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1. Proof of Corollary 1

Proof. For any t € N, (), we have

Na(r; D) = Ny (r) = t € Na(r; D). (1)
For any t ¢ N, (r), we have
t € Na(r; D) = Ni(75 D) # Ny (r)- )
Thus,
P(t € Ni(r; D)) > P(N(r; D) = Nty (r))  if t € N (r) and, )
P(t € Na(r; D)) < PNa(r; D) # Ngp(r))  if t ¢ Ngp(r).
Now, using the result of Theorem 1 proves the corollary. O
2. Proof of Proposition 1
Proof. The proof of this proposition is similar to Theorem 4.1 in (Liu et al., 2010). First note that,
_ 1 1 ~
E [prpa(t; D)] = @) Z E [F} . (Dy)] = @] Z P (t € Nb,A(T§Db)) ) “4)
b b

DbESb(D) DbESb(D)

where the expectation and probability are taken over the samples D being drawn i.i.d. For any fixed set of b indices,
drawing n samples i.i.d. and then choosing the b samples corresponding to the fixed indices is equivalent to drawing b

samples i.i.d. Thus, for any D}, € S,(D), we have P (t € J\Afb,,\(r; Db)) = prp.a(t), which implies
E [prpA(t; D)] = prapa(t). ©)

Using Hoeffding’s inequality for a U-statistics (Serfling, 1981), we can concentrate p,; »(; D) around its expectation as
. € ne?
P (|pr,b,>\(t§ D) = prpa(t)] > 5) S2Zexp (-7 ) (6)

Now, consider p, 5 »(t; D) for a fixed set of samples D. We can think of p,; x(t; D) as the expected value of a random
variable on a uniform distribution over subsets of size b i.e. imagine we have a random variable Y which can take values
FX (D) for Dy, € Sy(D), and

B(Y = F} (D) - & g
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so that p,; A (t; D) = E[Y]. Then, p, A (t; D) is an estimate of E[Y], computed by averaging N values of Y, chosen
independently and uniformly randomly. Using McDiarmid’s inequality (McDiarmid, 1989), we can therefore concentrate
Dr.b.A(t; D) around p,.p A (¢; D) as

N ~ € Ne?
P (‘pr,b)\(t;D) —Praa(t; D) > 5 ’D> < 2exp <—2) :
8
N - € Neé? ®
= P ([Broat: D) = Braa(t D) > 5 ) < 2exp (—=5- ).,
where we obtain the second inequality by integrating D out, since the RHS does not depend on D.
Combining Equation (6) and (8), we get
N ne Neé?
([0 50) ~ pean0)] > €) < 2exp (5 ) + 20 (-1 ). ©
For, N > [ ], this becomes
N ne?
P(\M,b,A(ﬁ D) —prpa(t)| > 6) < 4exp <_2b) : (10)
Now, by the union bound,
N ne?
P(3t € VAT st [Froat D) = proa®] > €) <4(p—Dexp (-
) (n
< 4dpexp _ne
= ap %
Finally, observe that 3t' € V' \ r s.t.
(M a(D) = Mypal = | max Byt D) (1= Prapa(tis D) — max prya(t2) (1 - prpa(t)) ‘
t1eV\r to€V\r
< Proat; D) (1 = prpa(t’; D)) = proa(’) (1= prpa(t')) (12)
< Prpa(t's D) _pr,b,/\(t/)‘ + ’ (PrpA (s D) = prpa(t) (Broa(t's D) + prpa(t)) ‘

< 3[PrpA(t'; D) — prpa(t)]

An instance of the ¢’ used in the above set of inequations can be one of ¢ or t5, corresponding to the optimal for

(arg max Prp a(t1; D) (1 — Drpa(t; D))) and <arg max prp a(t2) (1 — proa(t2)) | respectively.

tIEV\’I‘ tzEV\T
Thus, .
|Mr7b7,\(D) — Mr,b,A| > €= 3t cV \ 7 S.t. |ﬁr,b,/\(t/; D) — pr,b,)\(t/” > 6/3 (13)
Using the result of Equation (10) now proves the lemma. O

3. Proof of Proposition 2
Proof. Consider any ¢t € V' \ 7. From Assumption 1, we know that

Ve [0, )\min(t))a pr,b,/\(t) > (1 - 2exp(—clogp)) and,

VA€ [Amin(t), Amax(t)],  2exp(—clogp) < prpa(t) < (1 —2exp(—clogp)). (14)

This implies that

VA€, Amin(t), prox(t) (1 —prpa(t)) <~ and,

YA€ P (®) Amax (D], Prioa(t) (1= pron(®)) > 7. (1>
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Suppose we pick \} = m‘}]e Amin(t). Then for all A < Aj, M. x < 7, and at \j, M. »; > . This means that )] is the
teVr
solution to inf {A > 0: M, ; » > ~}. Thus, \; =inf {A > 0: M, » > 7} exists and

)‘l = )\E = tgl&{lTAmin (t) (16)

To prove the existence of \,, we first have the following claim, the proof of which is described in Subsection 3.1.

Claim 1. For any node r € V, there exists a regularization parameter As (0 < Ay < 1) s.t. for all A > XA, prpa(t) =

0Vt € V\'r, and as a consequence, M, 5 = 0.

Now, observe that M. 5 is a continuous function of A, since M, ; x = m3<< DProa(t) (1 — prpa(t)) is just a maximum
' teVA\r

of continuous functions.

So, Mypr, > 7 Mrpr, = 0 (from Claim 1) and the continuity of M, ; », together imply that A\, =
inf {\ > A\ : M, p x < 7} exists. Also, we have A, < ;.
Finally, (b) is a consequence of the continuity of p,; »(t). From (16), we know that \; = m‘}r\l Amin (t). Therefore, at
te s
t' = arg min Ay, (t) we have
teV\r
Prpn (') =1 —2exp (—clogp). (17)

Note that equality occurs due to continuity of p,; x(£). At A, since M,.p », < <y, we must have either p,; 5, (') >
1 —2exp(—clogp) or prpA(t') < 2exp(—clogp). This means that either A, < Apmin(¢') or Ay, > Apax(t’). However,
since Ay, > A; = Amin(t'), we cannot have the former. Thus, p,.p 5, (t') < 2 exp(—clogp).

So, to summarize,

At N\, prpa (t') =1—2exp(—clogp) and

18
at Ay, proa, (t) < 2exp(—clogp), (18)

i.e. between \; and A, p,p A (t') goes from a value close to 1, to a value close to 0. Now, continuity of p,.; (¢') implies
that for any k € (vy, 1/4], there exists a A s.t. p,p A (t') (1 — prp.a(t')) > k, which implies M, » > k. O

3.1. Proof of Claim 1
Proof. Let D be any set of b samples, D = {z(1) ... 2(®)}. Any solution, 5\7,, of (7) (with the samples D) must satisfy

VL(\,; D)+ Xz =0 (19)
for some z € 8|\5\r||1.
Suppose we have A > ||[VL(0; D)||« and we pick z; = —[VL(0; D)];/A. Then, z € 8||§\r\|1 for g\r = 0 and (0, 2)
satisfies (19). Thus, 0 is an optimum for (7). Also, since we have shown the existence of a subgradient z s.t. ||z]|c < 1, by
Lemma 1 in (Ravikumar et al., 2010) we know that 0 is the only solution. If we pick A, = 5 ?ax} , |VL(0; D) ||, then
e{-1,1}»

for any A > A, 0 is the unique optimum for any choice of D. This implies that p, ; x(t) =0Vt € V \ r and M, » = 0.

Finally, note that
1 NG
LT
n

i=1

o

IVL(0; D)||oc = max

<l=A <1 (20)
teV\r

O

4. Proof of Proposition 4
Proof. Consider any t € V' \ r. We have

Either Ay, < Amin(t) or Ay > Amax(t). 21
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This can be seen as at \,,, we have M.}, y, > v = 2exp(—clogp) (1 — 2 exp(—clogp)). This implies that
Either p,pa, (t) > 1 — 2exp(—clogp) or p.pa,(t) < 2exp(—clogp). (22)

Based on Assumption 1(a), this implies equation (21).

Now, consider this for any two irrelevant variables ¢y, to ¢ N *(r). We cannot have A, < Apin(t1) and Ay, > Apax(t2) (or
vice-versa), as this would violate Assumption 1(b). Thus, we must have

Either \, < Amin Ay > Amax 23
ither t¢rj1\1/1*r% (t) or t¢nj\1g)(< ax (). (23)

We shall show that the former possibility cannot happen. To see this, assume \,, < ¢mlr% ))\mm( ). Then, using Assump-
t
tion 1(c), this means that A, < Amax (%), for any ¢ € V' \ 7. But, from (21), this must imply that A\, < Amin (£), for any
teV \ r. However, this is a contradiction, since A, > \; = m‘}r\l Amin (t), where the equality comes through the same
te r

argument used to show (16).

Thus, A\, > ¢H/\l/a}({ ))\max(t). This implies that p,.; », (t) < 2exp(—clogp) for any ¢t ¢ N*(r) i.e.
t *(r

Forany t ¢ N*(r), P (t ¢ Nix, (75 D)) >1—2exp(—clogp). (24)
Using union bound on the irrelevant variables, we get that P (/\A/b)\u (r; D) C N*(r)) >1—2exp(—(c—1)logp). O

5. Proof of Proposition 3

Proof. Following the same argument as in Proposition 4 above, we can infer that for any ¢t ¢ N™*(r), pyp 2, (t) <
2 exp(—clogp).

Using Corollary 1, we know that there exists a Ag s.t.

Prpao(t) > 1 —2exp(—cicqlogp) > 1 —2exp(—clogp) ift € NJ,(r)

: (25)
Prae(t) < 2exp(—cieqlogp) < 2exp(—clogp) if t & N, (r).

Based on Assumption 1, this means for any t € N, (r) we have A9 < Amin(t), and for any ¢t ¢ N ,(r) we have
Ao > )\max( )

Observe that Ao > A;. This is because for any ¢ ¢ N, (r), Ao > Amax(t') which implies Ao > Amin(t'), whereas
N = m%/n Amin ("), using arguments used to show (16).

t'e
Now, we shall show that we cannot have A\g < A,. Suppose \g < A,. From (25), we have that M, ; », < <y, where
«v is as defined in Assumption 1. So, we get \g € (A, A,) s.t. M, 5, < <. This is a contradiction since A, =
inf {A > A\; : M,.p.» < v}. Therefore, we must have A, < Ao.

So, for any t € N, (1), Ay < Amin(t), which means that p,; », (t) > 1 — 2exp(—clog p). Now, taking a union bound
over the exclusion of all irrelevant variables and the inclusion of all variables in N, (r) proves the proposition. O

6. Proof of Theorem 2

Since this is a simple corollary, we shall only provide an outline of the proof here. The conditions specified in the theorem
ensure that Proposition 3 is true for any node r € V with degree, d(r) < d, and that, Proposition 4 is true for any other
node. In addition, owing to the choice of n and N, Proposition 2 guarantees that ./T/l\»,«7b7 » would be reliable estimate for
M. p. upto a tolerance of € w.h.p. Thus, running Algorithm 2, with the parameters specified, for all nodes would yield
the NV, (r) neighbourhoods of nodes with degree at most d, and yield subsets of the true neighbourhoods for the rest.
E, is defined to be the set of edges (u,v) such that atleast one of its endpoints is a node with degree at most d (say u),
and the other belongs to the NV, neighbourhood of the first (i.e. v € N, (u)). Then, if we consider the union of all
neighbourhoods obtained from Algorithm 2, clearly, the set E; gets recovered with high probability.
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7. Proof of Corollary 2
This is again a simple consequence of Theorem 2. Under the conditions specified here, the set £, defined in Theorem 2,

becomes the set of true edges £*. Thus, we are guaranteed exact graph recovery in this setting.
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