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Abstract

We propose a new stochastic dual coordinate as-

cent technique that can be applied to a wide range

of regularized learning problems. Our method is

based on alternating direction method of multi-

pliers (ADMM) to deal with complex regulariza-

tion functions such as structured regularizations.

Although the original ADMM is a batch method,

the proposed method offers a stochastic update

rule where each iteration requires only one or few

sample observations. Moreover, our method can

naturally afford mini-batch update and it gives

speed up of convergence. We show that, under

mild assumptions, our method converges expo-

nentially. The numerical experiments show that

our method actually performs efficiently.

1. Introduction

This paper proposes a new stochastic optimization method

that shows exponential convergence and can be applied to

wide range of regularization functions using the techniques

of stochastic dual coordinate ascent with alternating direc-

tion method of multipliers. Recently, it is getting more and

more important to develop an efficient optimization method

which can handle large amount of samples. One of the

most successful approaches is a stochastic optimization ap-

proach. Indeed, a lot of stochastic methods have been pro-

posed to deal with large amount of samples. Among them,

the (online) stochastic gradient method is the most basic

and successful one. This can be naturally applied to the

regularized learning frame-work. Such a method is called

several different names including online proximal gradient

descent, forward-backward splitting and online mirror de-

scent (Duchi and Singer, 2009). Basically, these methods

are intended to process sequentially coming data. They

update the parameter using one new observation and dis-
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card the observed sample. Therefore, they don’t need large

memory space to store the whole observed data. The con-

vergence rate of those methods is O(1/
√
T ) for general

settings and O(1/T ) for strongly convex losses, which are

minimax optimal (Nemirovskii and Yudin, 1983).

On the other hand, recently it was shown that, if it is al-

lowed to reuse the observed data several times, it is possi-

ble to develop a stochastic method with exponential conver-

gence rate for a strongly convex objective (Le Roux et al.,

2013; Shalev-Shwartz and Zhang, 2013c;a). These meth-

ods are still stochastic in a sense that one sample or small

mini-batch is randomly picked up to be used for each up-

date. The main difference from the stochastic gradient

method is that these methods are intended to process data

with a fixed number of training samples. stochastic aver-

age gradient (SAG) method (Le Roux et al., 2013) utilizes

an averaged gradient to show an exponential convergence.

stochastic dual coordinate ascent (SDCA) method solves

the dual problem using a stochastic coordinate ascent tech-

nique (Shalev-Shwartz and Zhang, 2013c;a). These meth-

ods have favorable properties of both online-stochastic ap-

proach and batch approach. That is, they show fast de-

crease of the objective function in the early stage of the

optimization as online-stochastic approaches, and shows

exponential convergence after the “burn in” time as batch

approaches. However, these methods have some draw-

backs. SAG needs to maintain all gradients computed on

each training sample in memory which amount to dimen-

sion times sample size. SDCA method can be applied only

to a simple regularization function for which the dual func-

tion is easily computed, thus it is hard to apply the method

to a complex regularization function such as structured reg-

ularization.

In this paper, we propose stochastic dual coordinate as-

cent method for alternating direction method of multipli-

ers (SDCA-ADMM). Our method is similar to SDCA, but

inherits a favorable property of ADMM. By combining

SDCA and ADMM, our method can be applied to a wide

range of regularized learning problems. ADMM is an ef-

fective optimization method to solve a composite optimiza-

tion problem described as minx f(x) + g(y) s.t. Ax +
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By = 0 (Gabay and Mercier, 1976; Boyd et al., 2010;

Qin and Goldfarb, 2012). This formulation is quite flex-

ible and fit wide range of applications such as structured

regularization, dictionary learning, convex tensor decom-

position and so on (Qin and Goldfarb, 2012; Jacob et al.,

2009; Tomioka et al., 2011; Rakotomamonjy, 2013). How-

ever, ADMM is a batch optimization method. Our ap-

proach transforms ADMM to a stochastic one by utiliz-

ing stochastic coordinate ascent technique. Our method,

SDCA-ADMM, does not require large amount of mem-

ory because it observes only one or few samples for each

iteration. SDCA-ADMM can be naturally adapted to a

sub-batch situation where a block of few samples is uti-

lized for each iteration. Moreover, it is shown that our

method shows exponential convergence for risk functions

with some strong convexity and smoothness property. The

convergence rate is affected by the size of sub-batch. If

the samples are not strongly correlated, sub-batch gives a

better convergence rate than one-sample update.

2. Structured Regularization and its Dual

Formulation

In this section, we give the problem formulation of struc-

tured regularization and its dual formulation. The standard

regularized risk minimization is described as follows:

min
w∈Rp

1

n

n∑

i=1

fi(z
⊤
i w) + ψ̃(w), (1)

where z1, z2, . . . , zn are vectors in R
p, w is the weight vec-

tor that we want to learn, fi is a loss function for the i-
th sample, and ψ̃ is the regularization function which is

used to avoid over-fitting. For example, the loss function fi
can be taken as a classification surrogate loss fi(z

⊤
i w) =

ℓ(yi, z
⊤
i w) where yi is the training label of the i-th sam-

ple. With regard to ψ̃, we are interested in a sparsity in-

ducing regularization, e.g., ℓ1-regularization, group lasso

regularization, trace-norm regularization, and so on. Our

motivation in this paper is to deal with a “complex” regu-

larization ψ̃ where it is not easy to directly minimize the

regularization function (more precisely the proximal oper-

ation determined by ψ̃ is not easily computed, see Eq. (5)).

This kind of regularization appears in, for example, struc-

tured sparsity such as overlapped group lasso and graph

regularization (Jacob et al., 2009; Signoretto et al., 2010).

In many cases, such a “complex” regularization function

can be decomposed into a “simple” regularization ψ and a

linear transformation B, that is, ψ̃(w) = ψ(B⊤w) where

B ∈ R
p×d . Using this formulation, the optimization prob-

lem (Eq. (1)) is equivalent to

min
w∈Rp

1

n

n∑

i=1

fi(z
⊤
i w) + ψ(B⊤w). (2)

The purpose of this paper is to give an efficient stochastic

optimization method to solve this problem (2). For this pur-

pose, we employ the dual formulation. Using the Fenchel’s

duality theorem, we have the following dual formulation.

Lemma 1.

min
w∈Rp

1

n

n∑

i=1

fi(z
⊤
i w) + ψ(B⊤w)

=−min
x∈Rn

y∈Rd

{
1

n

n∑

i=1

f∗i (xi)+ψ
∗
( y
n

)
| Zx+By = 0

}
, (3)

where f∗i and ψ∗ are the convex conjugates of fi
and ψ respectively (Rockafellar, 1970)1, and Z =
[z1, z2, . . . , zn] ∈ R

p×n. Moreover w∗, x∗ and y∗ are op-

timal solutions of both sides if and only if

z⊤i w
∗ ∈ ∂f∗i (x∗i ),

1

n
y∗ ∈ ∂ψ(u)|u=B⊤w∗ ,

Zx∗ +By∗ = 0.

Proof. By Fenchel’s duality theorem (Corollary 31.2.1 of

Rockafellar (1970)), we have that

minw∈Rp
1
n

∑n
i=1 fi(z

⊤
i w) + ψ̃(w)

= −minx∈Rn

{
1
n

∑n
i=1 f

∗
i (xi) + ψ̃∗(−Zx/n)

}
. (4)

Moreover x∗, w∗ are optimal in each side if and only

if z⊤i w
∗ ∈ ∂f∗i (x

∗
i ) and −Zx∗/n ∈ ∂ψ̃(w∗) =

B∂ψ(u∗)|u=B⊤w∗ (Corollary 31.3 of Rockafellar (1970)).

Now, Theorem 16.3 of Rockafellar (1970) gives that

ψ̃∗(u) = (ψ ◦B⊤)∗(u) = inf{ψ∗(y) | By = u}.

Thus ψ̃∗(−Zx/n) = inf{ψ∗(y/n) | By = −Zx},
and substituting this into the RHS of Eq. (4) we ob-

tain Eq. (3). Now, y∗ satisfying Zx∗ + By∗ = 0
is the optimal solution if and only if ψ∗(y∗/n) =
ψ̃∗(−Zx∗/n) for the optimal x∗. Thus, if (w∗, x∗, y∗)
is optimal, then we have −Zx∗/n ∈ ∂ψ̃(w∗) and thus

ψ∗(y∗/n) = ψ̃∗(−Zx∗/n) = 〈w∗,−Zx∗/n〉 − ψ̃(w∗) =
〈B⊤w∗, y∗/n〉 − ψ(B⊤w∗) which implies y∗/n ∈
∂ψ(u)|u=B⊤w∗ . Contrary, if y∗/n ∈ ∂ψ(u)|u=B⊤w∗ , then

it is obvious that −Zx∗/n ∈ ∂ψ̃(w∗) because Zx∗ +
By∗ = 0. Therefore, we obtain the optimality condi-

tions.

The dual problem is a composite objective function opti-

mization with a linear constraint Zx+By = 0. In the next

section, we give an efficient stochastic method to solve this

dual problem. A nice property of the dual formulation is

that, in many machine learning applications, the dual loss

1The convex conjugate function f∗ of f is defined by
f∗(y) := sup

x
{x⊤y − f(x)}.
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function f∗i becomes strongly convex. For example, for the

logistic loss fi(x) = log(1+exp(−yix)), the dual function

is f∗i (−u) = yiu log(yiu)+ (1− yiu) log(1− yiu) (yiu ∈
[0, 1]) and its modulus of strong convexity is much better

than the primal one. More importantly, each sample (zi, yi)
directly affects only each coordinate xi of dual variable. In

other words, if xi is fixed the i-th sample (zi, yi) has no

influence to the objective value. This enables us to utilize

the stochastic coordinate ascent technique in the dual prob-

lem because update of single coordinate xi requires only

the information of the i-th sample (zi, yi).

Finally, we give the precise notion of the “complex”

and “simple” regularizations. This notion is defined by

the computational complexity of proximal operation cor-

responding to the regularization function (Rockafellar,

1970). The proximal operation corresponding to a convex

function ψ is defined by

prox(q|ψ) := argmin
u

{
1

2
‖q − u‖2 + ψ(u)

}
. (5)

For example, the proximal operation corresponding to

ℓ1-regularization ψ(w) = ‖w‖ℓ1 is easily computed as

prox(q|ψ) = (sign(wi)max{|wi| − 1, 0})i which is the

so-called soft-thresholding operation. More generally, the

proximal operation for group lasso regularization with

non-overlapped groups can also be analytically computed.

On the other hand, for overlapped group regularization,

the proximal operation is no longer analytically obtained.

However, by choosing B appropriately, we can split the

overlap and obtain ψ for which the proximal operation is

easily computed (see Section 6 for concrete examples).

3. Proposed Method: Stochastic Dual

Coordinate Ascent with ADMM

In this section, we present our proposal, stochastic dual co-

ordinate ascent type ADMM. For a positive semidefinite

matrix S, we denote by ‖x‖S :=
√
x⊤Sx. Zi denotes the

i-th column of Z, which is zi, and Z\i is a matrix obtained

by subtracting i-th column from Z. Similarly, for a vector

x, x\i is a vector obtained by subtracting i-th component

from x.

3.1. One Sample Update of SDCA for ADMM

The basic update rule of our proposed method in the t-
th step is given as follows: Each update step, choose

i ∈ {1, . . . , n} uniformly at random, and update as

y(t)← argmin
y

{
nψ∗(y/n)− 〈w(t−1), Zx(t−1)+By〉

+
ρ

2
‖Zx(t−1) +By‖2 + 1

2
‖y − y(t−1)‖2Q

}
, (6a)

x
(t)
i ← argmin

xi

{
f∗i (xi)− 〈w(t−1), Zixi +By(t)〉

+
ρ

2
‖Zixi + Z\ix

(t−1)
\i +By(t)‖2

+
1

2
‖xi − x(t−1)

i ‖2Gii
}
, (6b)

w(t)←w(t−1) − γρ{n(Zx(t) +By(t))

− (n− 1)(Zx(t−1) +By(t−1))}, (6c)

where w(t) ∈ R
p is the primal variable at the t-th step,

Q and G are arbitrary positive semidefinite matrices, and

γ, ρ > 0 are parameters we give beforehand.

The optimization procedure looks a bit complicated, To

simplify the procedure, we set Q as

Q = ρ(ηBId −B⊤B) (7)

where ηB are chosen so that ηBId ≻ B⊤B. Then, by car-

rying out simple calculations and denoting ηZ,i = Gii/ρ+
‖zi‖2, the update rule of x(t) and y(t) is rewritten as

y(t)←prox
(
y(t−1)+

B⊤

ρηB
{w(t−1)

− ρ(Zx(t−1) +By(t−1))}
∣∣∣ nψ

∗(·/n)
ρηB

)
, (8a)

x
(t)
i ←prox

(
x
(t−1)
i +

Z⊤
i

ρηZ,i
{w(t−1)

− ρ(Zx(t−1) +By(t))}
∣∣∣ f∗i
ρηZ,i

)
. (8b)

Note that the update (8b) of x(t) is just a one dimensional

optimization, thus it is quite easily computed. Moreover,

for some loss functions such as the smoothed hinge loss

used in Section 6, we have an analytic form of the update.

The update rule (8a) of y(t) can be rewritten by the proxi-

mal operation corresponding to the primal function ψ while

the rule (8a) is given by that corresponding to the dual func-

tion ψ∗. Indeed, there is a clear relation between primal and

dual (Theorem 31.5 of Rockafellar (1970)):

prox(q|ψ) + prox(q|ψ∗) = q.

Using this, for q(t) = y(t−1)+ B⊤

ρηB
{w(t−1)−ρ(Zx(t−1)+

By(t−1))}, we have that

y(t) ← q(t) − prox(q(t)|nψ(ρηB · )/(ρηB)), (9)

because (cf(·))∗(y) = cf∗(y/c) for a convex function f
and c > 0. This is efficiently computed because we as-

sumed the proximal operation corresponding to ψ can be

efficiently computed.

During the update, we need Zx(t−1) which seems to re-

quire O(n) computation at the first glance. However, it can

be incrementally updated as Zx(t) = Zx(t−1) +Zi(x
(t)
i −
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x
(t−1)
i ). Thus we don’t need to load all the samples to com-

pute Zx(t−1) at each iteration.

In the above, the update rule of our algorithm is based on

one sample observation. Next, we give a mini-batch exten-

sion of the algorithm where more than one samples could

be used for each iteration.

3.2. Mini-Batch Extension

Here, we generalize our method to mini-batch situation

where, at each iteration, we observe a small number of sam-

ples {(xi1 , yi1), . . . , (xik , yik)} instead of one sample ob-

servation. At each iteration, we randomly choose an index

set I ⊆ {1, . . . , n} so that each index i is included in I with

probability 1/K; P (i ∈ I) = 1/K for all i = 1, . . . , n. To

do so, we suggest the following procedure. We split the in-

dex set {1, . . . , n} into K groups (I1, I2, . . . , IK) before-

hand, and then pick up uniformly k ∈ {1, . . . ,K} and set

I = Ik for each iteration. Each sub-batch Ik can have dif-

ferent cardinality from others, but the probability P (i ∈ I)
should be uniform for all i = 1, . . . , n. The update rule

using sub-batch is given as follows: Update y(t) as before

(6a), and update x(t) and w(t) by

x
(t)
I ← argmin

xI

{∑

i∈I

f∗i (xi)− 〈w(t−1), ZIxI +By(t)〉

+
ρ

2
‖ZIxI+Z\Ix

(t−1)
\I +By(t)‖2+1

2
‖xI−x(t−1)

I ‖2GI,I
}
,

(10a)

w(t) ← w(t−1) − γρ{n(Zx(t) +By(t))

− (n− n/K)(Zx(t−1) +By(t−1))}. (10b)

Using Q given in Eq. (7), the update rule of y(t) can be

replaced by Eq. (9) as in one-sample update situation. The

update rule of x(t) can also be simplified by choosingG ap-

propriately. Because sub-batches have no overlap between

each other, we can construct a positive semi-definite matrix

G such that the block-diagonal element GI,I has the form

GI,I = ρ(ηZ,II|I| − Z⊤
I ZI) (11)

where ηZ,I is a positive real satisfying ηZ,I ≥ ‖Z⊤
I ZI‖.

The reason why we split the index sets into K sets is to

construct this kind ofGwhich “diagonalizes” the quadratic

function in (10a). The choice of I and G could be re-

placed with another one for which we could compute the

update efficiently, as long as P (i ∈ I) is uniform for all

i = 1, . . . , n. Using G given in (11), the update rule (10a)

of x(t) is rewritten as

x
(t)
I ← prox

(
x
(t−1)
I +

Z⊤
I

ρηZ,I
{w(t−1)

− ρ(Zx(t−1) +By(t))}
∣∣∣
∑
i∈I f

∗
i

ρηZ,I

)
, (12)

where xI is a vector consisting of components with indexes

i ∈ I , xI = (xi)i∈I , and ZI is a sub-matrix of Z consisting

of columns with indexes i ∈ I , ZI = [Zi1 , . . . , Zi|I| ]. Note

that, since
∑
i∈I f

∗
i (xi) is sum of single variable convex

functions f∗i (xi), the proximal operation in Eq. (12) can be

split into the proximal operation with respect to each single

variable xi. This is advantageous for not only the simple-

ness of the computation but also parallel computation. That

is, for pI = x
(t−1)
I +

Z⊤
I

ρηZ,I
{w(t−1)−ρ(Zx(t−1)+By(t))},

the update rule (12) is reduced to x
(t)
i ← prox(pi| f∗

i

ρηZ,I
)

for each i ∈ I , which is easily parallelizable. In summary,

our proposed algorithm is given in Algorithm 1.

Algorithm 1 SDCA-ADMM

Input: ρ, η > 0
Initialize x0 = 0, y0 = 0, w0 = 0 and {I1, . . . , IK}.
for t = 1 to T do

Choose k ∈ {1, . . . ,K} uniformly at random, set I =
Ik, and observe the training samples {(xi, yi)}i∈I .

Set q(t)=y(t−1)+ B⊤

ρηB
{w(t−1)−ρ(Zx(t−1)+By(t−1))}.

Update y(t) ← q(t) − prox(q(t)|nψ(ρηB · )/(ρηB))
Update x

(t)
I ← prox

(
x
(t−1)
I +

Z⊤
I

ρηZ,I
{w(t−1) −

ρ(Zx(t−1) +By(t))}
∣∣∣

∑
i∈I f

∗
i

ρηZ,I

)
.

Update w(t) ← w(t−1)−γρ{n(Zx(t)+By(t))−(n−
n/K)(Zx(t−1) +By(t−1))}.

end for

Output: w(T ).

Finally, we would like to highlight the connection between

our method and the original batch ADMM (Hestenes,

1969; Powell, 1969; Rockafellar, 1976). The batch ADMM

utilizes the following update rule

y(t) ← argmin
y

{
nψ∗

( y
n

)
− 〈w(t−1), Zx(t−1) +By〉

+
ρ

2
‖Zx(t−1) +By‖2

}
, (13a)

x(t) ← argmin
x

{∑n
i=1 f

∗
i (xi)− 〈w(t−1), Zx+By(t)〉

+
ρ

2
‖Zx+By(t)‖2

}
, (13b)

w(t) ←w(t−1) − γρ(Zx(t) +By(t)). (13c)

One can see that the update rule of our algorithm is reduced

to that of the batch ADMM (13) if we setK = 1 except the

term related to G and Q (the terms 1
2‖ · ‖2Q and 1

2‖ · ‖2GI,I ).

These terms related to G and Q are used also in batch sit-

uation to eliminate cross terms in BB⊤ and ZZ⊤. This

technique is called linearization. The linearization tech-

nique makes the update rule simple and parallelizable, and

in some situations makes it possible to obtain an analytic

form of the update.
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4. Linear Convergence of SDCA-ADMM

In this section, the convergence rate of our proposed algo-

rithm is given. Indeed, the convergence rate is exponential

(R-linear). To show the convergence rate, we assume some

conditions. First, we assume that there exits an unique op-

timal solution w∗ and B⊤ is injective (on the other hand,

B is not necessarily injective). Moreover, we assume the

uniqueness of the dual solution x∗, but don’t assume the

uniqueness of y∗. We denote by the set of dual optimum of

y as Y∗ and assume that Y∗ is compact. Then, by Lemma

1, we have that

z⊤i w
∗ ∈ ∂f∗i (x∗i ), y∗/n ∈ ∂ψ(u)|u=B⊤w∗ . (14)

By the convex duality arguments, this implies that x∗i ∈
∂fi(u)|u=z⊤

i
w∗ , B⊤w∗ ∈ ∂ψ∗(u)|u=y∗/n.

Moreover, we suppose that each (dual) loss function fi is

locally v-strongly convex and ψ, h-smooth around the op-

timal solution and ψ∗ is also locally strongly convex in a

weak sense as follows.

Assumption 1. There exits v > 0 such that, ∀xi ∈ R,

f∗i (xi)− f∗i (x∗i ) ≥ 〈z⊤i w∗, xi − x∗i 〉+
v‖xi − x∗i ‖2

2
.

There exit h > 0 and vψ > 0 such that, for all y, u and

y∗ ∈ Y∗, there exists ŷ∗ ∈ Y∗ (depending on y) and we

have

ψ∗(y/n)− ψ∗(ŷ∗/n) ≥ 〈B⊤w∗, y/n− ŷ∗/n〉
+

vψ
2 ‖PKer(B)(y/n− ŷ∗/n)‖2, (15)

ψ(u)− ψ(B⊤w∗) ≥ 〈y∗/n, u−B⊤w∗〉
+ h

2 ‖u−B⊤w∗‖2, (16)

where PKer(B) is the projection matrix to the kernel of B.

Note that these conditions should be satisfied only around

the optimal solutions (x∗, y∗) and w∗. It does not need to

hold for every point, thus is much weaker than the ordi-

nary strong convexity. Moreover, the inequalities need to

be satisfied only for the solution sequence (w(t), x(t), y(t))
of our algorithm. The strong convexity of the dual loss

f∗i implies that the primal loss fi is smooth around the

optimal. The condition (15) is satisfied, for example, by

ℓ1-regularization because the dual of ℓ1-regularization is

an indicator function with a compact support and, outside

the optimal solution set Y∗, the indicator function is lower

bounded by a quadratic function. In addition, the quadratic

term in the right hand side of this condition (15) is re-

stricted on Ker(B). This makes it possible to include sev-

eral types of regularization functions. Indeed, if B = Ip,

this condition is always satisfied. The assumption (16) is

the strongest assumption. This is satisfied for elastic-net

regularization. ℓ1-regularization could satisfy this condi-

tion depending on the optimum w∗ and the solution se-

quence. If one wants to make this condition always hold,

just adding a small square term, then the condition is satis-

fied and we obtain an approximated solution which is suf-

ficiently close to the true one within a precision.

Define the primal and dual objectives as

FP (w) :=
1
n

∑n
i=1 fi(z

⊤
i w) + ψ(B⊤w),

FD(x, y) :=
1
n

∑n
i=1 f

∗
i (xi) + ψ∗( yn )− 〈w∗, Z x

n −B
y
n 〉.

Note that, by Eq. (14), FP (w) − FP (w∗) and FD(x, y) −
FD(x

∗, y∗) are always non-negative. Define the block di-

agonal matrix H as HI,I = ρZ⊤
I ZI + GI,I for all I ∈

{I1, . . . , IK} and Hi,j = 0 for (i, j) /∈ Ik × Ik (∀k). Let

‖y − Y∗‖Q := min{‖y − y∗‖Q | y∗ ∈ Y∗}. We define

RD(x, y, w) as

RD(x, y, w) := FD(x, y)− FD(x∗, y∗) +
‖w − w∗‖2
2n2γρ

+ ρ(1−γ)
2n ‖Zx+By‖2 + 1

2n‖x− x∗‖2vIp+H +
‖y−Y∗‖2

Q

2nK .

For a symmetric matrix S, we define σmax(S) and σmin(S)
as the maximum and minimum singular value respectively.

Theorem 2. Suppose that γ = 1
4n , ηZ,I > {1 + 2γn(1 −

1/K)}σmax(Z
⊤
I ZI) for all I ∈ {I1, . . . , IK} and B⊤ is

injective. Then, under Assumption 1, the dual objective

function converges R-linearly: We have that, for C1 =
RD(x

(0), y(0), w(0)),

E[RD(x
(T ), y(T ), w(T ))] ≤

(
1− µ

K

)T
C1,

where µ = min
{

v
4(v+σmax(H)) ,

hρσmin(B
⊤B)

2max{1/n,4hρ,4hσmax(Q)}
,

Kvψ/n
4σmax(Q) ,

Kvσmin(BB
⊤)

4σmax(Q)(ρσmax(Z⊤Z)+4v)

}
. In particular,

E[‖w(T ) − w∗‖2] ≤ nρ

2

(
1− µ

K

)T
C1.

If we further assume ψ(B⊤w) ≤ ψ(B⊤w∗) +
〈y∗/n,B⊤(w−w∗)〉+ l1‖w−w∗‖+ l2‖w−w∗‖2 (∀w),

then this implies that

E[FP (w
(T ))− FP (w∗)]

≤
(
σmax(Z

⊤Z/n)
2v + l2

)nρ
2

(
1− µ

K

)T
C1

+ l1

√
nρ

2

(
1− µ

K

)T
C1.

Since the proof is technical, it is deferred to the supple-

mentary material. This theorem shows that the primal and

dual objective values converge R-linearly. Moreover, the

primal variable w also converges R-linearly to the opti-

mal value. The number K of sub-batches controls the
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convergence rate. If all samples are nearly orthogonal to

each other, σmax(H) is bounded by a constant for all K,

and thus convergence rate gets faster and faster as K de-

creases (the size of each sub-batch grows up). On the

other hand, if samples are strongly correlated to each other,

σmax(H) grows linearly against 1/K and then the con-

vergence rate is not improved by decreasing K. As for

batch settings, the linear convergence of batch ADMM

has been shown by Deng and Yin (2012). However, their

proof can not be directly applied to our stochastic setting.

Our proof requires a technique specialized to stochastic

coordinate ascent technique. We would like to point out

that the exponential convergence is not guaranteed if the

choice of index set I at each update is cyclic. The in-

dex I is supposed to be chosen randomly. It is reported

in Shalev-Shwartz and Zhang (2013a) that cyclic choice of

I yields slower convergence. As described in the introduc-

tion, the mini-max optimal rate of stochastic optimization

is at least O(1/T ). This corresponds to the convergence

rate of the test loss in machine learning terminology. How-

ever, our analysis focuses on the training loss. Thus we can

obtain the linear convergence.

The statement can be described in terms of the number of

iterations required to achieve a precision ǫ, i.e. smallest T
satisfying E[FP (w

(T ))− FP (w∗)] ≤ ǫ:

T ≤ C ′Kmax
{ 4(v+σmax(H))

v ,
2max{1/(nh),4ρ,4σmax(Q)}

ρσmin(B⊤B)
,

4σmax(Q)
Kvψ/n

, 4σmax(Q)(ρσmax(Z
⊤Z)+4v)

Kvσmin(BB⊤)

}
log

(
nC′′

ǫ

)
,

where C ′ and C ′′ are an absolute constant. This says that

dependency of ǫ is log-order. An interesting point is that

the influence of h, the modulus of local strong convexity

of ψ. Usually the regularization function is made weaker

as the number of samples increases. In that situation, h de-

creases as n goes up. However, even if we set h = 1/n (and

vψ ≥ n
K ), we still have T = O(K log(n/ǫ)) instead of

O(nK log(n/ǫ)). Thus, the convergence rate is hardly af-

fected by the setting of h. This point is same as the ordinary

SDCA algorithm (Shalev-Shwartz and Zhang, 2013a).

5. Related Works

In this section, we present some related works and discuss

differences from our method.

The most related work is a recent study by

Shalev-Shwartz and Zhang (2013c) in which stochastic

dual coordinate ascent (SDCA) method for a regular-

ized risk minimization is proposed. Their method also

deals with the dual problem (3) with B = Ip in our

setting, and apply a stochastic coordinate ascent tech-

nique. This method converges linearly. At each iteration,

the method solves the following one-dimensional opti-

mization problem, ∆x
(t)
i ← argmin∆xi∈R

f∗i (∆xi +

x
(t−1)
i ) + z⊤i w

(t−1)∆xi + 1
2n‖zi∆xi‖2, and updates

x
(t)
i ← ∆x

(t)
i + x

(t−1)
i and w(t) ← ∂ψ̃∗(−Zx(t)).

The most important difference from our method is the

computation of ∂ψ∗. In a “simple” regularization function,

it is often easy to compute the (sub-)gradient of ψ̃∗.

However, in a “complex” regularization such as structured

regularization, the computation is not efficiently carried

out. To overcome this difficulty, our method utilizes a

linearly transformed one ψ(B·) = ψ̃(·), and split the

optimization with respect to f∗i and ψ∗ by applying

ADMM technique. Thus, our method is applicable to

much more general regularization functions. A mini-batch

extension of SDCA is a recent hot topic (Takáč et al., 2013;

Shalev-Shwartz and Zhang, 2013b). Our approach realizes

the mini-batch extension using the linearlization technique

in ADMM which is naturally derived in the frame-work of

ADMM. Although the proof technique is quite different,

the convergence analysis of normal mini-batch SDCA

given by Shalev-Shwartz and Zhang (2013b) is parallel to

our theorem.

The second method related to ours is stochastic aver-

age gradient (SAG) method (Le Roux et al., 2013). The

method is a modification of stochastic gradient descent

method, but utilizes an averaged gradient. A good point

of their method is that we only need to deal with the pri-

mal problem. Thus the computation is easy, and we don’t

need to look at the convex conjugate function. Moreover,

their method also converges linearly. However, the linear

convergence of SAG is guaranteed for smoothed loss and

regularization functions. Thus non-smooth structured regu-

larization is not included in the scope of the naive SAG pro-

cedure. It is conjectured by Schmidt et al. (2013) that SAG

could be combined with proximal gradient frame-work and

even ADMM. Our work gives a particular answer to this

question in the setting of SDCA.

The third method is online version of ADMM. Recently

some online variants of ADMM have been proposed by

Wang and Banerjee (2012); Suzuki (2013); Ouyang et al.

(2013). These methods are effective for complex regular-

izations as discussed in this paper. Thus they are appli-

cable to wide range of situations. However, those meth-

ods are basically online methods, thus they discard the

samples once observed. They are not adapted to a situa-

tion where the training samples are observed several times.

Therefore, the convergence rate isO(1/
√
T ) in general and

O(log(T )/T ) for a strongly convex loss (possibly O(1/T )
with some modification). On the other hand, our method

converges linearly.

6. Numerical Experiments

In this section, we give numerical experiments on

artificial and real data to demonstrate the effective-
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ness of our proposed algorithm2. We compare our

SDCA-ADMM with the existing stochastic optimiza-

tion methods such as regularized dual averaging (RDA)

(Duchi and Singer, 2009; Xiao, 2009), online ADMM

(OL-ADMM) (Wang and Banerjee, 2012), online proximal

gradient descent ADMM (OPG-ADMM) (Ouyang et al.,

2013; Suzuki, 2013) and RDA-ADMM (Suzuki, 2013).

We also compared our method with batch ADMM (Batch-

ADMM) in the artificial data sets. We used sub-batch with

size 50 for all the methods including ours (|Ik| = 50, but

|IK | could be less than 50). We employed the parameter

settings γ = 1/n and ρ = 0.13. As for ηZ,I and ηB , we

used ηZ,I = 1.1σmax(Z
⊤
I ZI) and ηB = σmax(BB

⊤) + 1.

All of the experiments are classification problems with

structured sparsity. We employed the smoothed hinge loss:

fi(u) =





0, (yiu ≥ 1),
1
2 − yiu, (yiu < 0),
1
2 (1− yiu)2, (otherwise).

Then the proximal operation with respect to its dual func-

tion is analytically given as follows (see the supplementary

material for the derivation):

prox(u|f∗i /C) =





Cu−yi
1+C (−1 ≤ Cuyi−1

1+C ≤ 0),

−yi (−1 > Cuyi−1
1+C ),

0 (otherwise).

6.1. Artificial Data

Here we execute numerical experiments on artificial data

sets. The problem is a classification problem with over-

lapped group regularization as performed in Suzuki (2013).

We generated n input feature vectors {zi}ni=1 with dimen-

sion d = 32 × 32 = 1024 where each feature is gener-

ated from i.i.d. standard normal distribution. Then the true

weight vector w0 is generated as follows: First we generate

a random matrix which has non-zero elements on its first

column (distributed from i.i.d. standard normal) and zeros

on other columns, and vectorize the matrix to obtain w0.

The training label yi is given by yi = sign(z⊤i w0 + ǫi)
where ǫi is distributed from normal distribution with mean

0 and standard deviation 0.1.

The group regularization is given as ψ̃(x) =

C(
∑32
i=1 ‖X:,i‖ +

∑32
j=1 ‖Xj,:‖ + 0.01 × ∑

i,j X
2
i,j/2)

where X is the 32 × 32 matrix obtained by reshaping x.

The quadratic term is added to make the regularization

function strongly convex4. Since there exist overlaps

2All the experiments were carried out on Intel Core i7
2.93GHz with 8GB RAM.

3In our experiments, ρ = 0.1 gave nice performances on all
datasets. Too large or too small rho does not give a proper perfor-
mance, but ρ = 0.1 gave stable performances in our experiments.

4Even if there is no quadratic term, our method converged with
almost the same speed.
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Figure 1. Excess empirical risk, exected loss on the test data and

test classification error averaged over 10 independent iteration

against CPU time in artificial data with n = 512, 5120. The error

bar indicates the standard deviation.

between groups, the proximal operation can not be

straightforwardly computed (Jacob et al., 2009). To deal

with this regularization function in our frame-work, we

let B⊤x = [x;x](= [x⊤x⊤]⊤), that is B = [IpIp], and

ψ([x;x′]) = C(
∑32
i=1 ‖X:,i‖ +

∑32
j=1 ‖X ′

j,:‖). Then we

can see that ψ̃(x) = ψ(B⊤x) and the proximal operation

with respect to ψ is analytically obtained; indeed it is

easily checked that prox([q; q′]|ψ) = [STC′(Q:,1/(1 +
0.01C)); . . . ; STC′(Q:,32/(1 + 0.01C)); STC′(Q′

1,:/(1 +
0.01C)); . . . ; STC′(Q′

32,:/(1 + 0.01C))] where

STC(q) = qmax(1−C/‖q‖, 0) andC ′ = C/(1+0.01C).

The original RDA requires a direct computation of the

proximal operation for the overlapped group penalty. To

compute that, we employed the dual formulation proposed

by Yuan et al. (2011).

We independently repeated the experiments 10

times and averaged the excess empirical risk

(FP (w
(t)) − minw FP (w)), the expected loss on the

test data (E(z,y)[f(y, z
⊤w(t))]) and the classification error

(E(z,y)[1{y 6= sign(z⊤w(t))}). Figure 1 shows these three

values against CPU time with the standard deviation for

n = 512 and n = 5120. We employed C1 = 0.1/
√
n.

We observe that the excess empirical risk of our method,
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SDCA-ADMM, actually converges linearly while other

stochastic methods don’t show linear convergence. Al-

though Batch-ADMM also shows linear convergence and

its convergence speed is comparable to SDCA-ADMM for

small sample situation (n = 512), SDCA-ADMM is much

faster than Batch-ADMM when the number of samples is

large (n = 5120). As for the classification error, exist-

ing stochastic methods also show nice performances de-

spite the poor convergence of the empirical risk. On the

other hand, SDCA-ADMM rapidly converges to a stable

state and shows comparable or better classification accu-

racy than existing methods.

6.2. Real Data

Here we execute numerical experiments on real data; ‘20

Newsgroups’5 and ‘a9a’6. ‘20 Newsgroups’ contains 100

dimensional 12,995 training samples and 3,247 test sam-

ples. ‘a9a’ contains 123 dimensional 32,561 training sam-

ples and 16,281 test samples. We constructed a similar-

ity graph between features using graph Lasso and applied

graph guided regularization as in Ouyang et al. (2013).

That is, we applied graph Lasso to the training samples,

and obtain a sparse inverse variance-covariance matrix F̂ .

Based on the similarity matrix F̂ , we connect all index pairs

(i, j) with F̂i,j 6= 0 on edges. We denote by E the set of

edges. Then we impose the following graph guided regu-

larization:

ψ̃(w) = C1

∑p
i=1 |wi|+ C2

∑
(i,j)∈E |wi − wj |

+ 0.01× (C1

∑p
i=1 |wi|2 + C2

∑
(i,j)∈E |wi − wj |2).

Now letF be |E|×pmatrix whereFe,i = 1 andFe,j = −1,

if (i, j) = e ∈ E, and Fe,i = 0 otherwise. Then

by letting B⊤ = [Ip;F ] and ψ(u) = C1

∑p
i=1 |ui| +

C2

∑|E|
i=p+1 |ui|+0.01(C1

∑p
i=1 |ui|2+C2

∑|E|
i=p+1 |ui|2)

for u ∈ R
p+|E|, we have ψ̃(w) = ψ(B⊤w). Note that

the proximal operation with respect to ψ is just the soft-

thresholding operation. In our experiments, we employed

C2 = C1|E|/p and C1 = 0.01/
√
n.

We computed the empirical risk on the training data, the

averaged loss on the test data, and the test classification

error (Figure 2). We observe that the empirical risk on the

training data of SDCA-ADMM converges much faster than

other methods. Although other methods also performs well

on the test loss and the classification error, SDCA-ADMM

still converges faster than existing methods with respect to

the two quantities measured on the test data.

5Available at http://www.cs.nyu.edu/˜roweis/data.html. We
converted the four class classification task into binary classifica-
tion by grouping category 1,2 and category 3,4 respectively.

6Available at ‘LIBSVM data sets’
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets.
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Figure 2. Empirical risk, average loss on the test data and test clas-

sification error averaged over 5 independent iteration against CPU

time in real data. The error bar indicates the standard deviation.

7. Conclusion

We proposed a new stochastic dual coordinate ascent tech-

nique with alternating direction method of multipliers. The

proposed method can be applied to wide range of regular-

ization functions. Moreover, we proposed a mini-batch ex-

tension of our method. It is shown that, under some strong

convexity conditions, our method converges exponentially.

According to our analysis, the mini-batch method improves

the convergence rate if the input features don’t have strong

correlation between each other. The numerical experiments

showed that our method actually converges exponentially,

and the convergence is fast in terms of both empirical and

expected risk.

Future work includes that the determination of ηZ,I . In

Theorem 2, the exponential convergence is guaranteed if

ηZ,I >= {1 + 2γn(1 − 1/K)}σmax(Z
⊤
I ZI). However,

in our preliminary numerical experiments, an aggressive

method like the one suggested in Takáč et al. (2013) per-

formed effectively in some data sets. Developing more so-

phisticated determination of ηZ,I (and G) would be a po-

tentially promising future work.

Acknowledgement TS was partially supported by

MEXT Kakenhi 25730013, and the Aihara Project, the

FIRST program from JSPS, initiated by CSTP.



Stochastic Dual Coordinate Ascent with ADMM

References

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.

Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations

and Trends in Machine Learning, 3:1–122, 2010.

W. Deng and W. Yin. On the global and linear conver-

gence of the generalized alternating direction method of

multipliers. Technical report, Rice University CAAM

TR12-14, 2012.

J. Duchi and Y. Singer. Efficient online and batch learning

using forward backward splitting. Journal of Machine

Learning Research, 10:2873–2908, 2009.

D. Gabay and B. Mercier. A dual algorithm for the solu-

tion of nonlinear variational problems via finite-element

approximations. Computers & Mathematics with Appli-

cations, 2:17–40, 1976.

M. Hestenes. Multiplier and gradient methods. Journal of

Optimization Theory & Applications, 4:303–320, 1969.

L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with

overlap and graph lasso. In Proceedings of the 26th In-

ternational Conference on Machine Learning, 2009.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gra-

dient method with an exponential convergence rate for

strongly-convex optimization with finite training sets. In

Advances in Neural Information Processing Systems 25,

2013.

A. Nemirovskii and D. Yudin. Problem complexity and

method efficiency in optimization. John Wiley, New

York, 1983.

H. Ouyang, N. He, L. Q. Tran, and A. Gray. Stochastic

alternating direction method of multipliers. In Proceed-

ings of the 30th International Conference on Machine

Learning, 2013.

M. Powell. A method for nonlinear constraints in mini-

mization problems. In R. Fletcher, editor, Optimization,

pages 283–298. Academic Press, London, New York,

1969.

Z. Qin and D. Goldfarb. Structured sparsity via alternat-

ing direction methods. Journal of Machine Learning Re-

search, 13:1435–1468, 2012.

A. Rakotomamonjy. Applying alternating direction method

of multipliers for constrained dictionary learning. Neu-

rocomputing, 106:126–136, 2013.

R. T. Rockafellar. Convex Analysis. Princeton University

Press, Princeton, 1970.

R. T. Rockafellar. Augmented Lagrangians and applica-

tions of the proximal point algorithm in convex program-

ming. Mathematics of Operations Research, 1:97–116,

1976.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite

sums with the stochastic average gradient. Technical re-

port, 2013. arXiv:1309.2388.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coor-

dinate ascent methods for regularized loss minimiza-

tion. Journal of Machine Learning Research, 14:567–

599, 2013a.

S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch

stochastic dual coordinate ascent. In Advances in Neural

Information Processing Systems 26, 2013b.

S. Shalev-Shwartz and T. Zhang. Proximal stochas-

tic dual coordinate ascent. Technical report, 2013c.

arXiv:1211.2717.

M. Signoretto, L. D. Lathauwer, and J. Suykens. Nu-

clear norms for tensors and their use for convex multilin-

ear estimation. Technical Report 10-186, ESAT-SISTA,

K.U.Leuven, 2010.

T. Suzuki. Dual averaging and proximal gradient descent

for online alternating direction multiplier method. In

Proceedings of the 30th International Conference on

Machine Learning, 2013.
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