A. Proof of Theorem 3

Although f_{φ}^* is a feasible solution, it is not a local optimum for $\theta \in [0, 1)$ and $s \le 0$ because

$$\alpha_i \le C\theta \quad \text{for} \quad i \in \hat{I} \cap O,$$
 (12a)

$$\alpha_i \ge C \quad \text{for} \quad i \in O \cap I, \tag{12b}$$

violate the KKT conditions (7) for $\tilde{\mathcal{P}}$. These feasibility and *sub*-optimality indicates that

$$J_{\tilde{\varphi}}(f_{\tilde{\varphi}}^*;\theta) < J_{\varphi}(f_{\varphi}^*;\theta), \tag{13}$$

we arrive at (9).

B. Proof of Theorem 4

Sufficiency: If (10e) is true, i.e., if there are NO instances with $y_i f_{\mathcal{P}}^*(\mathbf{x}_i) = s$, then any convex problems defined by different partitions $\tilde{\mathcal{P}} \neq \mathcal{P}$ do not have feasible solutions in the neighborhood of $f_{\mathcal{P}}^*$. This means that if $f_{\mathcal{P}}^*$ is a conditionally optimal solution, then it is locally optimal. (10a)-(10d) are sufficient for $f_{\mathcal{P}}^*$ to be conditionally optimal for the given partition \mathcal{P} . Thus, (10) is sufficient for $f_{\mathcal{P}}^*$ to be locally optimal.

Necessity: From Theorem 3, if there exists an instance such that $y_i f_{\varphi}^*(\mathbf{x}_i) = s$, then f_{φ}^* is a feasible but not locally optimal. Then (10e) is necessary for f_{φ}^* to be locally optimal. In addition, (10a)-(10d) are also necessary for local optimality, because of every local optimal solutions are conditionally optimal for the given partition \mathcal{P} . Thus, (10) is necessary for f_{φ}^* to be locally optimal.

Q.E.D.

C. Implementation of D-step

In D-step, we work with the following convex problem

$$f^*_{\tilde{\mathcal{P}}} := \underset{f \in \text{pol}(\tilde{\mathcal{P}};s)}{\operatorname{argmin}} J_{\tilde{\mathcal{P}}}(f;\theta).$$
(14)

where, $\tilde{\mathcal{P}}$ is updated from \mathcal{P} as (8).

Let us define a partition $\Pi := \{\mathcal{R}, \mathcal{E}, \mathcal{L}, \tilde{I}', \tilde{O}', \hat{O}''\}$ of \mathbb{N}_n such that

$$i \in \mathcal{R} \implies y_i f(x_i) > 1,$$
 (15a)

$$i \in \mathcal{E} \implies y_i f(x_i) = 1,$$
 (15b)

$$i \in \mathcal{L} \implies s < y_i f(\boldsymbol{x}_i) < 1,$$
 (15c)

$$i \in \tilde{I}' \Rightarrow y_i f(\boldsymbol{x}_i) = s \text{ and } i \in \tilde{I},$$
 (15d)

$$i \in \tilde{O}' \implies y_i f(x_i) = s \text{ and } i \in \tilde{O},$$
 (15e)

$$i \in \tilde{O}'' \quad \Rightarrow \quad y_i f(\boldsymbol{x}_i) < s.$$
 (15f)

If we write the conditionally optimal solution as

$$f_{\bar{\varphi}}^*(x) := \sum_{j \in \mathbb{N}_n} \alpha_j^* y_j K(x, \boldsymbol{x}_j), \tag{16}$$

 $\{\alpha_{i}^{*}\}_{j\in\mathbb{N}_{n}}$ must satisfy the following KKT conditions

$$y_i f^*_{\tilde{\varphi}}(\boldsymbol{x}_i) > 1 \implies \alpha^*_i = 0 \tag{17a}$$

$$y_i f^*_{\tilde{\mathcal{P}}}(\boldsymbol{x}_i) = 1 \implies \alpha^*_i \in [0, C], \qquad (17b)$$

$$s < y_i f^*_{\tilde{\varphi}}(\boldsymbol{x}_i) < 1 \implies \alpha^*_i = C$$
 (17c)

$$y_i f^*_{\tilde{\varphi}}(\boldsymbol{x}_i) = s, i \in \tilde{I}' \implies \alpha^*_i \ge C,$$
 (17d)

$$y_i f^*_{\tilde{\varphi}}(\boldsymbol{x}_i) = s, i \in \tilde{O}' \implies \alpha^*_i \le C\theta,$$
 (17e)

$$y_i f^*_{\tilde{\rho}}(\boldsymbol{x}_i) < s, i \in O'' \implies \alpha^*_i = C\theta.$$
(17f)

At the beginning of the D-step, $f^*_{\tilde{\mathcal{P}}}(x_i)$ violates the KKT conditions by

$$\Delta f_i := y_i \begin{bmatrix} \mathbf{K}_{i,\Delta_{I \to O}} & \mathbf{K}_{i,\Delta_{O \to I}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{\Delta_{I \to O}}^{(\text{bef})} - \mathbf{1}C\theta \\ \boldsymbol{\alpha}_{\Delta_{O \to I}}^{(\text{bef})} - \mathbf{1}C \end{bmatrix}.$$

where $\alpha^{\text{(bef)}}$ is the corresponding α at the beginning of the D-step, while $\Delta_{I \to O}$ and $\Delta_{O \to I}$ denote the difference in $\tilde{\mathcal{P}}$ and \mathcal{P} defined as

$$\Delta_{I \to O} := \{ i \in I \mid y_i f_{\mathcal{P}}(\boldsymbol{x}_i) = s \}, \\ \Delta_{O \to I} := \{ i \in O \mid y_i f_{\mathcal{P}}(\boldsymbol{x}_i) = s \}.$$

Then, we consider the following another parametrized problem with a parameter $\mu \in [0, 1]$:

$$f_{\tilde{\varphi}}(\boldsymbol{x}_i;\boldsymbol{\mu}) := f_{\tilde{\varphi}}(\boldsymbol{x}_i) + \boldsymbol{\mu} \Delta f_i \; \forall \; i \in \mathbb{N}_n.$$

In order to always satisfy the KKT conditions for $f_{\tilde{P}}(x_i;\mu)$, we solve the following linear system

$$\begin{aligned} \boldsymbol{Q}_{\mathcal{A},\mathcal{A}} \begin{bmatrix} \boldsymbol{\alpha}_{\mathcal{E}} \\ \boldsymbol{\alpha}_{\tilde{I}'} \\ \boldsymbol{\alpha}_{\tilde{O}'} \end{bmatrix} &= \begin{bmatrix} 1 \\ s \\ s \end{bmatrix} - \boldsymbol{Q}_{\mathcal{A},\mathcal{L}} \mathbf{1}C - \boldsymbol{Q}_{\mathcal{A},\tilde{O}''} \mathbf{1}C\theta \\ &- \begin{bmatrix} \boldsymbol{Q}_{\mathcal{A},\Delta_{I\to O}} & \boldsymbol{Q}_{\mathcal{A},\Delta_{O\to I}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{\Delta_{I\to O}}^{(\text{bef})} - \mathbf{1}C\theta \\ \boldsymbol{\alpha}_{\Delta_{O\to I}}^{(\text{bef})} - \mathbf{1}C \end{bmatrix} \mu, \end{aligned}$$

where $\mathcal{A} := \{\mathcal{E}, \tilde{I}', \tilde{O}'\}$. This linear system can also be solved by using the piecewise-linear parametric programming while the scalar parameter μ is continuously moved from 1 to 0.

In this parametric problem, we can show that $f^*_{\tilde{\mathcal{P}}}(\boldsymbol{x}_i;\mu) = f^*_{\mathcal{P}}(\boldsymbol{x}_i)$ if $\mu = 1$ and $f^*_{\tilde{\mathcal{P}}}(\boldsymbol{x}_i;\mu) = f^*_{\tilde{\mathcal{P}}}(\boldsymbol{x}_i)$ if $\mu = 0$ for all $i \in \mathbb{N}_n$.

Since the number of elements in $\Delta_{I \to O}$ and $\Delta_{O \to I}$ are typically small, the D-step can be efficiently implemented by a technique used in the context of incremental learning (Cauwenberghs & Poggio, 2001).