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Abstract
Multi-step forecasts can be produced recursively
by iterating a one-step model, or directly using a
specific model for each horizon. Choosing be-
tween these two strategies is not an easy task
since it involves a trade-off between bias and esti-
mation variance over the forecast horizon. Using
a nonlinear machine learning model makes the
tradeoff even more difficult. To address this is-
sue, we propose a new forecasting strategy which
boosts traditional recursive linear forecasts with
a direct strategy using a boosting autoregression
procedure at each horizon. First, we investigate
the performance of the proposed strategy in terms
of bias and variance decomposition of the error
using simulated time series. Then, we evaluate
the proposed strategy on real-world time series
from two forecasting competitions. Overall, we
obtain excellent performance with respect to the
standard forecasting strategies.

1. Introduction
Forecasts guide decisions in many areas of scientific, in-
dustrial and economic activity such as in meteorology,
telecommunication and finance. In many real-life sce-
narios, the forecaster encounters a multi-step forecasting
problem where forecasts are required for short, medium
or long horizons. In particular, multi-step forecasting of
a univariate time series consists in predicting several future
observations of a given sequence of historical observations.

Although time series from real world phenomena typically
behave nonlinearly (Kantz & Schreiber, 2004), time se-
ries forecasting is very much dominated by linear methods
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(Gooijer & R. J. Hyndman, 2006). This is partly due to
mathematical convenience and the robust performance of
linear forecasting methods (Fan & Yao, 2005). Nonlinear
models have also been considered to allow more flexibil-
ity in the forecasts. Examples include bilinear models,
k-nearest-neighbor methods and neural network models
(Teräsvirta, Tjø stheim, & Granger, 2010). However, em-
pirical studies indicate that the potential gain from complex
nonlinear methods is not always realized due to overfitting
and estimation variance. In addition, real-world time series
often possess either approximately linear, or moderately
nonlinear behavior that does not require a complex non-
linear model to be captured.

Traditionally, multi-step forecasting has been handled re-
cursively, where a single time series model is estimated and
each forecast is computed using previous forecasts. An-
other approach builds a separate time series model for each
forecasting horizon, and forecasts are computed directly by
the estimated model (Chevillon, 2007). Choosing between
these two strategies involves a trade-off between bias and
estimation variance and depends also on the size of the time
series, the level of noise and the nonlinearity of the model.
In brief, selecting one of the two strategies is not an easy
task in real-world forecasting problems.

We propose a new method, called the boost strategy, to ad-
dress the two previous issues, i.e. the weak nonlinearity
in many real-world time series and the problem of choos-
ing between recursive and direct forecasts. The idea is to
boost recursive linear forecasts with a direct strategy using
several small and nonlinear adjustments at each forecast
horizon. To do so, a boosting autoregression procedure is
applied at each horizon on the residuals from the recursive
linear forecasts using a so-called weak learner; that is a
learner with large bias relative to variance.

Our boost strategy has many advantages: (i) it balances
flexibility and robustness since the linear recursive fore-
casts serve as a first robust approximation and flexibility is
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added by allowing several nonlinear boosting components
at each forecast horizon; (ii) it allows nonlinearities with
the boosting components without sacrificing much variance
thanks to the reduced variance of the weak learners; and
(iii) it avoids the difficult choice between recursive and di-
rect forecasts.

We evaluate the boost strategy in two steps. In the first step,
we decompose the mean squared error (MSE) of the fore-
casts and analyze the bias and variance components over
the horizon. We begin by a theoretical analysis of the bias
and variance components for two steps ahead. Then we
conduct a simulation study with two data generating pro-
cesses (DGP) for the general case of h steps ahead. Then,
we consider real-world time series and compare the per-
formance of the boost strategy with the recursive and direct
strategies on roughly 500 time series from the M3 and NN5
forecasting competitions. Overall, the boost strategy con-
sistently produces better out-of-sample forecasts and thus
is very attractive for multi-step forecasting tasks.

2. Multi-step forecasting strategies
We begin by discussing the problem of multi-step forecast-
ing and describe the recursive and the direct strategies for
producing multi-step forecasts.

Consider a univariate time series YT = {y1, . . . , yT } com-
prising T observations. We would like to forecast the H
future observations {yT+1, . . . , yT+H}. We assume that
the data are described by a possibly non-linear autoregres-
sive process of the form

yt = f(xt−1) + εt with xt−1 = [yt−1, . . . , yt−d]
′, (1)

where {εt} is a Gaussian white noise process with zero
mean and variance σ2. The time series is therefore spec-
ified by a function f , an embedding dimension d, and a
noise term εt. We assume that we do not know f or d.

If we consider the MSE as the error measure to be min-
imized, then the optimal forecast at horizon h is the
conditional mean µt+h|t = E[yt+h | xt] and the goal of
forecasting is to estimate it.

The recursive strategy. One strategy for producing
multi-step forecasts, called recursive, centers on building
a time series model of the same form as (1), aiming to min-
imize the one-step-ahead prediction error variance. The
unknown future values are then obtained dynamically by
repeatedly iterating the model and by replacing (plugging
in) the unknown future values with their own forecasts. In
other words, it entails a model of the form

yt = m(zt−1;φ) + et (2)

with zt−1 = [yt−1, . . . , yt−p]
′ where p is an estimation

of the embedding dimension d and E[et] = 0. Note that

et = f(xt−1) − m(zt−1;φ) + εt is the forecast error of
the model m. The parameters φ are estimated by

φ̂ = argmin
φ

∑
t

[yt −m(zt−1;φ)]
2
.

Then, forecasts are obtained recursively, µ̂T+h|T =

m(h)(zT ; φ̂) where m(h) is the recursive application of m
and h = 1, . . . ,H .

The direct strategy. A second strategy, called direct,
tailors the forecasting model directly to the forecast hori-
zon. That is, different forecasting models are used for each
forecast horizon:

yt = mh(rt−h;γh) + et,h, (3)

where rt−h = [yt−h, . . . , yt−h−ph ]
′. For each model, the

parameters γh are estimated as follows

γ̂h = argmin
γh

∑
t

[yt −mh(rt−h;γh)]
2
.

Then forecasts are obtained for each horizon from the
corresponding model, µ̂T+h|T = mh(rT ; γ̂h) with h =
1, . . . ,H .

If we knew f and d, then the recursive strategy and the
direct strategy would be equivalent when f is linear, but not
when f is nonlinear. Because of minimizing the one-step
prediction error, when f is nonlinear the recursive strategy
is biased while the direct strategy achieves the optimal error
in a mean squared error sense (Fan & Yao, 2005; Atiya, El-
shoura, Shaheen, & El-sherif, 1999).

In practice, which strategy is better is an empirical matter as
we must estimate unknown functions m (Eq. (2)) and mh

(Eq. (3)) from a finite-sample dataset. The performance
of both strategies depends notably on the nonlinearity of
f , the embedding dimension d, the level of noise σ2, the
size of the time series T , the estimation algorithm and the
forecast horizon h. So, the choice between the recursive
and the direct strategy is not an easy task in applications.

3. The boost strategy
We propose to boost the recursive forecasts from a simple
autoregressive (AR) linear model by using a direct strategy,
allowing several small and nonlinear adjustments at each
horizon h. Each adjustment tries to catch the discrepancy
between the linear recursive forecasts and the true condi-
tional mean at horizon h.

In other words, we begin with a simple autoregressive lin-
ear model,

yt = c+ φ1yt−1 + · · ·+ φpyt−p︸ ︷︷ ︸
m(zt−1;φ)

+et

and produce forecasts from it using the recursive strategy
m(h)(zt; φ̂). At this stage, our forecasts are equivalent to
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those from the traditional linear AR model. We consider
these forecasts as a first approximation and we add a further
direct step to adjust for data features which cannot or are
not represented by the linear autoregressive fit.

More precisely, a boosting procedure is used to model the
potential signal left in the residuals from the AR forecasts,
at each horizon h, with a direct strategy. To ensure that the
adjustments are small, every boosting procedure requires
the choice of a so-called weak learner; that is a learner with
large bias relative to variance. Formally, we have

yt = m(h)(zt−h; φ̂)+

Ih∑
i=1

νli(yt−j , yt−k;ψi)+ et,h, (4)

where Ih is the number of boosting iterations at horizon
h, νli is the weak component at iteration i with ν being a
shrinkage factor, and yt−j , yt−k ∈ rt−h.

One should note that the weak components in (4) are as-
sured to be weak because of three reasons: the shrinkage
factor ν shrinks the estimate towards zero, the restriction
to bivariate interactions between variables, and the weak
learner l(·;ψ).

Several weak learners have been used in the boosting lit-
erature, notably stumps (trees with two terminal nodes)
(Friedman, 2001) and smoothing splines (Bühlmann & Yu,
2003). Penalised regression splines (P-splines) (Eilers &
Marx, 1996) have also been considered in Schmid and
Hothorn (2008) as a better alternative to smoothing splines
in terms of computational time. We use P-splines as the
weak learner in our implementation of the boost strategy.

P-splines require the selection of two additional parame-
ters: the number of knots and the smoothing parameter.
However, Ruppert (2002) has shown that the number of
knots does not have much effect on the estimation provided
enough knots are used. The weakness of the P-spline is
measured by its degrees of freedom (df). Bühlmann and
Yu (2003) and Schmid and Hothorn (2008) proposed that
the smoothing parameter be set to give a small value of df
(i.e., df ∈ [3, 4]), and that this number be kept fixed in each
boosting iteration.

Algorithm 1 gives the different steps of the boost strategy
to estimate the conditional mean µT+h|T at each horizon
with a gradient boosting approach (Friedman, 2001). We
assume the number of boosting iterations at each hori-
zon is given. In practice, one may use a cross-validation
procedure to identify the best number of iterations. This
hyperparameter is particularly important as it controls the
trade-off between the bias and variance of the estimation
(Bühlmann & Yu, 2003).

First, an AR model is fitted (line 1). Then at each horizon
h, the first (possibly crude) estimate is simply the recursive

Algorithm 1 The boost strategy
{y1, . . . , yT }: Time series with T observations.
H: Forecasting horizon.
l(·;ψ): Weak learner.
[I1, . . . , IH ]: Number of iterations for each horizon.
0 < ν ≤ 1: Shrinkage parameter.

1: Fit an AR(p): yt = c+ φ1yt−1 + · · ·+ φpyt−p︸ ︷︷ ︸
m(zt−1;φ)

+et

2: for h← 1, . . . ,H do
3: F̂

(0)
h (rt−h) = m(h)(zt; φ̂)

4: for i← 1, . . . , Ih do

5: ỹit = −
1
2∂(yt−Fh(rt−h))

2

∂Fh(rt−h)

∣∣∣∣
Fh(rt−h)=F

(i−1)
h (rt−h)

6: = (yt − F̂ (i−1)
h (rt−h))

7: for all yt−a, yt−b ∈ rt−h do
8: {(yt−a, yt−b, ỹit)}Tt=1 → li(yt−a, yt−b; ψ̂i)
9: end for

10: (j, k) = argmin
(a,b)

∑T
t=1[ỹ

i
t− νli(yt−a, yt−b; ψ̂i)]2

11: F̂
(i)
h (rt−h) = F̂

(i−1)
h (rt−h) + νli(yt−j , yt−k; ψ̂i)

12: end for
13: µ̂T+h|T = F̂

(Ih)
h (rT )

14: = m(h)(zT ; φ̂) +
∑Ih
i=1 νli(yT−j , yT−k; ψ̂i)

15: end for

forecasts from the AR(p) model (line 3). This first estimate
is boosted during Ih iterations to improve the forecasts.
More precisely, at each iteration i, a new pseudo-response
is calculated. In the case of quadratic loss, it is simply
the residuals from the previous iteration (line 6). This
pseudo-response is then regressed against all possible pairs
of variables with the weak learner (line 8) and the estimate
with the largest contribution to the fit is selected (line 10)
and added to the estimation of the previous iteration (line
11). The final forecasts is then the sum of the AR(p) fore-
casts and several boosting components.

In brief, we enrich the class of linear autoregressive model
with additional nonlinear terms and bivariate interactions at
each forecasting horizon. By using a boosting procedure to
extend the linear autoregressive model to a broader class of
models, we allow the modelling of more complex depen-
dencies without sacrificing much variance. Also, limiting
the possible interactions is motivated by the fact that we ex-
pect many real-world time series to depend on lower-order
interactions (Friedman, 2001; Duvenaud, Nickisch, & Ras-
mussen, 2011). Finally, the boost strategy is very attractive
as it avoids making a choice between the recursive and the
direct strategies which can be a difficult task in real-world
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applications.

4. Related work
This work considers boosting in the contexts of multi-step
forecasting. In the machine learning literature, boosting
is well known for classification with AdaBoost (Freund
& Schapire, 1996), but much less attention has been paid
to regression settings. Some extensions of AdaBoost to
regression include Drucker (1997) and Shrestha and Solo-
matine (2006). A gradient boosting approach has also been
proposed for regression (Friedman, 2001).

In the forecasting community, boosting has received even
less attention and the literature is rather sparse. Assaad,
Boné, and Cardot (2008) considered recurrent neural net-
works as weak learners with an adapted AdaBoost and
compared their method with local approaches on two time
series. Audrino and Bühlmann (2003, 2009) used a gra-
dient boosting approach to model volatility in financial
applications. Boosting has only recently been considered
in the macroeconometric literature with (Shafik & Tutz,
2009; Bai & Ng, 2009; Buchen & Wohlrabe, 2011). Eco-
nomic forecasting is also considered in Robinzonov, Tutz,
and Hothorn (2012) with a boosting procedure to estimate
nonlinear additive autoregressive models. Finally, a gra-
dient boosting approach has been used recently in a load
forecasting competition and ranked among the top five
competitors (Ben Taieb & R. Hyndman, 2013).

5. Bias and variance analysis
A performance analysis of the forecasting strategies can be
accomplished through an examination of the error decom-
position into the bias and variance components (Geman,
Bienenstock, & Doursat, 1992). Let g(zt; θ̂YT ;h) denote
the forecasts of a given strategy at horizon h using the in-
put vector zt and using the set of parameters θ̂YT . These
parameters are estimated using YT , a time series with T
observations. So, the input vector zt and the set of param-
eters θ̂YT can change for each sample YT . In addition, the
input vector zt can be different from xt, the “real” input
vector defined in (1). Let us also define g(zt;θT ;h) =

EYT
[
g(zt; θ̂YT ;h)

]
.

Assuming the process defined in (1) is stationary, the
MSE of the given strategy at horizon h is decomposed as
follows.

MSEh

= Ext

Eε,YT [(yt+h − g(zt; θ̂YT ;h))2 | xt]︸ ︷︷ ︸
MSEh(xt)


= Ext,ε

[
(yt+h − µt+h|t)2 | xt

]︸ ︷︷ ︸
NoiseNh

+ Ext
[
(µt+h|t − g(zt;θT ;h))2

]︸ ︷︷ ︸
BiasBh

(5)

+ Ext,YT
[
(g(zt; θ̂YT ;h)− g(zt;θT ;h))

2 | xt
]

︸ ︷︷ ︸
Variance Vh

where Ex and E[·|x] denote the expectation over x and the
expectation conditional on x, respectively.

We can see that the MSE of the forecasts g(zt; θ̂YT ;h) at
horizon h can be decomposed into three different compo-
nents, namely the noise term Nh, the squared bias term Bh
and the estimation variance term Vh. So, this decomposi-
tion is identical to the usual decomposition used in machine
learning (Geman et al., 1992). However, in contrast with
usual regression problems, multi-step forecasting is dealing
with time-dependent data and requires learning dependent
tasks with different noise level changing with the forecast-
ing horizon h.

At horizon h = 1, the problem of multi-step forecasting
reduces for all strategies to the estimation of the function
f since we have the simple expression µt+1|t = f(xt). In
the following, we consider other horizons. To simplify the
derivations, we will perform a theoretical analysis for two
steps ahead using similar arguments to Ben Taieb and Atiya
(2014). Then, we will perform Monte Carlo simulations to
analyze bias and variance for the general case of h steps
ahead.

5.1. Theoretical analysis

Assume that the time series is generated by the nonlin-
ear autoregressive process defined in (1). First, we can
compute yt+2 using a Taylor series approximation up to
second-order terms, which gives us
yt+2

= f(f(xt) + εt+1, yt, . . . , yt−d+2) + εt+2

≈ f(f(xt), . . . , yt−d+2) + εt+1fx1 + 1
2
(εt+1)

2fx1x1 + εt+2,

where fx1
and fx1x1

are the first and second derivatives
of f with respect to its first argument, respectively. The
conditional expectation µt+2|t is then given by

µt+2|t = E[yt+2|xt]
= f(f(xt), yt, . . . , yt−d+2) +

1
2
σ2fx1x1

In order to compute the bias and variance terms at h = 2,
B2(xt) and V2(xt) as defined in (5), we consider that the
forecasts of each strategy can be modeled as a sum of three
terms: the true function value we are trying to estimate,
that is the conditional mean µt+2|t = E[yt+2|xt], an off-
set term denoted by δ(zt;θ) and a variability term denoted
by η(zt;θ)εη where η(zt;θ) is a deterministic compo-
nent giving the standard deviation of the term, and εη is
a stochastic component with E[εη] = 0 and E[ε2η] = 1.
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The offset term δ(zt;θ) is the discrepancy from the con-
ditional mean µt+2|t arising from (i) the lack of flexibility
of the considered forecasting model (i.e. the model, with
its parameters θ, is not powerful enough to reconstruct
µt+2|t accurately), (ii) potential missing variables in the in-
puts (zt not equal to xt), and (iii) an inadequate estimation
algorithm for the parameters θ (i.e. even if the model is
powerful, the training algorithm may fall short of finding
the right parameters).

The variability term η(zt;θ)εη represents the variability of
the forecasts, and it arises due to (i) the finite-sampledness
of the time series YT = {y1, . . . , yT } used to estimate θ,
(ii) the number of input variables in zt potentially including
redundant or meaningless variables, and (iii) the complex-
ity of the model that may make it too flexible.

We now write the forecasts of the different strategies using
the previous terminology. To simplify notation, we will
remove the dependence on the size of the time series T .

Forecasts of the recursive strategy. To produce fore-
casts at horizon h = 2, the recursive strategy first estimate
a one-step model as in (2) and produce forecasts for h = 1,
that is

g(zt; φ̂; 1) = f(xt)︸ ︷︷ ︸
µt+1|t

+δ(zt;φ)

︸ ︷︷ ︸
m(zt;φ)

+η(zt;φ)εη

︸ ︷︷ ︸
m(zt;φ̂)

Then, forecasts at horizon h = 2 are obtained recursively
and can be computed, after some simplification using a
Taylor series expansion, as follows
g(zt; φ̂; 2)

= m(m(zt; φ̂), . . . , yt−p+2; φ̂)

= f(f(xt), . . . , yt−p+2)

+ δ(f(xt), . . . , yt−p+2;φ) + η(f(xt), . . . , yt−p+2;φ)εη2

+ δ(zt;φ)mz1 +
1

2
[δ(zt;φ)]

2mz1z1

+ η(zt;φ)εη1mz1 +
1

2
[η(zt;φ)εη1 ]

2mz1z1

where εη1 and εη2 are the stochastic components of the
variability term around points zt and [f(zt), . . . , yt−p+2]
respectively, and mz1 and mz1z1 are respectively the first
and second derivatives of the model m with respect to its
first argument.

Forecasts of the direct strategy. A model is estimated
to directly produce forecast for horizon h = 2 and can be
written as

g(rt; γ̂; 2)

= µt+2|t + δ(rt;γ)︸ ︷︷ ︸
m2(rt;γ)

+η(rt;γ)εη

︸ ︷︷ ︸
m2(rt;γ̂)

In contrast with the forecasts of the recursive strategy, we
can see that the conditional mean µt+2|t appears in the pre-
vious expression.

Forecasts of the boost strategy. A first linear AR(p)
model is fitted and can be written as

m(zt; φ̂) = f(xt)︸ ︷︷ ︸
µt+1|t

+δ(zt;φ)

︸ ︷︷ ︸
c+φ1yt−1+···+φpyt−p

+η(zt;φ)εη

Then, the forecasts at horizon h = 2 are produced with

m(m(zt; φ̂), . . . , yt−p+2︸ ︷︷ ︸
ẑt+1

; φ̂)

= (c+ φ1c) + (φ2
1 + φ2)yt + (φ1φ2 + φ3)yt−1

+ · · ·+ (φ1φp−1 + φp)yt−p+2 + (φ1φp)yt−p+1

+ φ1η(zt;φ)εη1 + η(ẑt+1;φ)εη2︸ ︷︷ ︸
(φ1+1)η(φ)εη

where the variability terms have been simplified since in
the linear model, the variability is independent on the input
and only depends on the set of parameters φ.

After adding the adjustments from the boosting procedure,
the forecasts of the boost strategy can be written as

g(rt; [φ̂; ψ̂]; 2)

= (c+ φ1c) + (φ2
1 + φ2)yt + (φ1φ2 + φ3)yt−1

+ · · ·+ (φ1φp−1 + φp)yt−p+2 + (φ1φp)yt−p+1

+ (φ1 + 1)η(φ)εη0

+

I2∑
i=1

ν[li(yt−j , yt−k;ψi) + ηi(yt−j , yt−k;ψi) ∗ εηi︸ ︷︷ ︸
li(yt−j ,yt−k;ψ̂i)

]

︸ ︷︷ ︸∑
jkMjk(yt−j ,yt−k;ψjk)+ηjk(yt−j ,yt−k;ψjk)∗εηjk

where φ̂ = [φ̂1, . . . , φ̂p], ψ̂ = [ψ̂1, . . . , ψ̂I ], and where we
have used the fact that the sum of the boosting components
over the iterations can also be written as a sum over the
different interactions, that is

I2∑
i=1

νli(yt−j , yt−k; ψ̂i)

=
∑
jk

∑
Sjk={i|a=j∧b=k}

νli(yt−a, yt−b; ψ̂i)

=
∑
jk

Mjk(yt−j , yt−k; ψ̂jk),

where ψ̂jk = {ψ̂i|i ∈ Sjk}.

Bias and variance comparison. Recall that we want to
estimate µt+2|t = f(f(xt), . . . , yt−d+2) +

1
2σ

2fx1x1
. Let

us now calculate the sum of the bias and variance compo-
nents as defined in (5), for horizon h = 2 using the previous
expressions for the forecasts of the three strategies. In other
words, we compute
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B2(xt) + V2(xt)

= (µt+2|t − g(zt;θ; 2))2

+ EYT
[
(g(zt; θ̂; 2)− g(zt;θ; 2))2 | xt

]

For the recursive strategy, we have

BREC
2 (xt) + V REC

2 (xt)

=
[
µt+2|t −

(
f(f(xt), . . . , yt−p+2) (6)

+ δ(f(xt), . . . , yt−p+2;φ) + δ(zt;φ)mz1

+
1

2
[δ(zt;φ)]

2mz1z1 +
1

2
[η(zt;φ)]

2mz1z1

)]2
(7)

+ [η(f(xt), . . . , yt−p+2;φ)]
2 + [η(zt;φ)mz1 ]

2

+
1

2
[η(zt;φ)]

4m2
z1z1 (8)

+ 2η(f(xt), . . . , yt−p+2;φ)η(zt;φ)mz1E[εη1εη2 ]

+ η(zt;φ)
2η(f(xt), . . . , yt−p+2;φ)mz1z1E[ε

2
η1εη2 ] (9)

where we used the fact that E[ε3η] = 0 and E[ε4η] = 3 for
the standard normal distribution.

For the direct strategy, we have

BDIRECT
2 (xt) + V DIRECT

2 (xt)

=
[
µt+2|t −m2(rt;γ)

]2 (10)

+ η(rt;γ)
2 (11)

For the boost strategy, we have

BBOOST
2 (xt) + V BOOST

2 (xt)

=
[
µt+2|t−(

(c+ φ1c) + (φ2
1 + φ2)yt + (φ1φ2 + φ3)yt−1

+ · · ·+ (φ1φp−1 + φp)yt−p+2 + (φ1φp)yt−p+1

+
∑
jk

Mjk(yt−j , yt−k;ψjk)

2

(12)

+ (φ1 + 1)2η(φ)2 +

I2∑
i=1

ηi(yt−j , yt−k;ψi)
2

τ2︸ ︷︷ ︸∑
jk ηjk(yt−j ,yt−k;ψjk)

2

,

where ν = 1
τ and we assumed εη0 ⊥ εηjk and εηab ⊥ εηjk .

Let us now compare the boost strategy with the recursive
and direct strategies, beginning with the bias component.
For the recursive strategy, since the model m is used recur-
sively, we can see in (6) and (7) that the offset δ(·;φ) at
h = 1 is propagated to h = 2. In addition, the offset is am-
plified when the modelm produces a function that has large
variations (i.e. mz1 and mz1z1 are large in magnitude). For
the direct strategy, the offset of the model at h = 1 does not
appear in (10). So provided that the model m2 is flexible

enough to estimate the conditional mean and enough data
is available, the bias can be arbitrarily small. For the boost
strategy, because we require the recursive AR model to be
linear, the propagation of errors is limited sincemz1 is con-
stant, mz1z1 = 0, δ(·, φ) = δ(φ) and η(·, φ) = η(φ). Even
if the linear recursive forecasts are biased at some horizon,
the nonlinear boosting components can adjust the bias as
can be see in (12).

We now turn to the variance components. For the recursive
strategy, we can see in (8)–(9) that, similar to the offset
in the bias, the variance terms get amplified. For the direct
strategy, we can see in (11) that the variance will depend on
the variability induced by the input rt, the set of parame-
ters γ and the size of the time series T . This variability can
be particularly large for complex nonlinear models which
contain many interactions in rt or have a large set of pa-
rameters γ. For the boost strategy, the variance is limited,
on the one hand by the recursive AR model being linear,
and on the other hand because the boosting components al-
low only bivariate interactions and are shrunk towards zero
with the shrinkage factor ν. Limiting interactions to two
is not a strong limitation since we expect real-world time
series to depend on lower-order interactions.

Furthermore, considering the fact that the direct strategy
selects the model at each horizon independently, the errors
et,h from the different models in (3) can be autocorrelated;
that is information is left in the errors. With the boost strat-
egy, a direct approach is used after extracting the recursive
linear forecasts from the observations. By doing so, select-
ing the direct models independently has a smaller effect
compared to a pure direct strategy.

Finally, if we consider the case of an infinitely long time
series, and when f is nonlinear, the direct strategy domi-
nates the recursive strategy which is biased (see p. 348 of
Teräsvirta et al. (2010)). When f is linear, the direct and the
recursive strategy are equivalent (see p. 118 of Fan and Yao
(2005)). In the same case, the boost strategy is equivalent
to the direct strategy if the maximum order of interaction
in the function f is two. If it is more than two, the boost
strategy will be biased.

5.2. Analysis by Monte Carlo simulations

We conduct a simulation study to shed some light on the
performance of the boost strategy in terms of bias and
variance components over the forecasting horizon. The
methodology is similar to the one performed in Berardi and
Zhang (2003) except that we consider forecasting multi-
step ahead instead of one-step ahead.

Data generating processes. We consider a nonlinear and
a linear AR process in the simulation study (see Appendix
A.1 of the supplementary material). The nonlinear pro-
cess has been considered in (Medeiros, Teräsvirta, & Rech,
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2006) and (Kock & Teräsvirta, 2011) to compare different
forecasting methods in a nonlinear setting. Also, consid-
ering a linear process allows us to evaluate the costs of
extending the hypothesis space beyond linear functions for
the different strategies when the true DGP is indeed linear.

Experimental setup. To show the importance of the size
of the time series T for each strategy, we will compare dif-
ferent sizes, namely T ∈ {50, 100, 400}.

For the implementation of the recursive and direct strate-
gies, we use a single hidden-layer feedforward neural
network model.

Finally, we select the different model hyperparameters us-
ing a time-series cross-validation procedure (also called
rolling origin). See Appendices A.1 and A.3 of the sup-
plementary material for more details.

Bias and variance estimation. Expression (5) gives the
decomposition of the MSE for a given strategy at horizon
h. The different parts of the decomposition, namely the
noise, the squared bias and the variance, can be estimated
by replacing expectation with averages over a large number
of samples.

For each DGP, we generate 1000 independent time series.
To measure the bias and variance, we use an independent
time series composed of 2000 observations from the same
DGP for testing purposes. For each simulated time series,
the first three hundred simulated values are discarded to
stabilize the time series.

For the linear process, the conditional mean has been cal-
culated analytically. For the nonlinear process, we used
simulations to generate a large set of possible future con-
tinuations using different random terms. An average of
these continuations gives us an estimation of the condi-
tional mean.

Results. Figure 1 gives for the nonlinear DGP and dif-
ferent values of T , the MSE (first column), the squared
bias (second column), the variance (third column) and the
squared bias plus variance (fourth column). The same in-
formation is given in Figure 2 for the linear DGP. In
the first column, corresponding to the MSE, the bias and
variance components of the different strategies are hidden
by substantial noise, making comparisons between strate-
gies difficult. Consequently, we consider the three other
columns to compare the strategies and use the MSE as a
measure of the predictability of the time series relative to
the mean (the red line).

First of all, we can see that for both DGPs, the vari-
ance components (third column) are much larger than the
bias components (second column). In fact, the variance
is roughly 10 times larger than the bias for T = 50 and
T = 100. The relative importance of variance is decreas-

ing for T = 400 but is still roughly three times larger than
the bias.

Figure 1 shows that, for the nonlinear DGP, the boost
strategy has reduced the variance consistently over the fore-
casting horizon compared to the recursive and the direct
strategy. This decrease in variance has not induced a huge
increase in bias for T = 50 and T = 100, thus making
the forecasts of the boost strategy better. For T = 400, we
see an increase in bias for the boost strategy but since the
variance is still more important, the boost strategy has sim-
ilar performance than the recursive strategy and still better
performance than the direct strategy.

Figure 2 shows that, for the linear DGP, the direct strat-
egy suffers from a high variance compared to the recursive
strategy. The boost strategy has a similar variance to the
recursive strategy, which is better than the direct strategy.
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Figure 1. MSE decomposition for the nonlinear DGP with H =
10. MSE (first column), squared bias (second column), variance
(third column) and squared bias + variance (fourth column).

6. Real-world experiments
We now evaluate our boost strategy on time series from the
M3 (Makridakis & Hibon, 2000) and the NN5 forecasting
competitions1.

Real-world time series. The M3 competition dataset
consists of 3003 monthly, quarterly, and annual time se-
ries. We have considered M = 339 monthly time series
with a range of lengths between T = 117 and T = 126
with H = 18.

The NN5 competition dataset comprises M = 111 daily
time series with T = 735 observations and H = 56 days
(8 weeks).

1Forecasting competition for artificial neural net-
works and computational intelligence, 2008, www.
neural-forecasting-competition.com/NN5/.

www.neural-forecasting- competition.com/NN5/
www.neural-forecasting- competition.com/NN5/
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Figure 2. MSE decomposition for the linear DGP with H = 10.
MSE (first column), squared bias (second column), variance (third
column) and squared bias + variance (fourth column).

Preprocessing and setup. For both competitions, we de-
seasonalized the time series using STL (Seasonal-Trend
decomposition based on Loess smoothing) (Cleveland,
Cleveland, McRae, & Terpenning, 1990). Of course, the
seasonality has been restored after forecasting. For the M3
competition, some time series have a trend. We used the
KPSS test to check if first differencing is required.

For both competitions, we used the symmetric mean ab-
solute percentage error (sMAPE), averaged across the M
time series. The sMAPE was the main measure used in
the M3 and the NN5 competitions. Note that we didn’t use
MSE since time series have different scales. See Appen-
dices A.2 and A.3 of the supplementary material for more
details.

Results. Table 1 gives the results for the M3 competition
where the sMAPE is given together with the ranking calcu-
lated with respect to sMAPE (in brackets) for each strategy
at each horizon. The last row gives the sMAPE averaged
over all horizons. Numbers in bold represent the lowest er-
ror and underlined numbers represent the highest rank. The
same information is given in Table 2 for the NN5 compe-
tition where each row corresponds to the sMAPE averaged
over 7 consecutive days.

First of all, we can see that the recursive strategy has bet-
ter forecasts than the direct strategy in the M3 competition
(Table 1) and vice versa for the NN5 competition (Table 2).
One explanation can be that the M3 time series are short
(T ≤ 126) and very noisy while the NN5 time series are
longer (T = 735) and less noisy.

For both competitions, we can see that the boost strategy
consistently gets better results both in terms of sMAPE and
rankings. This confirms the advantage of the boost strategy
which avoids the difficult task of choosing between recur-

Table 1. Forecast accuracy measures for the M3 competition.
Bold : lowest error; Underlined : highest rank.

Horizon REC-MLP DIR-MLP BOOST

1 7.41±0.83 (2.02) 7.30±0.82 (2.01) 7.47±0.85 (1.98)
2 7.98±1.05 (1.99) 7.99±1.00 (1.99) 8.09±1.03 (2.02)
3 8.30±0.89 (1.94) 8.30±0.74 (2.09) 8.14±0.87 (1.97)
4 9.42±1.00 (1.96) 9.37±1.01 (2.05) 9.20±0.97 (1.98)
5 10.65±1.14 (1.94) 11.30±1.26 (2.08) 10.56±1.15 (1.98)
6 11.92±1.18 (2.01) 12.79±1.28 (2.07) 11.52±1.18 (1.91)
7 11.93±1.18 (1.95) 12.52±1.17 (2.09) 11.64±1.16 (1.96)
8 12.58±1.28 (1.92) 13.72±1.28 (2.09) 12.58±1.28 (1.99)
9 12.54±1.19 (2.00) 13.57±1.24 (2.03) 12.14±1.15 (1.97)
10 11.51±1.08 (2.06) 12.34±1.13 (2.03) 11.33±1.12 (1.91)
11 11.49±1.02 (2.01) 12.74±1.10 (2.04) 11.58±1.00 (1.96)
12 12.16±1.12 (1.97) 12.74±1.18 (2.07) 11.87±1.13 (1.96)
13 13.76±1.17 (2.00) 15.17±1.31 (2.09) 13.73±1.20 (1.92)
14 13.58±1.18 (1.99) 14.38±1.17 (2.07) 13.45±1.17 (1.95)
15 13.50±1.18 (1.96) 15.28±1.32 (2.13) 13.33±1.15 (1.91)
16 14.11±1.26 (2.00) 15.03±1.32 (2.11) 13.55±1.24 (1.89)
17 14.60±1.32 (1.98) 15.39±1.30 (2.11) 13.73±1.22 (1.91)
18 17.39±1.53 (2.05) 17.48±1.50 (2.05) 16.68±1.47 (1.90)
1-18 11.93±0.95 (1.95) 12.63±0.96 (2.14) 11.70±0.95 (1.92)

Table 2. Forecast accuracy measures for the NN5 competition.
Bold : lowest error; Underlined : highest rank.

Horizon REC-MLP DIR-MLP BOOST

1-7 17.63±0.73 (2.19) 17.01±0.76 (1.96) 16.78±0.72 (1.85)
8-14 19.46±0.90 (2.17) 18.91±0.84 (2.05) 18.10±0.85 (1.78)
15-21 26.96±1.53 (2.09) 26.16±1.32 (1.96) 25.91±1.30 (1.94)
22-28 20.78±1.31 (2.10) 19.76±1.11 (2.00) 19.29±1.08 (1.90)
29-35 32.41±1.33 (1.91) 32.03±1.35 (2.09) 31.96±1.37 (2.00)
36-42 25.95±1.41 (2.07) 24.81±1.27 (2.11) 24.45±1.30 (1.82)
43-49 20.48±1.23 (2.14) 19.48±1.00 (1.95) 19.29±1.06 (1.92)
50-56 18.30±0.90 (2.04) 17.21±0.81 (2.14) 16.69±0.83 (1.82)
1-56 22.75±0.70 (2.22) 21.86±0.54 (2.05) 21.51±0.57 (1.73)

sive and direct forecasts and is able to produce forecasts
with better or close performance to the best between the
recursive and direct strategies.

7. Conclusions
We have introduced a new strategy for producing multi-
step forecasts of a univariate time series. The strategy starts
with linear recursive forecasts from a traditional AR model
and adjusts them with a direct strategy using a boosting
procedure at each horizon.

The paper makes methodological, theoretical and empirical
contributions to multi-step forecasting. In terms of method-
ology, we propose a new method for multi-step forecasting
that combines the best features of the recursive and di-
rect forecasting strategies. In terms of theory, we analyze
the bias and variance components of the newly proposed
method and compare the results with the recursive and di-
rect strategies when the forecast horizon is two steps ahead.
A simulation study is also performed to consider the gen-
eral case of h steps ahead. In term of empirical usefulness,
we evaluate our method on time series from two forecast-
ing competitions and demonstrate that our method is very
attractive for multi-step forecasting tasks.
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Medeiros, M. C., Teräsvirta, T., & Rech, G. (2006). Build-
ing neural network models for time series: a statisti-
cal approach. Journal of Forecasting, 25(1), 49–75.

Robinzonov, N., Tutz, G., & Hothorn, T. (2012). Boosting
techniques for nonlinear time series models. AStA
Advances in Statistical Analysis, 96, 99–122.

Ruppert, D. (2002). Selecting the Number of Knots for
Penalized Splines. Journal Of Computational And
Graphical Statistics, 11, 735–757.

Schmid, M. & Hothorn, T. (2008). Boosting additive mod-
els using component-wise P-Splines. Computational
Statistics & Data Analysis, 53(2), 298–311.

Shafik, N. & Tutz, G. (2009). Boosting nonlinear additive
autoregressive time series. Computational Statistics
& Data Analysis, 53(7), 2453–2464.

Shrestha, D. L. & Solomatine, D. P. (2006). Experiments
with AdaBoost.RT, an improved boosting scheme for
regression. Neural computation, 18(7), 1678–710.
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A. Appendix
A.1. Monte Carlo simulations

The nonlinear AR process is given by

yt = −0.17 + 0.85yt−1 + 0.14yt−2 − 0.31yt−3

+ 0.08yt−7 + 12.80 G1(yt−1) + 2.44 G2(yt−1) + εt

with G1(yt−1) = (1+ exp{−0.46(0.29yt−1− 0.87yt−2+
0.40yt−7− 6.68)})−1 and G2(yt−1) = (1+ exp{−1.17×
103(0.83yt−1 − 0.53yt−2 − 0.18yt−7 + 0.38)})−1 where
εt ∼ NID(0, 1).

We set the error variance to a value which assures a descent
predictability for the time series. Medeiros et al. (2006)
build this process by fitting an artificial neural network with
two hidden units to the annual sunspot series. In Kock and
Teräsvirta (2011), this process has been used to compare
different forecasting methods in a nonlinear setting.

The linear AR process is given by

yt = 1.32yt−1 − 0.52yt−2 − 0.16yt−3

+ 0.18yt−4 − 0.26yt−5 + 0.19yt−6 + εt,

where εt ∼ NID(0, 1).

This process exhibits cyclic behaviour and was selected by
fitting an AR(6) model to the famous annual sunspot series.
Because it is a linear process, the variance of εt simply
scales the resulting series. Consequently, we set the error
variance to one without loss of generality.

For all strategies, the maximum number of lagged values p
were selected from 2, . . . , 12 and 2, . . . , 7 for the nonlinear
and linear DGP, respectively.

A.2. Real world experiments

The M3 competition dataset consists of 3003 monthly,
quarterly, and annual time series. The time series of the
M3 competition have a variety of features. Some have a
seasonal component, some possess a trend, and some are
just fluctuating around some level. The length of the time
series ranges between 14 and 126. We have considered
time series with a range of lengths between T = 117 and
T = 126. So, the number of considered time series turns
out to be M = 339. For these time series, the competition
required forecasts for the next H = 18 months, using the
given historical data.

The NN5 competition dataset comprises M = 111 time
series representing roughly two years of daily cash with-
drawals (T = 735 observations) at ATM machines at one of

the various cities in the UK. For each time series, the com-
petition required to forecast the values of the next H = 56
days (8 weeks), using the given historical data.

Let us define the forecast error for the mth time se-
ries at horizon h as emT+h = ŷmT+h − ymT+h where
m ∈ {1, . . . ,M} and h ∈ {1, . . . ,H}.

The symmetric mean absolute percentage error (sMAPE)
at horizon h is defined as

sMAPEh = mean(sAPEmh )

where

sAPEmh = 200 ∗
|emT+h|

(|ŷmT+h|+ |ymT+h|)

For all strategies, the maximum number of lagged values
p were selected from the set 2, . . . , 5 and 2, . . . , 10 for the
M3 and the NN5 competition, respectively.

A.3. Learning models and computational details

For the recursive and direct strategies, we use a single
hidden-layer feedforward neural network model. This
choice is motivated by the fact that neural networks
have proven to be one of the most effective machine
learning models in the forecasting literature. We al-
lowed the number of hidden nodes and the param-
eter for weight decay to vary in {0, 1, 2, 3, 5} and
{0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3}, respectively.

For the boost strategy, we used P-splines with 20 equally
spaced knots and four degrees of freedom for the weak
learners. For the hyperparameter values, we set the value
of ν to 0.2 and the maximum number of iterations to 500.

The different model hyperparameters have been selected
using a time-series cross-validation procedure with an ini-
tial training set containing 70% of the data and a validation
set with the remaining 30%.

All the experiments have been carried out using the R pro-
gramming language. We used the nnet package for the
neural network model and the mboost package for gradi-
ent boosting. R code to perform all experiments will be
made available on github2.

2https://github.com/bsouhaib

https://github.com/bsouhaib

