
Outlier Path

A. Proof of Theorem 3
Although f ∗P is a feasible solution, it is not a local optimum
for θ ∈ [0, 1) and s ≤ 0 because

αi ≤ Cθ for i ∈ Ĩ ∩ O, (12a)
αi ≥ C for i ∈ Õ ∩ I, (12b)

violate the KKT conditions (7) for P̃. These feasibility and
sub-optimality indicates that

JP̃( f ∗P̃; θ) < JP( f ∗P; θ), (13)

we arrive at (9). Q.E.D.

B. Proof of Theorem 4
Sufficiency: If (10e) is true, i.e., if there are NO instances
with yi f ∗P(xi) = s, then any convex problems defined by
different partitions P̃ , P do not have feasible solutions in
the neighborhood of f ∗P. This means that if f ∗P is a condi-
tionally optimal solution, then it is locally optimal. (10a)-
(10d) are sufficient for f ∗P to be conditionally optimal for
the given partition P. Thus, (10) is sufficient for f ∗P to be
locally optimal.

Necessity: From Theorem 3, if there exists an instance
such that yi f ∗P(xi) = s, then f ∗P is a feasible but not lo-
cally optimal. Then (10e) is necessary for f ∗P to be locally
optimal. In addition, (10a)-(10d) are also necessary for lo-
cal optimality, because of every local optimal solutions are
conditionally optimal for the given partition P. Thus, (10)
is necessary for f ∗P to be locally optimal.

Q.E.D.

C. Implementation of D-step
In D-step, we work with the following convex problem

f ∗P̃ := argmin
f∈pol(P̃;s)

JP̃( f ; θ). (14)

where, P̃ is updated from P as (8).

Let us define a partition Π := {R,E,L, Ĩ′, Õ′, Ô′′} of Nn

such that

i ∈ R ⇒ yi f (xi) > 1, (15a)
i ∈ E ⇒ yi f (xi) = 1, (15b)
i ∈ L ⇒ s < yi f (xi) < 1, (15c)
i ∈ Ĩ′ ⇒ yi f (xi) = s and i ∈ Ĩ, (15d)
i ∈ Õ′ ⇒ yi f (xi) = s and i ∈ Õ, (15e)
i ∈ Õ′′ ⇒ yi f (xi) < s. (15f)

If we write the conditionally optimal solution as

f ∗P̃(x) :=
∑
j∈Nn

α∗jy jK(x,x j), (16)

{α∗j} j∈Nn must satisfy the following KKT conditions

yi f ∗P̃(xi) > 1 ⇒ α∗i = 0 (17a)

yi f ∗P̃(xi) = 1 ⇒ α∗i ∈ [0,C], (17b)

s < yi f ∗P̃(xi) < 1 ⇒ α∗i = C (17c)

yi f ∗P̃(xi) = s, i ∈ Ĩ′ ⇒ α∗i ≥ C, (17d)

yi f ∗P̃(xi) = s, i ∈ Õ′ ⇒ α∗i ≤ Cθ, (17e)

yi f ∗P̃(xi) < s, i ∈ Õ′′ ⇒ α∗i = Cθ. (17f)

At the beginning of the D-step, f ∗P̃(xi) violates the KKT
conditions by

∆ fi := yi

[
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 .
where α(bef) is the corresponding α at the beginning of the
D-step, while ∆I→O and ∆O→I denote the difference in P̃
and P defined as

∆I→O := {i ∈ I | yi fP(xi) = s},
∆O→I := {i ∈ O | yi fP(xi) = s}.

Then, we consider the following another parametrized
problem with a parameter µ ∈ [0, 1]:

fP̃(xi; µ) := fP̃(xi) + µ∆ fi ∀ i ∈ Nn.

In order to always satisfy the KKT conditions for fP̃(xi; µ),
we solve the following linear system
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αĨ′
αÕ′
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−
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 µ,
where A := {E, Ĩ′, Õ′}. This linear system can also be
solved by using the piecewise-linear parametric program-
ming while the scalar parameter µ is continuously moved
from 1 to 0.

In this parametric problem, we can show that f ∗P̃(xi; µ) =
f ∗P(xi) if µ = 1 and f ∗P̃(xi; µ) = f ∗P̃(xi) if µ = 0 for all
i ∈ Nn.

Since the number of elements in ∆I→O and ∆O→I are typ-
ically small, the D-step can be efficiently implemented
by a technique used in the context of incremental learn-
ing (Cauwenberghs & Poggio, 2001).


