle| S_k = s, A_k = a \right] \\ &= \mathbb{E}_b \left[ \delta_k + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) \middle| S_{k+1} \right] \middle| S_k = s, A_k = a \right] \\ &= \mathbb{E}_\pi \left[ \mathbb{E}_b \left[ \delta_k + \gamma_{k+1} \lambda_{k+1} \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) \middle| S_{k+1} \right] \middle| S_k = s, A_k = a \right] \\ &= \mathbb{E}_\pi \left[ \mathbb{E}_b [X | S_{k+1}] \middle| S_k = s, A_k = a \right] = \mathbb{E}_\pi [X | S_k = s, A_k = a] \text{ for all } X \text{ not depending on } A_{k+1} \right) \\ &= \mathbb{E}_\pi \left[ \delta_k + \gamma_{k+1} \lambda_{k+1} \mathbb{E}_b \left[ \rho_{k+1} \delta_{k+1,t}^{\lambda \rho} \middle| S_{k+1} \right] + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) \middle| S_k = s, A_k = a \right] \\ &\text{(using, as in Theorem 3, } \mathbb{E}_b [\rho_k X | S_k = s] = \mathbb{E}_\pi [\mathbb{E}_b [X | A_k = a] | S_k = s] \right) \\ &= \mathbb{E}_\pi \left[ \delta_k + \gamma_{k+1} \lambda_{k+1} \mathbb{E}_\pi \left[ \delta_{k+1,t}^{\lambda \rho} \middle| S_{k+1,t} \middle| S_{k+1,t} \right] + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) \middle| S_k = s, A_k = a \right] \end{aligned}$$

: (repeatedly expand the  $\delta^{\lambda\rho}$  term until, finally,  $\delta^{\lambda\rho}_{t-1,t} = \delta_{t-1}$ )

$$= \mathbb{E}_{\pi} \left[ \sum_{j=k}^{t-1} \left( \prod_{i=k+1}^{j} \gamma_{i} \lambda_{i} \right) \left( \delta_{j} + \boldsymbol{\theta}^{\top} (\boldsymbol{\phi}_{j} - \bar{\boldsymbol{\phi}}_{j}^{\pi}) \right) - \boldsymbol{\theta}^{\top} (\boldsymbol{\phi}_{k} - \bar{\boldsymbol{\phi}}_{k}^{\pi}) \middle| S_{k} = s, A_{k} = a \right].$$

It thus only remains to show that  $\delta_{k,t}^{\lambda 1}$  is equal to the quantity whose expectation is being taken here:

$$\begin{split} \delta_{k,t}^{\lambda 1} &= \delta_k + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) + \gamma_{k+1} \lambda_{k+1} \delta_{k+1,t}^{\lambda \rho} \\ &= \delta_k + \gamma_{k+1} \lambda_{k+1} \delta_{k+1} + \gamma_{k+1} \lambda_{k+1} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) + \gamma_{k+1} \lambda_{k+1} \gamma_{k+2} \lambda_{k+2} \boldsymbol{\theta}^\top (\boldsymbol{\phi}_{k+1} - \bar{\boldsymbol{\phi}}_{k+1}^\pi) + \gamma_{k+2} \lambda_{k+2} \delta_{k+2,t}^{\lambda \rho} \\ &\vdots \\ &= \sum_{j=k}^{t-1} \left( \prod_{i=k+1}^j \gamma_i \lambda_i \right) \left( \delta_j + \boldsymbol{\theta}^\top (\boldsymbol{\phi}_j - \bar{\boldsymbol{\phi}}_j^\pi) \right) - \boldsymbol{\theta}^\top (\boldsymbol{\phi}_k - \bar{\boldsymbol{\phi}}_k^\pi) \,. \end{split}$$

The last term is there because  $\delta_{t-1,t}^{\lambda 1} = \delta_{t-1}$ , so in the summation the indices of the  $\delta$  range from k to t-1, but the indices on the other terms range from k+1 to t.

#### S.7 Additional detail on the provisional-weight updates (15) and (27)

A key step in the derivation of (15) is the transition from the second to the third equation, involving a re-writing of  $\bar{\delta}_k^t$  in terms of  $\bar{\delta}_k^{t-1}$ . Here we spell it out more fully:

$$\bar{\delta}_{k}^{t} = R_{k+1} + \dots + R_{t-1} + R_{t} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} \qquad (from (4))$$

$$= R_{k+1} + \dots + R_{t-1} + R_{t} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}$$

$$= \underbrace{R_{k+1} + \dots + R_{t-1} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{k}}_{\bar{\delta}_{k}^{t-1}} + \underbrace{R_{t} + \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t} - \boldsymbol{\theta}^{\top} \boldsymbol{\phi}_{t-1}}_{\bar{\delta}_{k-1}^{t}}$$
(regrouping)
$$= \bar{\delta}_{k}^{t-1} + \bar{\delta}_{t-1}^{t}.$$

The derivation for PQ's provisional weight update (27) is similar to that for PTD, but was not included in the main text to save space. We include it here:

$$\mathbf{u}_{t} = \alpha \gamma_{t} \lambda_{t} \sum_{k=0}^{t-1} C_{k}^{t-1} \bar{\delta}_{k}^{t} \phi_{k} 
= \alpha \gamma_{t} \lambda_{t} \left[ \sum_{k=0}^{t-2} C_{k}^{t-1} \bar{\delta}_{k}^{t} \phi_{k} + C_{t-1}^{t-1} \bar{\delta}_{t-1}^{t} \phi_{t-1} \right] 
= \alpha \gamma_{t} \lambda_{t} \left[ \sum_{k=0}^{t-2} C_{k}^{t-1} \left[ \bar{\delta}_{k}^{t-1} + \bar{\delta}_{t-1}^{t} + \boldsymbol{\theta}^{\mathsf{T}} (\phi_{t-1} - \bar{\phi}_{t-1}^{\pi}) \right] \phi_{k} + \bar{\delta}_{t-1}^{t} \phi_{t-1} \right] 
= \gamma_{t} \lambda_{t} \left( \rho_{t-1} \mathbf{u}_{t-1} + \alpha \bar{\delta}_{t-1}^{t} \mathbf{e}_{t-1} + \alpha \boldsymbol{\theta}^{\mathsf{T}} (\phi_{t-1} - \bar{\phi}_{t-1}^{\pi}) (\mathbf{e}_{t-1} - \phi_{t-1}) \right).$$
(27)

As in the PTD derivation, the key step is moving from the second to the third equation by writing  $\bar{\delta}_k^t$  in terms of  $\bar{\delta}_k^{t-1}$ , as follows:

$$\bar{\delta}_{k}^{t} = R_{k+1} + \dots + R_{t-1} + R_{t} + \boldsymbol{\theta}^{\top} \bar{\phi}_{t}^{\pi} - \boldsymbol{\theta}^{\top} \phi_{k} \tag{from (21)}$$

$$= R_{k+1} + \dots + R_{t-1} + R_{t} + \boldsymbol{\theta}^{\top} \bar{\phi}_{t}^{\pi} - \boldsymbol{\theta}^{\top} \phi_{k} + \boldsymbol{\theta}^{\top} \bar{\phi}_{t-1}^{\pi} - \boldsymbol{\theta}^{\top} \bar{\phi}_{t-1}^{\pi} + \boldsymbol{\theta}^{\top} \phi_{t-1} - \boldsymbol{\theta}^{\top} \phi_{t-1}$$

$$= (R_{k+1} + \dots + R_{t-1} + \boldsymbol{\theta}^{\top} \bar{\phi}_{t-1}^{\pi} - \boldsymbol{\theta}^{\top} \phi_{k}) + (R_{t} + \boldsymbol{\theta}^{\top} \bar{\phi}_{t}^{\pi} - \boldsymbol{\theta}^{\top} \phi_{t-1}) - \boldsymbol{\theta}^{\top} \bar{\phi}_{t-1}^{\pi} + \boldsymbol{\theta}^{\top} \phi_{t-1}$$

$$= \bar{\delta}_{k}^{t-1} + \bar{\delta}_{t-1}^{t} + \boldsymbol{\theta}^{\top} (\phi_{t-1} - \bar{\phi}_{t-1}^{\pi}).$$
(regrouping)