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1. Proof of Corollary 1
Proof. For any t ∈ N ∗sub(r), we have

N̂λ(r;D) = N ∗sub(r)⇒ t ∈ N̂λ(r;D). (1)

For any t /∈ N ∗sub(r), we have
t ∈ N̂λ(r;D)⇒ N̂λ(r;D) 6= N ∗sub(r). (2)

Thus,

P(t ∈ N̂λ(r;D)) ≥ P(N̂λ(r;D) = N ∗sub(r)) if t ∈ N ∗sub(r) and,

P(t ∈ N̂λ(r;D)) ≤ P(N̂λ(r;D) 6= N ∗sub(r)) if t /∈ N ∗sub(r).
(3)

Now, using the result of Theorem 1 proves the corollary.

2. Proof of Proposition 1
Proof. The proof of this proposition is similar to Theorem 4.1 in (Liu et al., 2010). First note that,
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where the expectation and probability are taken over the samples D being drawn i.i.d. For any fixed set of b indices,
drawing n samples i.i.d. and then choosing the b samples corresponding to the fixed indices is equivalent to drawing b
samples i.i.d. Thus, for any Db ∈ Sb(D), we have P

(
t ∈ N̂b,λ(r;Db)

)
= pr,b,λ(t), which implies

E [p̃r,b,λ(t;D)] = pr,b,λ(t). (5)

Using Hoeffding’s inequality for a U-statistics (Serfling, 1981), we can concentrate p̃r,b,λ(t;D) around its expectation as
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Now, consider p̃r,b,λ(t;D) for a fixed set of samples D. We can think of p̃r,b,λ(t;D) as the expected value of a random
variable on a uniform distribution over subsets of size b i.e. imagine we have a random variable Y which can take values
F tλ,r(Db) for Db ∈ Sb(D), and

P
(
Y = F tλ,r(Db)

)
=

1(
n
b

) , (7)
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so that p̃r,b,λ(t;D) = E [Y ]. Then, p̂r,b,λ(t;D) is an estimate of E[Y ], computed by averaging N values of Y , chosen
independently and uniformly randomly. Using McDiarmid’s inequality (McDiarmid, 1989), we can therefore concentrate
p̂r,b,λ(t;D) around p̃r,b,λ(t;D) as
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(8)

where we obtain the second inequality by integrating D out, since the RHS does not depend on D.

Combining Equation (6) and (8), we get
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For, N ≥ dnb e, this becomes
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Now, by the union bound,
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Finally, observe that ∃t′ ∈ V \ r s.t.

|M̂r,b,λ(D)−Mr,b,λ| =
∣∣∣ max
t1∈V \r

p̂r,b,λ(t1;D) (1− p̂r,b,λ(t1;D))− max
t2∈V \r

pr,b,λ(t2) (1− pr,b,λ(t2))
∣∣∣

≤
∣∣∣p̂r,b,λ(t′;D) (1− p̂r,b,λ(t′;D))− pr,b,λ(t′) (1− pr,b,λ(t′))
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∣∣∣+ ∣∣∣ (p̂r,b,λ(t′;D)− pr,b,λ(t′)) (p̂r,b,λ(t′;D) + pr,b,λ(t
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(12)

An instance of the t′ used in the above set of inequations can be one of t∗1 or t∗2, corresponding to the optimal for(
argmax
t1∈V \r

p̂r,b,λ(t1;D) (1− p̂r,b,λ(t1;D))

)
and

(
argmax
t2∈V \r

pr,b,λ(t2) (1− pr,b,λ(t2))

)
respectively.

Thus,
|M̂r,b,λ(D)−Mr,b,λ| > ε⇒ ∃t′ ∈ V \ r s.t. |p̂r,b,λ(t′;D)− pr,b,λ(t′)| > ε/3 (13)

Using the result of Equation (10) now proves the lemma.

3. Proof of Proposition 2
Proof. Consider any t ∈ V \ r. From Assumption 1, we know that

∀ λ ∈ [0, λmin(t)) , pr,b,λ(t) > (1− 2 exp(−c log p)) and,
∀ λ ∈ [λmin(t), λmax(t)] , 2 exp(−c log p) ≤ pr,b,λ(t) ≤ (1− 2 exp(−c log p)) .

(14)

This implies that

∀ λ ∈ [0, λmin(t)) , pr,b,λ(t) (1− pr,b,λ(t)) < γ and,
∀ λ ∈ [λmin(t), λmax(t)] , pr,b,λ(t) (1− pr,b,λ(t)) ≥ γ.

(15)
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Suppose we pick λ′l = min
t∈V \r

λmin(t). Then for all λ < λ′l,Mr,b,λ < γ, and at λ′l,Mr,b,λ′l
≥ γ. This means that λ′l is the

solution to inf {λ ≥ 0 :Mr,b,λ ≥ γ}. Thus, λl = inf {λ ≥ 0 :Mr,b,λ ≥ γ} exists and

λl = λ′l = min
t∈V \r

λmin(t). (16)

To prove the existence of λu, we first have the following claim, the proof of which is described in Subsection 3.1.

Claim 1. For any node r ∈ V , there exists a regularization parameter λs (0 ≤ λs ≤ 1) s.t. for all λ > λs, pr,b,λ(t) =
0 ∀ t ∈ V \ r, and as a consequence,Mr,b,λ = 0.

Now, observe thatMr,b,λ is a continuous function of λ, sinceMr,b,λ = max
t∈V \r

pr,b,λ(t) (1− pr,b,λ(t)) is just a maximum

of continuous functions.

So, Mr,b,λl
≥ γ, Mr,b,λs

= 0 (from Claim 1) and the continuity of Mr,b,λ, together imply that λu =
inf {λ > λl :Mr,b,λ < γ} exists. Also, we have λu ≤ λs.

Finally, (b) is a consequence of the continuity of pr,b,λ(t). From (16), we know that λl = min
t∈V \r

λmin(t). Therefore, at

t′ = argmin
t∈V \r

λmin(t) we have

pr,b,λl
(t′) = 1− 2 exp (−c log p) . (17)

Note that equality occurs due to continuity of pr,b,λ(t). At λu, since Mr,b,λu < γ, we must have either pr,b,λu(t
′) >

1 − 2 exp(−c log p) or pr,b,λ(t′) < 2 exp(−c log p). This means that either λu < λmin(t
′) or λu > λmax(t

′). However,
since λu > λl = λmin(t

′), we cannot have the former. Thus, pr,b,λu
(t′) < 2 exp(−c log p).

So, to summarize,

At λl, pr,b,λl
(t′) = 1− 2 exp (−c log p) and

at λu, pr,b,λu
(t′) < 2 exp(−c log p),

(18)

i.e. between λl and λu, pr,b,λ(t′) goes from a value close to 1, to a value close to 0. Now, continuity of pr,b,λ(t′) implies
that for any k ∈ (γ, 1/4], there exists a λ s.t. pr,b,λ(t′) (1− pr,b,λ(t′)) ≥ k, which impliesMr,b,λ ≥ k.

3.1. Proof of Claim 1

Proof. Let D be any set of b samples, D = {x(1) . . . , x(b)}. Any solution, θ̃\r, of (7) (with the samples D) must satisfy

∇L(θ̃\r;D) + λz = 0 (19)

for some z ∈ ∂‖θ̃\r‖1.

Suppose we have λ > ‖∇L(0;D)‖∞ and we pick zi = −[∇L(0;D)]i/λ. Then, z ∈ ∂‖θ̃\r‖1 for θ̃\r = 0 and (0, z)
satisfies (19). Thus, 0 is an optimum for (7). Also, since we have shown the existence of a subgradient z s.t. ‖z‖∞ < 1, by
Lemma 1 in (Ravikumar et al., 2010) we know that 0 is the only solution. If we pick λs = max

D∈{−1,1}pb
‖∇L(0;D)‖∞, then

for any λ > λs, 0 is the unique optimum for any choice of D. This implies that pr,b,λ(t) = 0∀t ∈ V \ r andMr,b,λ = 0.
Finally, note that

‖∇L(0;D)‖∞ = max
t∈V \r

∣∣∣∣∣ 1n
b∑
i=1

x(i)r x
(i)
t

∣∣∣∣∣ ≤ 1⇒ λs ≤ 1 (20)

4. Proof of Proposition 4
Proof. Consider any t ∈ V \ r. We have

Either λu < λmin(t) or λu > λmax(t). (21)
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This can be seen as at λu, we haveMr,b,λu
> γ = 2 exp(−c log p) (1− 2 exp(−c log p)). This implies that

Either pr,b,λu(t) > 1− 2 exp(−c log p) or pr,b,λu(t) < 2 exp(−c log p). (22)

Based on Assumption 1(a), this implies equation (21).

Now, consider this for any two irrelevant variables t1, t2 /∈ N ∗(r). We cannot have λu < λmin(t1) and λu > λmax(t2) (or
vice-versa), as this would violate Assumption 1(b). Thus, we must have

Either λu < min
t/∈N∗(r)

λmin(t) or λu > max
t/∈N∗(r)

λmax(t). (23)

We shall show that the former possibility cannot happen. To see this, assume λu < min
t/∈N∗(r)

λmin(t). Then, using Assump-

tion 1(c), this means that λu < λmax(t̃), for any t̃ ∈ V \ r. But, from (21), this must imply that λu < λmin

(
t̃
)
, for any

t̃ ∈ V \ r. However, this is a contradiction, since λu > λl = min
t∈V \r

λmin(t), where the equality comes through the same

argument used to show (16).

Thus, λu > max
t/∈N∗(r)

λmax(t). This implies that pr,b,λu
(t) < 2 exp(−c log p) for any t /∈ N ∗(r) i.e.

For any t /∈ N ∗(r), P
(
t /∈ N̂b,λu

(r;D)
)
≥ 1− 2 exp(−c log p). (24)

Using union bound on the irrelevant variables, we get that P
(
N̂b,λu(r;D) ⊆ N ∗(r)

)
≥ 1− 2 exp (−(c− 1) log p).

5. Proof of Proposition 3
Proof. Following the same argument as in Proposition 4 above, we can infer that for any t /∈ N ∗(r), pr,b,λu

(t) <
2 exp(−c log p).

Using Corollary 1, we know that there exists a λ0 s.t.

pr,b,λ0
(t) ≥ 1− 2 exp(−c1c4 log p) > 1− 2 exp(−c log p) if t ∈ N ∗sub(r)

pr,b,λ0
(t) ≤ 2 exp(−c1c4 log p) < 2 exp(−c log p) if t /∈ N ∗sub(r).

(25)

Based on Assumption 1, this means for any t ∈ N ∗sub(r) we have λ0 < λmin(t), and for any t /∈ N ∗sub(r) we have
λ0 > λmax(t).

Observe that λ0 > λl. This is because for any t′ /∈ N ∗sub(r), λ0 > λmax(t
′) which implies λ0 > λmin(t

′), whereas
λl = min

t′′∈V \r
λmin(t

′′), using arguments used to show (16).

Now, we shall show that we cannot have λ0 < λu. Suppose λ0 < λu. From (25), we have that Mr,b,λ0
< γ, where

γ is as defined in Assumption 1. So, we get λ0 ∈ (λl, λu) s.t. Mr,b,λ0
< γ. This is a contradiction since λu =

inf {λ > λl :Mr,b,λ < γ}. Therefore, we must have λu ≤ λ0.

So, for any t ∈ N ∗sub(r), λu < λmin(t), which means that pr,b,λu
(t) > 1 − 2 exp(−c log p). Now, taking a union bound

over the exclusion of all irrelevant variables and the inclusion of all variables in N ∗sub(r) proves the proposition.

6. Proof of Theorem 2
Since this is a simple corollary, we shall only provide an outline of the proof here. The conditions specified in the theorem
ensure that Proposition 3 is true for any node r ∈ V with degree, d(r) ≤ d, and that, Proposition 4 is true for any other
node. In addition, owing to the choice of n and N , Proposition 2 guarantees that M̂r,b,λ would be reliable estimate for
Mr,b,λ upto a tolerance of ε w.h.p. Thus, running Algorithm 2, with the parameters specified, for all nodes would yield
the N ∗sub(r) neighbourhoods of nodes with degree at most d, and yield subsets of the true neighbourhoods for the rest.
Ed is defined to be the set of edges (u, v) such that atleast one of its endpoints is a node with degree at most d (say u),
and the other belongs to the N ∗sub neighbourhood of the first (i.e. v ∈ N ∗sub(u)). Then, if we consider the union of all
neighbourhoods obtained from Algorithm 2, clearly, the set Ed gets recovered with high probability.
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7. Proof of Corollary 2
This is again a simple consequence of Theorem 2. Under the conditions specified here, the set Ed, defined in Theorem 2,
becomes the set of true edges E∗. Thus, we are guaranteed exact graph recovery in this setting.
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