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Abstract
We consider large-scale Markov decision pro-
cesses (MDPs) with parameter uncertainty, un-
der the robust MDP paradigm. Previous studies
showed that robust MDPs, based on a minimax
approach to handling uncertainty, can be solved
using dynamic programming for small to medium
sized problems. However, due to the “curse of di-
mensionality”, MDPs that model real-life prob-
lems are typically prohibitively large for such ap-
proaches. In this work we employ a reinforce-
ment learning approach to tackle this planning
problem: we develop a robust approximate dy-
namic programming method based on a projected
fixed point equation to approximately solve large
scale robust MDPs. We show that the proposed
method provably succeeds under certain techni-
cal conditions, and demonstrate its effectiveness
through simulation of an option pricing problem.
To the best of our knowledge, this is the first at-
tempt to scale up the robust MDP paradigm.

1. Introduction
Markov decision processes (MDPs) are standard models
for sequential decision making problems in stochastic dy-
namic environments (Puterman, 1994; Bertsekas & Tsitsik-
lis, 1996). Given the parameters, namely, transition prob-
ability and reward, the strategy that achieves maximal ex-
pected accumulated reward is considered optimal. How-
ever, in practice, these parameters are typically estimated
from noisy data, or even worse, they may change during
the execution of a policy. It is thus not surprising that the
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actual performance of the chosen strategy can significantly
degrade from the model’s prediction due to such parameter
uncertainty – the deviation of the model parameters from
the true ones (see experiments in Mannor et al. 2007).

To mitigate performance deviation due to parameter uncer-
tainty, the robust MDP framework (Iyengar, 2005; Nilim
& El Ghaoui, 2005; Bagnell et al., 2001) is now a com-
mon method. In this context, it is assumed that the uncer-
tain parameters can be any member of a known set (termed
the “uncertainty set”), and solutions are ranked based on
their performance under the (respective) worst parameter
realizations. Under mild technical conditions, the optimal
solution of a robust MDP can be obtained using dynamic
programming, at least for small to medium sized MDPs.

This paper considers planning in large robust MDPs, a set-
ting largely untouched in literature. It is widely known
that, due to the “curse of dimensionality”, practical prob-
lems modeled as MDPs often have prohibitively large state-
spaces, under which dynamic programming becomes in-
tractable. Many approximation schemes have been pro-
posed to alleviate the curse of dimensionality of large scale
MDPs, among them approximate dynamic programming
(ADP) is a popular approach (Powell, 2011). ADP consid-
ers approximations of the optimal value function, for exam-
ple, as a linear functional of some features of the state, that
can be solved efficiently using a sampling based approach.
Of course, selecting good features is an art by itself. How-
ever, ADP has been used successfully in large-scale prob-
lems with hundreds of state dimensions (Powell, 2011). In-
spired by the empirical success of ADP, we adapt it to the
robust MDP setting, and develop and analyze methods that
handle large scale robust MDPs. From a high level, we
indeed solve a planning problem via a reinforcement learn-
ing (RL; Sutton & Barto 1998) approach: while the robust
MDP model, the parameters, and the uncertainty sets are all
known, and hence the optimal solution is well defined, we
still use an RL approach to approximately find the solution
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due to the scale of the problem.

Our specific contributions are a framework for approxi-
mate solution of large-scale robust MDPs; algorithms for
approximate robust policy evaluation and policy improve-
ment, with convergence proofs and error bounds; and an
application of our framework to an option trading domain.

2. Background
We describe our problem formulation and some preliminar-
ies from robust MDPs and ADP.

2.1. Robust Markov Decision Processes

For a discrete set B, letM(B) denote the set of probabil-
ity measures on B, and let |B| denote its cardinality. A
Markov Decision Process (MDP; Puterman 1994) is a tu-
ple {X ,Z,U , P, r, γ} where X is a finite set of states, Z
is a (possibly empty) set of absorbing terminal states, and
U is a finite set of actions. Also, r : X × U → R is a
deterministic and bounded reward function, γ is a discount
factor, and P : X × U → M(X ∪ Z) denotes the proba-
bility distribution of next states, given the current state and
action. We assume zero reward at terminal states.

A stationary policy π : X → M(U) maps each state to
a probability distribution over the actions. The value of
a state x under policy π and state transition model P is
denoted V π,P (x) and represents the expected sum of dis-
counted returns when starting from that state and executing
π,

V π,P (x) = Eπ,P
[ ∞∑
t=0

γtr(xt, ut)

∣∣∣∣∣x0 = x

]
,

where Eπ,P denotes expectation w.r.t. the state-action dis-
tribution induced by the transitions P and the policy π.
Note that for any terminal state z ∈ Z and all π and P
we have V π,P (z) = 0.

Typically in MDPs, one is interested in finding a policy
that maximizes the value of certain (or all) states. When
the state space is small enough, and all the parameters are
known, efficient methods exist (Puterman, 1994). In prac-
tice, however, the state transition probabilities may not be
exactly known. A widely-applied approach in this setting is
the Robust MDP (RMDP; Nilim & El Ghaoui 2005; Iyen-
gar 2005, also termed Ambiguous MDP). In this frame-
work, the unknown transition probabilities are assumed to
lie in some known uncertainty set. Such a set may be ob-
tained, for example, from statistical confidence intervals
when the transition probabilities are estimated from data.
Mathematically, an RMDP is a tuple {X ,Z,U ,P, r, γ}
where X ,Z,U , r, and γ are as defined for MDPs. The un-
certainty set P , where P(x, u) ⊂ M(X ∪ Z), denotes a
known uncertainty in the state transitions. Note that this

definition implicitly assumes a rectangularity of the uncer-
tainty set (Iyengar, 2005). In robust MDPs, one is typically
interested in maximizing the worst case performance. For-
mally, we define the robust value function (Iyengar, 2005;
Nilim & El Ghaoui, 2005) for a policy π as its worst-case
value function

V π(x) = inf
P∈P

V π,P (x),

and we seek for the optimal robust value function V ∗(x) =
supπ

{
infP∈P V

π,P (x)
}
. Iyengar (2005) and Nilim & El

Ghaoui (2005) showed that similarly to the regular value
function, the robust value function is obtained by a deter-
ministic policy, and satisfies a (robust) Bellman recursion
of the form

V ∗(x) = sup
u∈U

{
r(x, u) + γ inf

P∈P
EP [V ∗(x′)|x, u]

}
,

where x′ denotes the state following the state x and action
u. Thus, in the sequel we shall only consider deterministic
policies, and write π(x) as the action prescribed by policy
π at state x.

Iyengar (2005) proposed a policy iteration algorithm for
the robust MDP framework. This algorithm repeatedly im-
proves a policy π by choosing greedy actions with respect
to V π . The key step in this approach is therefore policy
evaluation: calculating V π , which satisfies

V π(x) = r(x, π(x)) + γ inf
P∈P

EP [V π(x′)|x, π(x)] . (1)

The non-linear equation (1) may be solved for V π using an
iterative method as follows. Let us first write (1) in vector
notation. For some x and uwe define the operator σP(x,u) :

R|X | → R as

σP(x,u)v
.
= inf

{
p>v : p ∈ P(x, u)]

}
,

where v ∈ R|X | and, slightly abusing notation, we ignore
transitions to terminal states in P(x, u). Also, for some
policy π let the operator σπ : R|X | → R|X | be defined such
that {σπv} (x)

.
= σP(x,π(x))v. Then (1) may be written as

V π = rπ + γσπV
π. Let Tπ : R|X | → R|X | denote the

robust Bellman operator for a fixed policy, defined by

Tπv
.
= rπ + γσπv. (2)

We see that V π is a fixed point of Tπ , i.e., V π = TπV π .
Furthermore, since Tπ is known to be a contraction in the
sup norm (Iyengar, 2005), V π may be found by iteratively
applying Tπ to some vector v.

The robust Bellman operator T : R|X | → R|X | is defined
by

Tv(x)
.
= sup

π
Tπv(x),

and was shown to be a contraction (Iyengar, 2005), with
V ∗ as its fixed point.
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2.2. Projected Fixed Point Equation Methods

For MDPs, when the state space is large, dynamic program-
ming methods become intractable, and one has to resort to
an approximation procedure. A popular approach involves
a projection of the value function onto a lower dimensional
subspace by means of linear function approximation (Bert-
sekas & Tsitsiklis, 1996), and solving the solution of a pro-
jected Bellman equation. We briefly review this approach.

Assume a standard MDP setting without uncertainty, where
the Bellman equation (1) for a fixed policy is reduced to
V π(x) = r(x, π(x)) + γEPV π(x′), and let Tπreg denote
the corresponding fixed policy Bellman operator. When the
state space is large, calculating V π(x) for every x is pro-
hibitively computationally expensive, and a lower dimen-
sional approximation of V π is sought. Consider the linear
approximation given by a weighted sum of features

Ṽ π(x) = φ(x)>w, x ∈ X ,

where φ(x) ∈ Rk, k < |X | contains the features of state
x and w ∈ Rk are the approximation weights. Let Φ ∈
R|X |×k denote a matrix with the feature vectors in its rows.
We assume that the features are linearly independent, i.e.,
rank(Φ) = k. A popular approach for finding w is by
solving the projected Bellman equation (Bertsekas, 2012),
given by

Ṽ π = ΠTπregṼ
π, (3)

where Π is a projection operator onto the subspace spanned
by Φ with respect to a d-weighted Euclidean norm. At this
point we only assume that d ∈ R|X | is positive. Since there
is no uncertainty, Tπreg is a linear mapping, and Equation
(3) may be written in matrix form as follows

Φ>DΦw = Φ>Dr + γΦ>DPπΦw, (4)

where D = diag(d), and Pπ ∈ R|X |×|X| is the Markov
transition matrix induced by policy π. Given Φ>DΦ,
Φ>Dr, and Φ>DPπΦ, Eq. (4) may be solved for w either
by matrix inversion (Boyan, 2002), or iteratively (known as
Projected Value Iteration; PVI; Bertsekas 2012)

wk+1 =
(
Φ>DΦ

)−1 (
Φ>Dr + γΦ>DPπΦwk

)
. (5)

When d corresponds to the steady state distribution over
states for policy π, the iterative procedure in (5) can be
shown to converge using contraction properties of ΠTπreg
(Bertsekas, 2012). For a large state space, the terms in (5)
cannot be calculated explicitly. However, the strength of
this approach is that these terms may be sampled efficiently,
using trajectories from the MDP (Bertsekas, 2012).

Recall that our ultimate goal is policy improvement. For
a regular MDP, the policy evaluation procedure described
above may be combined with a policy improvement step

using Least Squares Policy Iteration (LSPI; Lagoudakis &
Parr 2003), which extends policy iteration to the function
approximation setting.

3. Robust Policy Evaluation
In this section we propose an extension of ADP to the ro-
bust setting. We do this as follows. First, we consider pol-
icy evaluation, and extend the projected fixed point equa-
tion (3) to the robust case, with the robust Tπ operator re-
placing Tπreg. We discuss the conditions under which this
equation has a solution, and how it may be obtained. We
then propose a sampling based procedure to solve the equa-
tion for large state spaces, and prove its convergence. Fi-
nally, in Section 4, we will use our policy evaluation pro-
cedure as part of a policy improvement algorithm in the
spirit of LSPI (Lagoudakis & Parr, 2003), for obtaining an
(approximately) optimal robust policy.

3.1. A Projected Fixed Point Equation

Throughout this section we consider a fixed policy π. For
some positive d, let the projection operator Π be defined
as above. Consider the following projected robust Bellman
equation for a fixed policy

Ṽ π = ΠTπṼ π. (6)

Note that here, as opposed to (3), Tπ is not necessarily lin-
ear, and hence it is not clear whether Eq. (6) has a solution
at all. We now show that under suitable conditions the op-
erator ΠTπ is a contraction and Equation (6) has a unique
solution. We consider two different cases, depending on
the existence of terminal states Z . Let π̂, P̂ , and ξ̂ repre-
sent a given policy, state transition probabilities, and initial
state distribution, respectively. We let Pr(xt = j|π̂, P̂ , ξ̂)
denote the probability that the state at time t is j, given that
the states evolve according to a Markov chain with tran-
sitions P̂ , policy π̂, and initial state distribution ξ̂. In the
sequel, π̂, P̂ , and ξ̂ will be used to represent the explo-
ration policy of the MDP in an offline learning setting. We
make the following assumption on π̂, P̂ , and ξ̂, which also
defines the projection weights d.
Assumption 1. Either Z = ∅, and there exists positive
numbers dj such that

dj = lim
t→∞

Pr(xt = j|x0 = i, π̂, P̂ ) ∀i, j ∈ X ,

or Z 6= ∅, and the policy π̂ is proper (Bertsekas, 2012),
that is, for t̄ = |X |

Pr(xt̄ ∈ Z|x0 = i, π̂, P̂ ) > 0 ∀i ∈ X ,

and all states have a positive probability of being visited.
In this case we let

dj =

∞∑
t=0

Pr(xt = j|π̂, P̂ , ξ̂) ∀j ∈ X .
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Put simply, Assumption 1 requires that every state has a
positive probability of being visited, and defines dj as a
suitable occupation measure of state j.

The following assumption relates the transitions of the ex-
ploration policy and the (uncertain) transitions of the policy
under evaluation.

Assumption 2. There exists β ∈ (0, 1) such that
γP (x′|x, π(x)) ≤ βP̂ (x′|x, π̂(x)), ∀P ∈ P, x ∈
X , x′ ∈ X .

Assumption 2 may appear restrictive, especially when the
discount factor γ approaches 1. Unfortunately, it is neces-
sary in the sense that without it ΠTπ is not necessarily a
contraction (see supplementary material). We note that a
similar difficulty arises in off-policy RL (Bertsekas & Yu,
2009; Sutton et al., 2009), and our Assumption 2 is in fact
similar to an assumption of Bertsekas & Yu 2009. Never-
theless, although our algorithms in the sequel are motivated
by the contraction property of ΠTπ , we show empirically
that our approach works in cases where Assumption 2 is
severely violated, therefore in practice it is not a serious
limitation.

Let ‖ · ‖d denote the d-weighted Euclidean norm, which is
well-defined due to Assumption 1. Our key insight is the
following proposition, which shows that under Assumption
2, the robust Bellman operator is a β-contraction in ‖ · ‖d.

Proposition 3. Let Assumptions 1 and 2 hold. Then
‖Tπy − Tπz‖d ≤ β‖y − z‖d for all y, z ∈ R|X |

Proof. Fix x ∈ X , and assume that Tπy(x) ≥ Tπz(x).
Choose some ε > 0, and Px ∈ P such that

EPx [z(x′)|x, π(x)] ≤ inf
P∈P

EP [z(x′)|x, π(x)] + ε. (7)

Also, note that by definition

inf
P∈P

EP [y(x′)|x, π(x)] ≤ EPx [y(x′)|x, π(x)] . (8)

Now, we have

0 ≤ Tπy(x)− Tπz(x)

≤ (γEPx [y(x′)|x, π(x)])− (γEPx [z(x′)|x, π(x)]− γε)
= γEPx [y(x′)− z(x′)|x, π(x)] + γε

≤ βEP̂ [ |y(x′)− z(x′)| |x, π̂(x)] + γε,

where the second inequality is by (7) and (8), and the last
inequality is by Assumption 2. Conversely, if Tπz(x) ≥
Tπy(x), following the same procedure we obtain 0 ≤
Tπz(x)−Tπy(x) ≤ βEP̂ [ |y(x′)− z(x′)| |x, π̂(x)] +γε,
and we therefore conclude that |Tπy(x)− Tπz(x)| ≤
βEP̂ [ |y(x′)− z(x′)| |x, π̂(x)] + γε. Since ε was

arbitrary, we have that |Tπy(x)− Tπz(x)| ≤
βEP̂ [ |y(x′)− z(x′)| |x, π̂(x)] for all x, and therefore

‖Tπy − Tπz‖d ≤ β
∥∥∥P̂ π̂ |y − z|∥∥∥

d
≤ β ‖y − z‖d ,

where in last equality we used the well-known result that
the state transition matrix P̂ π̂ is contracting in the d-
weighted Euclidean norm (Bertsekas, 2012).

The projection operator Π is known to be non-expansive
in the d-weighted norm (Bertsekas, 2012). This fact, and
Lemma 6.9 of Bertsekas & Tsitsiklis (1996) lead to the
following contraction property and error bound for the ap-
proximate robust value function Ṽ π:

Corollary 4. Let Assumptions 1 and 2 hold. Then the pro-
jected robust Bellman operator ΠTπ is a β-contraction in
the d-weighted Euclidean norm. Furthermore, Eq. (6) has
a unique solution, and∥∥∥Ṽ π − V π∥∥∥

d
≤ 1

1− β
‖ΠV π − V π‖d .

The contraction property in Corollary 4 also suggests a
straightforward procedure for solving Equation (6) which
we describe next.

3.2. Robust Projected Value Iteration

Consider the robust equivalent of PVI for solving Eq. (6):

Φwk+1 = ΠTπ (Φwk) . (9)

The algorithm (9) may be written explicitly in matrix form
(see Bertsekas 2012) as

wk+1 =
(
Φ>DΦ

)−1 (
Φ>Dr + γΦ>Dσπ(Φwk)

)
. (10)

We refer to the algorithm in (10) as robust projected value
iteration (RPVI). Note that a matrix inversion approach
would not be applicable here, as (10) is not linear due to
non-linearity of σπ(·).

Corollary 4 guarantees that under Assumptions 1 and 2, the
iterates of (9) converge to the fixed point of ΠTπ , and the
RPVI algorithm converges to the corresponding weights.
We emphasize that Assumption 2 is only a sufficient con-
dition for convergence. As we show empirically in Sec-
tion 5, the algorithm works in cases where Assumption 2
is severely violated, and in fact, we have not encountered
convergence issues in any of our experiments. Neverthe-
less, Assumption 2 does point out where things may go
wrong. This is important in practice, especially if the un-
certainty set may be controlled to satisfy it. Finally, note
that for averager type function approximations (Gordon,
1995), such as non-overlapping grid tiles, kernel smooth-
ing, and k-nearest-neighbor, Π contracts in the sup-norm.
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Since Tπ also contracts in the sup-norm (Iyengar, 2005),
ΠTπ contracts regardless of Assumption 2, and conver-
gence of RPVI is guaranteed.

For a large state space, computing the terms in (10) exactly
is intractable. For this case we propose a sampling proce-
dure for estimating these terms, as described next.

3.3. A Sampling Based Approach

When the state space is too large for the terms in Equation
(6) to be computed exactly, one may resort to a sampling
based procedure. This approach is popular in the RL and
ADP literature, and has been used successfully on prob-
lems with very large state spaces (Powell, 2011). Here, we
describe how it may be applied for the robust MDP setting.

Assume that we have obtained a long trajectory from
an MDP with transition probabilities P̂ , while fol-
lowing policy π. We denote this trajectory by
x0, u0, r0, x1, u1, r1, . . . , xN , uN , rN . The terms in (10)
may be estimated from the data by1

Φ>DΦ∼ 1

N

N−1∑
t=0

φ(xt)φ(xt)
>, Φ>Dr∼ 1

N

N−1∑
t=0

φ(xt)r(xt,ut),

and

Φ>Dσπ(Φwk) ∼ 1

N

N−1∑
t=0

φ(xt)σP(xt,ut)(Φwk). (11)

Using the law of large numbers, it may be proved2 that
these estimates converge with probability 1 to their respec-
tive terms in (10) as N → ∞. Together with Corollary 4
we have the following convergence result. The straightfor-
ward proof is omitted.

Proposition 5. Let Assumptions 1 and 2 hold. Consider
the RPVI algorithm with the terms in (10) replaced by their
sampled counterparts (11). Then as N → ∞ and k →
∞, wk converges with probability 1 to w∗, and Φw∗ is the
unique solution of (6).

3.4. Solving the Inner Problem

In Eq. (11), the calculation of each σP(xt,ut)(Φwk) in the
sum requires the solution of the inner problem:

inf
p∈P(x,u)

∑
x∈Xr(x,u)

p(x)φ(x)>wk, (12)

where Xr(x, u) denotes the set of reachable states from
(x, u) under all transitions in the set P(x, u). Solving Eq.

1These estimates are for the case Z = ∅ in Assumption 1.
Modifying these estimates for the case Z 6= ∅ is straightforward,
along the lines of Chapter 7.1 of Bertsekas (2012).

2The proof is similar to the case without uncertainty, detailed
by Bertsekas (2012).

(12) clearly requires a model – i.e., access to the state tran-
sitions in P(x, u). Also, depending on the uncertainty set,
it may be computationally demanding. We now discuss
specific uncertainty sets for which Eq. (12) is tractable.

A natural class of models is constructed from empirical
state transitions xt → xt+1. Let p̂ denote the empiri-
cal transition frequencies from state x and action u (ob-
tained by, e.g., historical observations of the system), and
consider sets on the support of p̂ of the form P(x, u) ={
p : Dist(p, p̂) ≤ ε, p>1 = 1, p ≥ 0

}
, where Dist(·, ·) is

some distance function and ε > 0. The distance function
and confidence parameter ε are typically related to statisti-
cal confidence regions about p̂ (Nilim & El Ghaoui, 2005).
For the case of the L1 distance, Strehl & Littman (2005)
solve Eq. (12) with complexity O(|p̂| log |p̂|). Iyengar
(2005) and Nilim & El Ghaoui (2005) propose efficient so-
lutions for the Kullback-Liebler distance, and also for in-
terval and ellipsoidal models. All of these methods scale
at least linearly with the number of elements in p̂, which
in most practical scenarios is small compared to the car-
dinality of the state space, as it is bounded by the sample
size used to create p̂. In the case of binary transitions, as
in our option pricing example of Section 5, performing the
minimization in (12) is trivial.

Nonetheless, some problems may involve very large, or
even continuous sets of reachable states. A natural model
for these cases is a set of parametric distributions. Let
pθ(x) denote a distribution on X parameterized by θ.
We consider uncertainty sets of the form P(x, u) =
{pθ : θ ∈ Θ}, where Θ is some convex set3, and our goal
is solving

inf
θ∈Θ

Epθ
[
φ(x)>wk

]
. (13)

We assume that we have access to a distribution p̃(x) such
that pθ(x)/p̃(x) is well defined for all x ∈ X and θ ∈ Θ.
Now, observe that (13) may be written as a Stochastic Pro-
gram (SP): infθ∈Θ Ep̃

[
pθ(x)
p̃(x) φ(x)>wk

]
. A standard so-

lution to this SP is via the Sample Average Approxima-
tion (SAA; Shapiro & Nemirovski 2005), where Ns i.i.d.
samples xi ∼ p̃ are drawn, and the following determin-
istic problem is solved: infθ∈Θ

1
Ns

∑Ns
i=1

pθ(xi)
p̃(xi)

φ(xi)
>wk.

When the objective of the SP is convex, and under addi-
tional technical conditions on p̃, pθ, and φ, efficient solu-
tion of (13) is guaranteed4 (Shapiro & Nemirovski, 2005).
An alternative to the SAA is to optimize (13) directly us-
ing stochastic mirror descent (Nemirovski et al., 2009), by
noting that an unbiased estimate of the gradient may be ob-

3As a concrete example, consider a Gaussian distribution pθ =
N (θ, 1), where Θ = [θ−, θ+], is a confidence interval for the
maximum likelihood estimate of θ from historical data.

4See the supplementary material for an explicit result.
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tained by sampling, using the likelihood ratio trick:

∇θEpθ
[
φ(x)>wk

]
= Epθ

[
∇θ log pθ(x)φ(x)>wk

]
.

An in-depth analysis of this approach is deferred to the full
version of this paper. In the supplementary material we
present a successful application of our method to a domain
with continuous state transitions, using the SAA method
described above.

4. Robust Approximate Policy Iteration
In this section we propose a policy improvement algorithm,
driven by the RPVI method of the previous section.

First, let us introduce the state-
action value function Qπ(x, u) =
infP∈P Eπ,P [

∑∞
t=0 γ

tr(xt, ut)|x0 =x, u0 =u] , which
is more convenient for applying the optimization step of
policy iteration than V π(x). We assume linear function
approximation of the form Q̃π(x, u) = φ(x, u)>w, where
φ(x, u) ∈ Rk is a state-action feature vector and w ∈ Rk
is a parameter vector. Note that Qπ(x, u) may be seen
as the value function of an equivalent RMDP with states
in X × U , therefore the policy evaluation algorithm of
Section 3 applies. Also, note that given some w, a greedy
policy π∗w(x) at state x with respect to that approximation
may be computed by

π∗w(x) = arg max
u

φ(x, u)>w, (14)

and we write φ∗w(x) = φ(x, π∗w(x)), and let Φ∗w denote a
matrix with φ∗w(x) in its rows.

The Approximate Robust Policy Iteration (ARPI) algo-
rithm is initialized with an arbitrary parameter vector w0.
At iteration i + 1, we estimate the parameter wi+1 of the
greedy policy with respect to wi as follows. We initialize
θ0 ∈ Rk to some arbitrary value, and then iterate on θ:

θj+1 =
(
Φ>DΦ

)−1(
Φ>Dr+γΦ>Dσπ(Φ∗wiθj)

)
, (15)

where the terms in (15) are estimated from
data (cf. Eq. 11) according to Φ>DΦ ∼
1
N

∑N−1
t=0 φ(xt, ut)φ(xt, ut)

>, Φ>Dr ∼
1
N

∑N−1
t=0 φ(xt, ut)r(xt, ut)

>, and Φ>Dσπ(Φ∗wiθj) ∼
1
N

∑N−1
t=0 φ(xt, ut)σP(xt,ut)(Φ

∗
wiθj). Note that,

similarly to Eq. (11), each term in the last sum
requires the solution of the following problem
infp∈P(x,u)

∑
x∈Xr(x,u) p(x)φ(x, π∗wi(x))>θj , which

may be solved efficiently for the uncertainty sets discussed
above. After θ has converged, we set wi+1 to its final
value. In practice, we only iterate (15) for a few iterations5

and set wi+1 to the last value of θ.

5Due to the fast convergence of (15) in practice, we didn’t
employ more sophisticated stopping conditions.

For comparison, in standard LSPI (Lagoudakis & Parr,
2003) the iteration on θ is not needed, as the policy evalua-
tion equation (3) is linear, and may be solved using a least
squares approach (LSTD; Boyan 2002). Computationally,
the contraction property of Corollary 4 guarantees a linear
convergence rate for the θ iteration, therefore the addition
of this step should not impact performance significantly.
Also, note that the computation of Φ>DΦ and Φ>Dr only
needs to be done once.

For standard approximate policy iteration, a classical result
(Bertsekas, 2012) bounds the error (closeness to optimal-
ity) of the resulting policy by errors in policy evaluation
and policy improvement. We now extend this result to ro-
bust approximate policy iteration.

Consider a general approximate robust policy iteration
method that generates a sequence of policies {πi} and cor-
responding robust value functions {Vi} that satisfy

‖Vi − V πi‖∞ ≤ δ, ‖Tπi+1Vi − TVi‖∞ ≤ ε. (16)
The following extension of Proposition 2.5.8 of Bertsekas
(2012) bounds the error ‖V πi − V ∗‖∞. The proof is based
on the contraction and monotonicity properties of Tπ and
T , and detailed in the supplementary material.

Proposition 6. The sequence {πi} generated by the gen-
eral approximate robust policy iteration algorithm (16) sat-
isfies

lim sup
i→∞

‖V πi − V ∗‖∞ ≤
ε+ 2γδ

(1− γ)2
.

Note that in the ARPI algorithm, since we are working with
state-action values, and solve the maximization in (14) ex-
plicitly, there are no errors in the policy improvement step.
We therefore have the following corollary

Corollary 7. Consider the ARPI algorithm (15), and de-
note Qi(x, u) = φ(x, u)>wi and πi = π∗wi−1

. If the se-
quence of value functions satisfy ‖Qi −Qπi‖∞ ≤ δ for all
i, then lim supi→∞ ‖Qπi −Q∗‖∞ ≤

2γδ
(1−γ)2 .

Corollary 7 suggests that the ARPI algorithm is fundamen-
tally sound. We note that more general L2-norm bounds
for approximate policy iteration were proposed by Munos
(2003), and extending them to the robust case requires fur-
ther work. In addition, Kaufman & Schaefer (2012) pro-
vide bounds for robust policy iteration without function
approximation, but with errors in the calculation of the
σP(x,u) operator.

5. Applications
In this section we discuss applications of robust ADP. We
start with a discussion of optimal stopping problems. Then,
we present an empirical evaluation on an option trading do-
main – a finite horizon continuous state space optimal stop-
ping problem, for which an exact solution is intractable.
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An optimal stopping problem is an RMDP where the only
choice is when to terminate the process. Formally, the ac-
tion set is binary U = {0, 1}, and executing u = 1 from any
state always transitions to a terminal state with probability
1 (and no uncertainty). Let π̂ denote a policy that never
chooses to terminate, i.e., π̂(x) = 0, ∀x. In the supplemen-
tary material we show that if Assumption 2 is satisfied for
π = π̂, then it is immediately satisfied for all other policies.
While this does not ease the conditions that Assumptions 2
places on the uncertainty set and discount factor, it simpli-
fies the design of a suitable exploration policy.

5.1. Option Trading

In this section we apply ARPI to the problem of trad-
ing American-style options. An American-style put (call)
option (Hull, 2006) is a contract which gives the owner
the right, but not the obligation, to sell (buy) an as-
set at a specified strike price K on or before some ma-
turity time T . Letting the state xt represent the price
of the asset at time t ≤ T , the immediate payoff of
executing a put option at that time is gput(xt), where
gput(x)

.
= max (0,K − x), whereas for a call option we

have gcall(x)
.
= max (0, x−K). Assuming Markov state

transitions, an optimal execution policy may be found by
solving a finite horizon optimal stopping problem; how-
ever, since the state space is typically continuous, an exact
solution is infeasible. Even calculating the value of a given
policy, an important goal by itself, is challenging. Previous
studies (Tsitsiklis & Van Roy, 2001; Li et al., 2009) have
proposed RL solutions for these tasks, and shown their util-
ity. Here we extend this approach.

One challenge of option investments is that the underly-
ing model is never truly known, but only accessed through
historical data, in the form of state trajectories (e.g., stock
prices over time). Catering for risk-averse traders, we plan
policies based on the worst-case model that fits the data.

In the following we show that option trading may be formu-
lated as an RMDP, and then present our results of applying
the ARPI algorithm to the problem. We consider three dif-
ferent scenarios: a simple put option, a combination of a
put and a call, and a case of model misspecification.

5.1.1. AN RMDP FORMULATION

The option pricing problem may be formulated as an
RMDP as follows. To account for the finite horizon, we
include time explicitly in the state, thus, the state at time
t is {xt, t}. The action is binary, where 1 stands for exe-
cuting the option and 0 for continuing to hold it. Once an
option is executed, or when t = T , a transition to a ter-
minal state takes place. Otherwise, the state transitions to
{xt+1, t+1} where xt+1 is determined by a stochastic ker-
nel P̂ (x′|x, t). The reward for executing u = 1 at state x

is g(x) and zero otherwise. We have g(x) = gput(x) for
a put option, g(x) = gcall(x) for a call option, or some
combination of them for a mixed investment.

Note that the state-action values for execution is known
in advance, for we have Q({x, t}, u = 1) = g(x) by
definition. Therefore, we only need to estimate the value
of not exercising the option. We use linear function ap-
proximation Q̃π({x, t}, u = 0) = φ({x, t})>w, and the
ARPI update equation (15) in this case may be written as
θj+1 =

(
Φ>DΦ

)−1 (
γΦ>Dσπ(ν)

)
, where ν(x, t) equals

g(x) if g(x) > φ({x, t})>wi, and equals φ({x, t})>θj oth-
erwise. As our features we chose 2-dimensional (for x and
t) radial basis functions (RBF).6

The parameters for the experiments are provided in the sup-
plementary material, and were chosen to balance the dif-
ferent factors in the problem. Most importantly, we chose
γ = 0.98 and a large uncertainty set such that Assumption
2 is severely violated. We did not, however, encounter any
convergence problems, indicating that our method works
well beyond the limits of Assumption 2. The Matlab code
for these results is provided in the supplementary material.

5.1.2. TRADING WITH A PUT OPTION

Here we consider a simple put option, where K is equal
to the initial price x0. Our price fluctuation model M fol-
lows a Bernoulli distribution7 (Cox et al., 1979), xt+1 ={
fuxt, w.p. p
fdxt, w.p. 1− p

, where the up and down factors, fu

and fd, are constant. Our empirical evaluation proceeds as
follows. In each experiment, we generate Ndata trajecto-
ries of length T from the true model M . From these tra-
jectories we form the maximum likelihood estimate of the
up probability p̂, and the 95% confidence intervals p̂− and
p̂+ using the Clopper-Pearson method (Clopper & Pearson,
1934), which constructs our uncertain model Mrobust. We
also build a model without uncertaintyMnominal by setting
p̂− = p̂+ = p̂. Using p̂, we then simulateNsim trajectories
of length T (this corresponds to a policy that never exe-
cutes the option), where x0 = K + ε, and ε is uniformly
distributed in [−δ, δ]. These trajectories are used as input
data for the ARPI algorithm of Section 4.

Let πrobust and πnominal denote the policies found by
ARPI using Mrobust and Mnominal, respectively. We eval-
uate the performance of πrobust and πnominal using Ntest

6In comparison, Li et al. (2009) used Laguerre polynomials for
x and several monotone functions for t. We observed significantly
better performance with the RBFs. We attribute this to the non-
separable (in x and t) nature of the value function, a property that
is not captured by the representation of Li et al. (2009).

7Similar results were obtained with a geometric Brownian mo-
tion model, using the SAA method for solving the inner problem.
These results are provided in the supplementary material.
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Figure 1. Performance of robust vs. nominal policies. A,C,E: The tail distribution (complementary cumulative distribution function) of
the total reward R for the put option (A), put and call (C) and model misspecification (E) scenarios. Note that a higher value for some
a indicates a higher chance of guaranteeing a reward of at least a, therefore the plots (A) and (C) display a risk-sensitive behavior of
the robust policies. The results were obtained from 100 independent experiments. B: The nominal and robust policies for the put option
scenario, represented by the exercise boundary for each t. D: The reward g(x) and value function Q̃(x, t = 5) from a typical experiment
of the put and call option scenario.

trajectories obtained from the true model M . Recall that
we seek risk-averse policies; thus, the advantage of πrobust
should reflect in the least favorable outcomes. In Figure 1A
we plot the tail distribution of the total reward R (from 100
experiments) obtained by πrobust and πnominal. It may be
seen that πrobust has a lower probability of obtaining a low
payoff (or losing the investment). This, however, comes at
a cost of a smaller probability for a high payoff. To the risk-
sensitive investor, such results are important. In Figure 1B
we further illustrate the policies πrobust and πnominal by
plotting the exercise boundary (the lowest price for which
the policy decides to exercise) for each t. The conservative
behavior of πrobust is evident.

5.1.3. TRADING WITH A PUT AND A CALL

We now consider a more complicated scenario, where
the trader has bought both a put option, with strike price
Kput < x0, and a call option, with strike Kcall > x0.
The reward is given by g(x) = gput(x) + gcall(x), and the
models and experimental procedure are the same as in the
previous scenario. In Figure 1C we plot the tail distribution
of the total reward (from 100 independent experiments) ob-
tained by πrobust and πnominal. Notice that the risk-averse
policy has a significantly smaller chance of losing the in-
vestment. In Figure 1D we display the reward g(x) and
the (approximate) value functions Q̃πrobust and Q̃πnominal
from a typical experiment, for t = 5. The robust value
function is important by itself, as it holds valuable infor-
mation about the expected future profit.

5.1.4. ROBUSTNESS TO MODEL MISSPECIFICATION

In the previous scenarios we assumed that our estimated
models, Mrobust and Mnominal, are the same as the true
model M . In practice, this is rarely the case, and one
has to consider the possibility of model misspecification.
An RMDP model provides some robustness against model
misspecification, as we now demonstrate. Let the probabil-
ity p in the true model M depend on the state according to

p(x) = p11 {x ≤ α} + p21 {x > α}, where the threshold
α is (Kput +Kcall)/2. However, let the estimated models
Mrobust andMnominal, and the experimental procedure re-
main as before. We consider again the case of both a put
and a call option, as in Section 5.1.3. In Figure 1E we plot
the tail distribution of the total reward (from 100 indepen-
dent experiments) obtained by πrobust and πnominal. Ob-
serve that in this case, the misspecification of the nominal
model led to a policy that is dominated by the robust policy,
which was less affected by this problem.

6. Conclusion and Future Work
We presented a novel framework for solving large-scale
uncertain Markov decision processes. To the best of our
knowledge, such problems are beyond the capabilities of
previous studies, which focused on exact solutions and
hence suffer from the “curse of dimensionality”. We pre-
sented both formal guarantees and empirical evidence to
the usefulness of our approach. As we demonstrated, un-
certain MDPs are suitable for both risk-averseness and mit-
igation of model misspecification, indicating their impor-
tance for decision making under uncertainty.
Interestingly, as was recognized by Iyengar (2005), results
on robust MDPs may also be extended to their ‘best-case’
counterpart, known as optimistic MDPs8. Such are use-
ful for efficient exploration, as in the UCRL2 algorithm
(Jaksch et al., 2010), suggesting a future extension of our
work.
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