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Abstract
In recent applications with massive but less re-
liable data (e.g., labels obtained by a semi-
supervised learning method or crowdsourcing),
non-robustness of the support vector machine
(SVM) often causes considerable performance
deterioration. Although improving the robust-
ness of SVM has been investigated for long
time, robust SVM (RSVM) learning still poses
two major challenges: obtaining a good (local)
solution from a non-convex optimization prob-
lem and optimally controlling the robustness-
efficiency trade-off. In this paper, we address
these two issues simultaneously in an integrated
way by introducing a novel homotopy approach
to RSVM learning. Based on theoretical in-
vestigation of the geometry of RSVM solutions,
we show that a path of local RSVM solutions
can be computed efficiently when the influence
of outliers is gradually suppressed as simulated
annealing. We experimentally demonstrate that
our algorithm tends to produce better local so-
lutions than the alternative approach based on
the concave-convex procedure, with the ability
of stable and efficient model selection for con-
trolling the influence of outliers.

1. Introduction
The support vector machine (SVM) is one of the most
popular classification algorithms that has achieved signif-
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Figure 1. Illustrative examples of (a) standard SVM and (b) robust
SVM (RSVM) on a toy dataset. In RSVM, the classification result
is not sensitive to the two red outliers in the right-hand side of the
graphs.

icant empirical success in various real-world applications
(Vapnik, 1996). However, SVM was known to be sensi-
tive to outliers which limits the usability of SVM in re-
cent applications with massive but less reliable data (e.g.,
automatically labeled data by semi-supervised learning or
manually labeled data in crowdsourcing). In order to al-
leviate adverse influence of outliers, various robust exten-
sions of SVM (robust SVM; RSVM) have been proposed
(Masnadi-Shiraze & Vasconcelos, 2000; Shen et al., 2003;
Krause & Singer, 2004; Liu et al., 2005; Liu & Shen, 2006;
Xu et al., 2006; Collobert et al., 2006; Wu & Liu, 2007;
Masnadi-Shirazi & Vasconcelos, 2009; Freund, 2009; Yu
et al., 2010). Figure 1 illustrates the robust behavior of
RSVM.

When we use RSVM in practice, we encounter two ma-
jor difficulties. The first one is the non-convexity of the
RSVM optimization problem, which results in obtaining
only a local optimal solution. Another difficulty is the con-
trol of the robustness of the solution. In RSVM, the ro-
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bustness of the solution is controlled by a hyper-parameter,
and we usually change the hyper-parameter value gradually
and find the best one by cross-validation. However, due to
the non-convexity, the RSVM solutions with slightly differ-
ent hyper-parameter values can be significantly different,
which makes model selection by cross-validation highly
challenging.

In this paper, we introduce a novel approach to RSVM
learning to address these issues. Our basic idea is to use
the homotopy methods (Allgower & George, 1993; Gal,
1995; Ritter, 1984; Best, 1996) to trace a path of local op-
timal solutions when the influence of outliers is gradually
decreased by changing the hinge loss to more robust ones.
Figure 2 illustrates two different ways to gradually robus-
tify the hinge loss. So far, homotopy-like methods have
been (often implicitly) employed in sparse modeling and
semi-supervised learning (Zhang, 2010; Mazumder et al.,
2011; Zhou et al., 2012; Ogawa et al., 2013). However, to
the best of our knowledge, this is the first work that applies
the homotopy method to RSVM.

After problem formulation in § 2, we derive in § 3 the nec-
essary and sufficient conditions for an RSVM solution to
be locally optimal, and show that there exist a finite num-
ber of discontinuous points in the local solution path. We
then propose an efficient algorithm in § 4 that can precisely
detect such discontinuous points and jump to find a strictly
better local optimal solution. In § 5, we experimentally
demonstrate that our proposed method, named the outlier
path, outperforms the existing RSVM algorithm based on
the concave-convex procedure or the difference-of-convex
programming (Shen et al., 2003; Krause & Singer, 2004;
Liu et al., 2005; Liu & Shen, 2006; Collobert et al., 2006;
Wu & Liu, 2007). Finally, we conclude in § 6.

2. Parameterized RSVM
Let us consider a binary classification problem with n in-
stances and d features. We denote the training set as
{(xi, yi)}i∈Nn where xi ∈ X is the input vector in the in-
put space X ⊂ Rd, yi ∈ {−1, 1} is the binary class label,
and the notation Nn := {1, . . . , n} represents the set of nat-
ural numbers up to n. We write the decision function as
f (x) := w>φ(x), where φ is the feature map implicitly de-
fined by a kernel K, w is a vector in the feature space, and
> denotes the transpose of vectors and matrices.

We introduce the following class of optimization problems
parameterized by θ and s:

minw
1
2
‖w‖2 +C

n∑
i=1

`(yi f (xi); θ, s), (1)

where C > 0 is the regularization parameter. The loss func-
tion ` is characterized by a pair of parameters θ ∈ [0, 1] and

s ≤ 0 in the following way:

`(z; θ, s) :=
{

[0, 1 − z]+, z ≥ s,
1 − θz − s, z < s, (2)

where [z]+ := max{0, z}. We refer to θ and s as homotopy
parameters. Figure 2 shows the loss functions for several
θ and s. The first homotopy parameter θ can be interpreted
as the weight for an outlier: θ = 1 indicates that the influ-
ences of outliers and inliers are same, while θ = 0 indicates
that outliers are completely ignored. The second homotopy
parameter s ≤ 0 is interpreted as the threshold for outliers.

In the following sections, we consider two types of homo-
topy methods. In the first method, we fix s = 0, and gradu-
ally change θ from 1 to 0 (see the top five plots in Figure 2).
In the second method, we fix θ = 0 and gradually change s
from −∞ to 0 (see the bottom five plots in Figure 2). Note
that the loss function is reduced to the hinge loss for the
standard (convex) SVM when θ = 1 or s = −∞. There-
fore, each of the above two homotopy methods can be in-
terpreted as the process of tracing a sequence of solutions
when the optimization problem is gradually modified from
convex to non-convex. We expect to find good local opti-
mal solutions because such a process can be interpreted as
simulated annealing (Hromkovic, 2001). In addition, we
can adaptively control the degree of robustness by selecting
the best θ or s based on some model selection scheme.

3. Local Optimality of RSVM
In order to use the homotopy approach, we need to clar-
ify the continuity of the local solution path. To this end,
we investigate several properties of RSVM local solutions,
and derive the necessary and sufficient conditions. Interest-
ingly, our analysis reveals that the local solution path has a
finite number of discontinuous points. The theoretical re-
sults presented here form the basis of our novel homotopy
algorithm given in the next section that can properly handle
the above discontinuity issue.

3.1. Conditionally Optimal Solutions

The basic idea of our theoretical analysis is to reformu-
late the RSVM learning problem as a combinatorial opti-
mization problem. We consider a partition of the instances
Nn := {1, . . . , n} into two disjoint sets I and O. The in-
stances in I and O are defined as Inliers and Outliers,
respectively. Here, we restrict that the margin yi f (xi) of
an inlier should be larger than s, while that of an out-
lier should be smaller than s. We denote the partition as
P := {I,O} ∈ 2Nn , where 2Nn is the power set of Nn. Given
a partition P, the above restrictions define the feasible re-
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θ = 1, s = 0 θ = 0.75, s = 0 θ = 0.5, s = 0 θ = 0.25, s = 0 θ = 0, s = 0
(a) Homotopy computation with decreasing θ from 1 to 0.
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θ = 0, s = −∞ θ = 0, s = −1.5 θ = 0, s = −1 θ = 0, s = −0.5 θ = 0, s = 0
(b) Homotopy computation with decreasing s from −∞ to 0.

Figure 2. Robust loss functions for various homotopy parameters θ and s.

gion of the solution f in the form of a convex polytope1:

pol(P; s) :=
{

f

∣∣∣∣∣∣ yi f (xi) ≥ s, i ∈ I
yi f (xi) ≤ s, i ∈ O

}
. (3)

Using the notion of the convex polytopes, the optimization
problem (1) can be rewritten as

min
P∈2Nn

(
min

f∈pol(P;s)
JP( f ; θ)

)
, (4)

where the objective function JP is defined as2

JP( f ; θ) :=
1
2
||w||22

+ C

∑
i∈I

[1 − yi f (xi)]+ + θ
∑
i∈O

[1 − yi f (xi)]+

 .
When the partition P is fixed, it is easy to confirm that the
inner minimization problem in (4) is convex.

Definition 1 (Conditionally optimal solutions) Given a
partition P, the solution of the following convex problem
is said to be the conditionally optimal solution:

f ∗P := argmin
f∈pol(P;s)

JP( f ; θ). (5)

The formulation in (4) is interpreted as a combinatorial op-
timization problem of finding the best solution from all the

1Note that an instance with the margin yi f (xi) = s can be the
member of either I or O.

2Note that we omitted the constant terms irrelevant to the op-
timization problem.

2n conditionally optimal solutions f ∗P corresponding to all
possible 2n partitions3.

Using the representer theorem or convex optimization the-
ory, we can show that any conditionally optimal solution
can be written as

f ∗P(x) :=
∑
j∈Nn

α∗jy jK(x,x j), (6)

where {α∗j} j∈Nn are the optimal Lagrange multipliers. The
following lemma summarizes the KKT optimality condi-
tions of the conditionally optimal solution f ∗P.

Lemma 2 The KKT conditions of the convex problem (5)
is written as

yi f ∗P(xi) > 1 ⇒ α∗i = 0, (7a)
yi f ∗P(xi) = 1 ⇒ α∗i ∈ [0,C], (7b)

s < yi f ∗P(xi) < 1 ⇒ α∗i = C, (7c)
yi f ∗P(xi) = s, i ∈ I ⇒ α∗i ≥ C, (7d)
yi f ∗P(xi) = s, i ∈ O ⇒ α∗i ≤ Cθ, (7e)

yi f ∗P(xi) < s ⇒ α∗i = Cθ. (7f)

The proof is omitted because it can be easily derived based
on standard convex optimization theory (Boyd & Vanden-
berghe, 2004).

3.2. The necessary and sufficient conditions for local
optimality

From the definition of conditionally optimal solutions, it
is clear that a local optimal solution must be conditionally

3For some partitionsP, the convex problem (5) might not have
any feasible solutions.
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optimal within the convex polytope pol(P; s). However,
the conditional optimality does not necessarily indicate the
local optimality as the following theorem suggests.

Theorem 3 For any θ ∈ [0, 1) and s ≤ 0, consider a sit-
uation where a conditionally optimal solution f ∗P is at the
boundary of the convex polytope pol(P; s), i.e., there exists
at least an instance such that yi f ∗P(xi) = s. In this situation,
if we define a new partition P̃ := {Ĩ, Õ} as

Ĩ←I\{i ∈ I|yi f ∗(xi)= s}∪{i ∈ O|yi f ∗(xi)= s}, (8a)
Õ←O\{i ∈ O|yi f ∗(xi)= s}∪{i ∈ I|yi f ∗(xi)= s}, (8b)

then the new conditionally optimal solution f ∗P̃ is strictly
better than the original conditionally optimal solution f ∗P,
i.e.,

JP̃( f ∗P̃; θ) < JP( f ∗P; θ). (9)

The proof is presented in Appendix A. Theorem 3 indi-
cates that if f ∗P is at the boundary of the convex polytope
pol(P; s), i.e., if there is one or more instances such that
yi f ∗P(xi) = s, then f ∗P is NOT locally optimal because there
is a strictly better solution in the opposite side of the bound-
ary.

The following theorem summarizes the necessary and suf-
ficient conditions for local optimality. Note that, in non-
convex optimization problems, the KKT conditions are
necessary but not sufficient in general.

Theorem 4 For θ ∈ [0, 1) and s ≤ 0,

yi f ∗(xi) > 1 ⇒ α∗i = 0, (10a)
yi f ∗(xi) = 1 ⇒ α∗i ∈ [0,C], (10b)

s < yi f ∗(xi) < 1 ⇒ α∗i = C, (10c)
yi f ∗(xi) < s ⇒ α∗i = Cθ, (10d)
yi f ∗(xi) , s, ∀i ∈ Nn, (10e)

are necessary and sufficient for f ∗ to be locally optimal.

The proof is presented in Appendix B. The condition (10e)
indicates that the solution at the boundary of the convex
polytope is not locally optimal. Figure 3 illustrates when a
conditionally optimal solution can be locally optimal with
a certain θ or s.

Theorem 4 suggests that, whenever the local solution path
computed by the homotopy approach encounters a bound-
ary of the current convex polytope at a certain θ or s, the
solution is not anymore locally optimal. In such cases, we
need to somehow find a new local optimal solution at that θ
or s, and restart the local solution path from the new one. In
other words, the local solution path has discontinuity at that
θ or s. Fortunately, Theorem 3 tells us how to handle such

(a) Local solution path (b) Local optimum

(c) Not local optimum (d) Local optimum

Figure 3. Solution space of RSVM. (a) The arrows indicate a local
solution path when θ is gradually moved from θ1 to θ5 (see § 4 for
more details). (b) f ∗P is locally optimal if it is at the strict interior
of the convex polytope pol(P; s). (c) If f ∗P exists at the bound-
ary, then f ∗P is feasible, but not locally optimal. A new convex
polytope pol(P̃; s) defined in the opposite side of the boundary is
shown in yellow. (d) A strictly better solution exists in pol(P̃; s).

a situation. If the local solution path arrives at the bound-
ary, it can jump to the new conditionally optimal solution
f ∗P̃ which is located on the opposite side of the boundary.
This jump operation is justified because the new solution is
shown to be strictly better than the previous one. Figure 3
(c) and (d) illustrate such a situation.

4. Outlier Path Algorithm
Based on the analysis presented in the previous section,
we develop a novel homotopy algorithm for RSVM. We
call the proposed method the outlier-path (OP) algorithm.
For simplicity, we consider homotopy path computation in-
volving either θ or s, and denote the former as OP-θ and the
latter as OP-s. OP-θ computes the local solution path when
θ is gradually decreased from 1 to 0 with fixed s = 0, while
OP-s computes the local solution path when s is gradually
increased from −∞ to 0 with fixed θ = 0.

4.1. Overview

The main flow of the OP algorithm is described in Algo-
rithm 1. The solution f is initialized by solving the stan-
dard (convex) SVM, and the partition P := {I,O} is de-
fined to satisfy the constraints in (3). The algorithm mainly
switches over the two steps called the continuous step (C-



Outlier Path

Algorithm 1 Outlier Path Algorithm
1: Initialize the solution f by solving the standard SVM.
2: Initialize the partition P := {I,O} as follows:

I ← {i ∈ Nn|yi f (xi) ≤ s},
O ← {i ∈ Nn|yi f (xi) > s}.

3: θ ← 1 for OP-θ; s← mini∈Nn yi f (xi) for OP-s.
4: while θ > 0 for OP-θ; s < 0 for OP-s do
5: if (yi f (xi) , s ∀ i ∈ Nn) then
6: Run C-step.
7: else
8: Run D-step.
9: end if

10: end while

step) and the discontinuous step (D-step).

In the C-step (Algorithm 2), a continuous path of local so-
lutions is computed for a sequence of gradually decreasing
θ (or increasing s) within the convex polytope pol(P; s) de-
fined by the current partition P. If the local solution path
encounters a boundary of the convex polytope, i.e., if there
exists at least an instance such that yi f (xi) = s, then the
algorithm stops updating θ (or s) and enters the D-step.

In the D-step (Algorithm 3), a better local solution is ob-
tained for fixed θ (or s) by solving a convex problem de-
fined over another convex polytope in the opposite side of
the boundary (see Figure 3(d)). If the new solution is again
at a boundary of the new polytope, the algorithm repeat-
edly calls the D-step until it finds the solution in the strict
interior of the current polytope.

The C-step can be implemented by any homotopy algo-
rithms for solving a sequence of quadratic problems (QP).
In OP-θ, the local solution path can be exactly computed
because the path within a convex polytope can be repre-
sented as piecewise-linear functions of the homotopy pa-
rameter θ. In OP-s, the C-step is trivial because the optimal
solution is shown to be constant within a convex polytope.
In § 4.2 and § 4.3, we will describe the details of our imple-
mentation of the C-step for OP-θ and OP-s, respectively.

In the D-step, we only need to solve a single quadratic
problem (QP). Any QP solver can be used in this step. We
note that the warm-start approach (DeCoste & Wagstaff,
2000) is quite helpful in the D-step because the difference
between two conditionally optimal solutions in adjacent
two convex polytopes is typically very small. In § 4.4, we
describe the details of our implementation of the D-step.
Figure 4 illustrates an example of the local solution path
obtained by OP-θ.

In Algorithm 1, If the conditionally optimal solution is at
the boundary, we again enters to the D-step. The objective

Algorithm 2 Continuous Step (C-step)
1: while (yi f (xi) , s ∀ i ∈ Nn) do
2: Solve the sequence of convex problems,

min
f∈pol(P;s)

JP( f ; θ),

for gradually decreasing θ in OP-θ or gradually in-
creasing s in OP-s.

3: end while

Algorithm 3 Discontinuous Step (D-step)
1: Update the partition P := {I,O} as follows:

I ← I \ {i ∈ I|yi f (xi) = s} ∪ {i ∈ O|yi f (xi) = s},
O ← O \ {i ∈ O|yi f (xi) = s} ∪ {i ∈ I|yi f (xi) = s}.

2: Solve the following convex problem for fixed θ and s:

min
f∈pol(P;s)

JP( f ; θ).

function JP strictly decreases each time as shown in The-
orem 3. Since any local optimal solutions must be in the
strict interior as shown in Theorem 4, and the number of
convex polytopes is finite, the algorithm will finally find a
local optimal solution in finite time.

4.2. Continuous-Step for OP-θ

In the C-step, the partitionP := {I,O} is fixed, and our task
is to solve a sequence of convex quadratic problems (QPs)
parameterized by θ within the convex polytope pol(P; s).
It has been known in optimization literature that a certain
class of parametric convex QP can be exactly solved by ex-
ploiting the piecewise linearity of the solution path (Best,
1996). We can easily show that the local solution path
of OP-θ within a convex polytope is also represented as
a piecewise-linear function of θ. The algorithm presented
here is similar to the SVM regularization path algorithm in
Hastie et al. (2004).

Let us consider a partition of the inliers in I into the fol-
lowing three disjoint sets:

R := {i|1 < yi f (xi)},
E := {i|yi f (xi) = 1},
L := {i|s < yi f (xi) < 1}.

For a given fixed partition {R,E,L,O}, the KKT conditions
of the convex problem (5) indicate that

αi = 0 ∀ i ∈ R, αi = C ∀ i ∈ L, αi = Cθ ∀ i ∈ O.

The KKT conditions also imply that the remaining La-
grange multipliers {αi}i∈E must satisfy the following linear
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Figure 4. An example of the local solution path by OP-θ on a sim-
ple toy data set (with C = 200). The paths of five Lagrange mul-
tipliers α∗1, · · · , α∗4 are plotted in the range of θ ∈ [0, 1]. Open
circles represent the discontinuous points in the path. In this sim-
ple example, we had experienced three discontinuous points at
θ = 0.37, 0.67 and 0.77.

system of equations:

yi f (xi) =
∑
j∈Nn

α jyiy jK(xi,x j) = 1 ∀ i ∈ E

⇔ QEEαE = 1 −QEL1C −QEO1Cθ, (11)

where Q ∈ Rn×n is an n × n matrix whose (i, j)th entry is
defined as Qi j := yiy jK(xi, x j). Here, a notation such as
QEL represents a submatrix of Q having only the rows in
the index set E and the columns in the index set L. By
solving the linear system of equations (11), the Lagrange
multipliers αi, i ∈ Nn, can be written as an affine function
of θ.

Noting that yi f (xi) =
∑

j∈Nn
α jyiy jK(xi,x j) is also repre-

sented as an affine function of θ, any changes of the par-
tition {R,E,L} can be exactly identified when the homo-
topy parameter θ is continuously decreased. Since the so-
lution path linearly changes for each partition of {R,E,L},
the entire path is represented as a continuous piecewise-
linear function of the homotopy parameter θ. We denote the
points in θ ∈ [0, 1) at which members of the sets {R,E,L}
change as break-points θBP.

Using the piecewise-linearity of yi f (xi), we can also iden-
tify when we should switch to the D-step. Once we detect
an instance satisfying yi f (xi) = s, we exit the C-step and
enter the D-step.

4.3. Continuous-Step for OP-s

Since θ is fixed to 0 in OP-s, the KKT conditions (7) yields

αi = 0 ∀ i ∈ O.

This means that outliers have no influence on the solu-
tion and thus the conditionally optimal solution f ∗P does not
change with s as long as the partition P is unchanged. The
only task in the C-step for OP-s is therefore to find the next

s that changes the partition P. Such s can be simply found
as

s ← min
i∈L

yi f (xi).

4.4. Discontinuous-Step (for Both OP-θ and OP-s)

As mentioned before, any convex QP solver can be used
for the D-step. When the algorithm enters the D-step, we
have the conditionally optimal solution f ∗P for the partition
P := {I,O}. Our task here is to find another conditionally
optimal solution f ∗P̃ for P̃ := {Ĩ, Õ} given by (8).

Given that the difference between the two solutions f ∗P and
f ∗P̃ is typically small, the D-step can be efficiently imple-
mented by a technique used in the context of incremental
learning (Cauwenberghs & Poggio, 2001).

Let us define

∆I→O := {i ∈ I | yi fP(xi) = s},
∆O→I := {i ∈ O | yi fP(xi) = s},

and α(bef) be the corresponding α at the beginning of the
D-Step. Then, we consider the following parameterized
problem with parameter µ ∈ [0, 1]:

fP̃(xi; µ) := fP̃(xi) + µ∆ fi ∀ i ∈ Nn,

where

∆ fi := yi

[
Ki,∆I→O Ki,∆O→I

]  α(bef)
∆I→O

− 1Cθ
α(bef)
∆O→I

− 1C

 .
We can show that fP̃(xi; µ) is reduced to fP(xi) when
µ = 1, while it is reduced to fP̃(xi) when µ = 0 for
all i ∈ Nn. By using a similar technique to incremen-
tal learning (Cauwenberghs & Poggio, 2001), we can ef-
ficiently compute the path of solutions when µ is continu-
ously changed from 1 to 0. This algorithm behaves simi-
larly to the C-step in OP-θ. The implementation detail of
the D-step is described in Appendix C.

5. Numerical Experiments
In this section, we compared the proposed outlier-path (OP)
algorithm with the concave-convex procedure (CCCP)
(Yuille & Rangarajan, 2002). In most of the existing
RSVM studies, CCCP or a variant called difference of con-
vex (DC) programming are used for optimizing RSVM
(Shen et al., 2003; Krause & Singer, 2004; Liu et al., 2005;
Liu & Shen, 2006; Collobert et al., 2006; Wu & Liu, 2007).

Setup We used the 10 benchmark data sets listed in Ta-
ble 1. We randomly divided each data set into the training
(40%), validation (30%), and test (30%) sets for training,
model selection (including the selection of θ or s), and per-
formance evaluation, respectively. In the training and vali-
dation data, we flipped 15% of the labels as outliers.
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Table 1. Benchmark data sets. n and d denote the number of in-
stances and the input dimensionality, respectively.

Data n d
D1 BreastCancerDiagnostic 569 30
D2 AustralianCreditApproval 690 14
D3 German.Numer 1000 24
D4 SVMGuide1 3089 4
D5 Spambase 4601 57
D6 Musk 6598 166
D7 Gisette 6000 5000
D8 w5a 9888 300
D9 a6a 11220 122

D10 a7a 16100 122

Generalization Performance First, we compared the
generalization performance. We used the linear kernel
and the radial basis function (RBF) kernel defined as
K(xi, x j) = exp

(
−γ‖xi − x j‖2

)
, where γ is a kernel param-

eter fixed to γ = 1/d with d being the input dimension-
ality. Model selection was carried out by finding the best
hyperparameter combination that minimizes the validation
error. We have a pair of hyperparameters in each setup.
In all the setups, the regularization parameter C was cho-
sen from {0.01, 0.1, 1, 10, 100}, while the candidates of the
homotopy parameter θ or s were set as follows:

• In OP-θ, all the break-points θBP were considered as
the candidates (note that the local solutions at each
break-point have been already computed in the homo-
topy computation).

• In OP-s, all the break-points for sBP between sinit :=
mini∈Nn yi f (xi) and 0 are considered as the candidates.

• In CCCP-θ (which is compared with OP-θ), the
homotopy parameter θ was selected from θ ∈
{1, 0.75, 0.5, 0.25, 0}.

• In CCCP-s (which is compared with OP-s), the homo-
topy parameter s was selected from

s ∈ {sinit, 0.75sinit, 0.5sinit, 0.25sinit, 0}.

Note that both OP and CCCP were initialized by using the
standard SVM.

Tables 2 and 3 represent the average and the standard de-
viation of the test errors on 10 different random data splits.
These results indicate that OP could find better local solu-
tions and the degree of robustness was appropriately con-
trolled.

Computational Time Finally, we compared the compu-
tational costs of the entire model-building process of each
method. The results are shown in Figure 5. Note that the
computational cost of the OP algorithm does not depend on

Table 2. The mean of test error and standard deviation (linear).
Smaller test error is better. The numbers in bold face indicate the
better method in terms of the test error.

Data C-SVM CCCP-θ OP-θ CCCP-s OP-s
D1 .056(.016) .050(.014) .049(.016) .055(.018) .050(.016)
D2 .151(.018) .145(.007) .151(.018) .145(.007) .152(.010)
D3 .281(.028) .270(.033) .270(.023) .262(.013) .266(.013)
D4 .066(.007) .047(.007) .047(.005) .053(.010) .042(.006)
D5 .108(.010) .088(.009) .088(.009) .088(.010) .084(.007)
D6 .072(.005) .058(.006) .064(.003) .061(.007) .060(.003)
D7 .185(.013) .184(.010) .184(.010) .184(.010) .184(.010)
D8 .020(.002) .020(.003) .020(.002) .021(.003) .020(.003)
D9 .173(.004) .181(.009) .173(.005) .165(.004) .164(.004)

D10 .173(.008) .176(.006) .173(.007) .160(.004) .161(.005)

Table 3. The mean of test error and standard deviation (RBF).
Data C-SVM CCCP-θ OP-θ CCCP-s OP-s

D1 .055(.017) .043(.022) .042(.017) .037(.016) .038(.013)
D2 .149(.010) .148(.010) .147(.010) .146(.013) .142(.013)
D3 .276(.024) .267(.026) .266(.024) .271(.015) .261(.020)
D4 .052(.009) .048(.009) .044(.006) .047(.008) .040(.005)
D5 .117(.012) .109(.013) .107(.012) .107(.011) .094(.008)
D6 .046(.007) .045(.007) .045(.007) .045(.007) .043(.006)
D7 .044(.003) .044(.003) .044(.003) .044(.003) .044(.003)
D8 .022(.003) .022(.003) .022(.003) .022(.003) .021(.002)
D9 .169(.003) .170(.005) .169(.004) .168(.005) .162(.003)

D10 .163(.003) .163(.003) .163(.003) .162(.002) .160(.004)

the number of hyperparameter candidates of θ or s, because
the entire path of local solutions has already been computed
with the infinitesimal resolution in the homotopy computa-
tion. On the other hand, the computational cost of CCCP
depends on the number of hyperparameter candidates. In
our implementation of CCCP, we used the warm-start ap-
proach, i.e., we initialized CCCP with the previous solution
for efficiently computing a sequence of solutions. The re-
sults indicate that the proposed OP algorithm enables sta-
ble and efficient control of robustness, while CCCP suffers
a trade-off between model selection performance and com-
putational costs.

6. Conclusions
In this paper, we proposed a novel robust SVM learning
algorithm based on the homotopy approach that allows ef-
ficient computation of the sequence of local optimal solu-
tions when the influence of outliers is gradually deempha-
sized. The algorithm is built on our theoretical findings
about the geometric property and the optimality conditions
of an RSVM local solution. Experimental results indicate
that our algorithm tends to find better local solutions possi-
bly due to the simulated annealing-like effect and the stable
control of robustness. One of the important future works
is to adopt scalable homotopy algorithms or approximate
parametric programming algorithms (Giesen et al., 2012)
as the building block of our algorithm to further improve
the computational efficiency.
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(a) Elapsed time for CCCP and proposed OP (linear)
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Figure 5. Elapsed time when the number of (θ, s)-candidates is increased. Changing the number of hyperparameter candidates affects
the computation time of CCCP, but not OP because the entire path of solutions is computed with the infinitesimal resolution.
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