Learning Graphs with a Few Hubs - Supplementary

Rashish Tandon, Pradeep Ravikumar

\{RASHISH, PRADEEPR\}@CS.UTEXAS.EDU
Department of Computer Science
The University of Texas at Austin, USA

1. Proof of Corollary 1

Proof. For any $t \in \mathcal{N}_{\text {sub }}^{*}(r)$, we have

$$
\begin{equation*}
\widehat{\mathcal{N}}_{\lambda}(r ; D)=\mathcal{N}_{\mathrm{sub}}^{*}(r) \Rightarrow t \in \widehat{\mathcal{N}}_{\lambda}(r ; D) \tag{1}
\end{equation*}
$$

For any $t \notin \mathcal{N}_{\text {sub }}^{*}(r)$, we have

$$
\begin{equation*}
t \in \widehat{\mathcal{N}}_{\lambda}(r ; D) \Rightarrow \widehat{\mathcal{N}}_{\lambda}(r ; D) \neq \mathcal{N}_{\mathrm{sub}}^{*}(r) \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{array}{ll}
\mathbb{P}\left(t \in \widehat{\mathcal{N}}_{\lambda}(r ; D)\right) \geq \mathbb{P}\left(\widehat{\mathcal{N}}_{\lambda}(r ; D)=\mathcal{N}_{\text {sub }}^{*}(r)\right) & \text { if } t \in \mathcal{N}_{\text {sub }}^{*}(r) \text { and } \\
\mathbb{P}\left(t \in \widehat{\mathcal{N}}_{\lambda}(r ; D)\right) \leq \mathbb{P}\left(\widehat{\mathcal{N}}_{\lambda}(r ; D) \neq \mathcal{N}_{\text {sub }}^{*}(r)\right) & \text { if } t \notin \mathcal{N}_{\text {sub }}^{*}(r) \tag{3}
\end{array}
$$

Now, using the result of Theorem 1 proves the corollary.

2. Proof of Proposition 1

Proof. The proof of this proposition is similar to Theorem 4.1 in (Liu et al., 2010). First note that,

$$
\begin{equation*}
\mathbb{E}\left[\widetilde{p}_{r, b, \lambda}(t ; D)\right]=\frac{1}{\binom{n}{b}} \sum_{D_{b} \in S_{b}(D)} \mathbb{E}\left[F_{\lambda, r}^{t}\left(D_{b}\right)\right]=\frac{1}{\binom{n}{b}} \sum_{D_{b} \in S_{b}(D)} \mathbb{P}\left(t \in \widehat{\mathcal{N}}_{b, \lambda}\left(r ; D_{b}\right)\right) \tag{4}
\end{equation*}
$$

where the expectation and probability are taken over the samples D being drawn i.i.d. For any fixed set of b indices, drawing n samples i.i.d. and then choosing the b samples corresponding to the fixed indices is equivalent to drawing b samples i.i.d. Thus, for any $D_{b} \in S_{b}(D)$, we have $\mathbb{P}\left(t \in \widehat{\mathcal{N}}_{b, \lambda}\left(r ; D_{b}\right)\right)=p_{r, b, \lambda}(t)$, which implies

$$
\begin{equation*}
\mathbb{E}\left[\widetilde{p}_{r, b, \lambda}(t ; D)\right]=p_{r, b, \lambda}(t) \tag{5}
\end{equation*}
$$

Using Hoeffding's inequality for a U-statistics (Serfling, 1981), we can concentrate $\widetilde{p}_{r, b, \lambda}(t ; D)$ around its expectation as

$$
\begin{equation*}
\mathbb{P}\left(\left|\widetilde{p}_{r, b, \lambda}(t ; D)-p_{r, b, \lambda}(t)\right|>\frac{\epsilon}{2}\right) \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 b}\right) \tag{6}
\end{equation*}
$$

Now, consider $\widetilde{p}_{r, b, \lambda}(t ; D)$ for a fixed set of samples D. We can think of $\widetilde{p}_{r, b, \lambda}(t ; D)$ as the expected value of a random variable on a uniform distribution over subsets of size b i.e. imagine we have a random variable Y which can take values $F_{\lambda, r}^{t}\left(D_{b}\right)$ for $D_{b} \in S_{b}(D)$, and

$$
\begin{equation*}
\mathbb{P}\left(Y=F_{\lambda, r}^{t}\left(D_{b}\right)\right)=\frac{1}{\binom{n}{b}} \tag{7}
\end{equation*}
$$

so that $\widetilde{p}_{r, b, \lambda}(t ; D)=\mathbb{E}[Y]$. Then, $\widehat{p}_{r, b, \lambda}(t ; D)$ is an estimate of $\mathbb{E}[Y]$, computed by averaging N values of Y, chosen independently and uniformly randomly. Using McDiarmid's inequality (McDiarmid, 1989), we can therefore concentrate $\widehat{p}_{r, b, \lambda}(t ; D)$ around $\widetilde{p}_{r, b, \lambda}(t ; D)$ as

$$
\begin{align*}
& \mathbb{P}\left(\left.\left|\widehat{p}_{r, b, \lambda}(t ; D)-\widetilde{p}_{r, b, \lambda}(t ; D)\right|>\frac{\epsilon}{2} \right\rvert\, D\right) \leq 2 \exp \left(-\frac{N \epsilon^{2}}{2}\right), \\
\Rightarrow & \mathbb{P}\left(\left|\widehat{p}_{r, b, \lambda}(t ; D)-\widetilde{p}_{r, b, \lambda}(t ; D)\right|>\frac{\epsilon}{2}\right) \leq 2 \exp \left(-\frac{N \epsilon^{2}}{2}\right), \tag{8}
\end{align*}
$$

where we obtain the second inequality by integrating D out, since the RHS does not depend on D.
Combining Equation (6) and (8), we get

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{p}_{r, b, \lambda}(t ; D)-p_{r, b, \lambda}(t)\right|>\epsilon\right) \leq 2 \exp \left(-\frac{n \epsilon^{2}}{2 b}\right)+2 \exp \left(-\frac{N \epsilon^{2}}{2}\right) \tag{9}
\end{equation*}
$$

For, $N \geq\left\lceil\frac{n}{b}\right\rceil$, this becomes

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{p}_{r, b, \lambda}(t ; D)-p_{r, b, \lambda}(t)\right|>\epsilon\right) \leq 4 \exp \left(-\frac{n \epsilon^{2}}{2 b}\right) \tag{10}
\end{equation*}
$$

Now, by the union bound,

$$
\begin{align*}
\mathbb{P}\left(\exists t \in V \backslash r \text { s.t. }\left|\widehat{p}_{r, b, \lambda}(t ; D)-p_{r, b, \lambda}(t)\right|>\epsilon\right) & \leq 4(p-1) \exp \left(-\frac{n \epsilon^{2}}{2 b}\right) \\
& \leq 4 p \exp \left(-\frac{n \epsilon^{2}}{2 b}\right) \tag{11}
\end{align*}
$$

Finally, observe that $\exists t^{\prime} \in V \backslash r$ s.t.

$$
\begin{align*}
\left|\widehat{\mathcal{M}}_{r, b, \lambda}(D)-\mathcal{M}_{r, b, \lambda}\right| & =\left|\max _{t_{1} \in V \backslash r} \widehat{p}_{r, b, \lambda}\left(t_{1} ; D\right)\left(1-\widehat{p}_{r, b, \lambda}\left(t_{1} ; D\right)\right)-\max _{t_{2} \in V \backslash r} p_{r, b, \lambda}\left(t_{2}\right)\left(1-p_{r, b, \lambda}\left(t_{2}\right)\right)\right| \\
& \leq\left|\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)\left(1-\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)\right)-p_{r, b, \lambda}\left(t^{\prime}\right)\left(1-p_{r, b, \lambda}\left(t^{\prime}\right)\right)\right| \tag{12}\\
& \leq\left|\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)-p_{r, b, \lambda}\left(t^{\prime}\right)\right|+\left|\left(\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)-p_{r, b, \lambda}\left(t^{\prime}\right)\right)\left(\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)+p_{r, b, \lambda}\left(t^{\prime}\right)\right)\right| \\
& \leq 3\left|\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)-p_{r, b, \lambda}\left(t^{\prime}\right)\right|
\end{align*}
$$

An instance of the t^{\prime} used in the above set of inequations can be one of t_{1}^{*} or t_{2}^{*}, corresponding to the optimal for $\left(\underset{t_{1} \in V \backslash r}{\arg \max } \widehat{p}_{r, b, \lambda}\left(t_{1} ; D\right)\left(1-\widehat{p}_{r, b, \lambda}\left(t_{1} ; D\right)\right)\right)$ and $\left(\underset{t_{2} \in V \backslash r}{\arg \max } p_{r, b, \lambda}\left(t_{2}\right)\left(1-p_{r, b, \lambda}\left(t_{2}\right)\right)\right)$ respectively.
Thus,

$$
\begin{equation*}
\left|\widehat{\mathcal{M}}_{r, b, \lambda}(D)-\mathcal{M}_{r, b, \lambda}\right|>\epsilon \Rightarrow \exists t^{\prime} \in V \backslash r \text { s.t. }\left|\widehat{p}_{r, b, \lambda}\left(t^{\prime} ; D\right)-p_{r, b, \lambda}\left(t^{\prime}\right)\right|>\epsilon / 3 \tag{13}
\end{equation*}
$$

Using the result of Equation (10) now proves the lemma.

3. Proof of Proposition 2

Proof. Consider any $t \in V \backslash r$. From Assumption 1, we know that

$$
\begin{array}{cl}
\forall \lambda \in\left[0, \lambda_{\min }(t)\right), & p_{r, b, \lambda}(t)>(1-2 \exp (-c \log p)) \text { and } \\
\forall \lambda \in\left[\lambda_{\min }(t), \lambda_{\max }(t)\right], & 2 \exp (-c \log p) \leq p_{r, b, \lambda}(t) \leq(1-2 \exp (-c \log p)) . \tag{14}
\end{array}
$$

This implies that

$$
\begin{align*}
\forall \lambda \in\left[0, \lambda_{\min }(t)\right), & p_{r, b, \lambda}(t)\left(1-p_{r, b, \lambda}(t)\right)<\gamma \text { and }, \tag{15}\\
\forall \lambda \in\left[\lambda_{\min }(t), \lambda_{\max }(t)\right], & p_{r, b, \lambda}(t)\left(1-p_{r, b, \lambda}(t)\right) \geq \gamma
\end{align*}
$$

Suppose we pick $\lambda_{l}^{\prime}=\min _{t \in V \backslash r} \lambda_{\min }(t)$. Then for all $\lambda<\lambda_{l}^{\prime}, \mathcal{M}_{r, b, \lambda}<\gamma$, and at $\lambda_{l}^{\prime}, \mathcal{M}_{r, b, \lambda_{l}^{\prime}} \geq \gamma$. This means that λ_{l}^{\prime} is the solution to $\inf \left\{\lambda \geq 0: \mathcal{M}_{r, b, \lambda} \geq \gamma\right\}$. Thus, $\lambda_{l}=\inf \left\{\lambda \geq 0: \mathcal{M}_{r, b, \lambda} \geq \gamma\right\}$ exists and

$$
\begin{equation*}
\lambda_{l}=\lambda_{l}^{\prime}=\min _{t \in V \backslash r} \lambda_{\min }(t) \tag{16}
\end{equation*}
$$

To prove the existence of λ_{u}, we first have the following claim, the proof of which is described in Subsection 3.1.
Claim 1. For any node $r \in V$, there exists a regularization parameter $\lambda_{s}\left(0 \leq \lambda_{s} \leq 1\right)$ s.t. for all $\lambda>\lambda_{s}, p_{r, b, \lambda}(t)=$ $0 \forall t \in V \backslash r$, and as a consequence, $\mathcal{M}_{r, b, \lambda}=0$.

Now, observe that $\mathcal{M}_{r, b, \lambda}$ is a continuous function of λ, since $\mathcal{M}_{r, b, \lambda}=\max _{t \in V \backslash r} p_{r, b, \lambda}(t)\left(1-p_{r, b, \lambda}(t)\right)$ is just a maximum of continuous functions.

So, $\mathcal{M}_{r, b, \lambda_{l}} \geq \gamma, \mathcal{M}_{r, b, \lambda_{s}}=0$ (from Claim 1) and the continuity of $\mathcal{M}_{r, b, \lambda}$, together imply that $\lambda_{u}=$ $\inf \left\{\lambda>\lambda_{l}: \mathcal{M}_{r, b, \lambda}<\gamma\right\}$ exists. Also, we have $\lambda_{u} \leq \lambda_{s}$.

Finally, (b) is a consequence of the continuity of $p_{r, b, \lambda}(t)$. From (16), we know that $\lambda_{l}=\min _{t \in V \backslash r} \lambda_{\min }(t)$. Therefore, at $t^{\prime}=\underset{t \in V \backslash r}{\arg \min } \lambda_{\min }(t)$ we have

$$
\begin{equation*}
p_{r, b, \lambda_{l}}\left(t^{\prime}\right)=1-2 \exp (-c \log p) \tag{17}
\end{equation*}
$$

Note that equality occurs due to continuity of $p_{r, b, \lambda}(t)$. At λ_{u}, since $\mathcal{M}_{r, b, \lambda_{u}}<\gamma$, we must have either $p_{r, b, \lambda_{u}}\left(t^{\prime}\right)>$ $1-2 \exp (-c \log p)$ or $p_{r, b, \lambda}\left(t^{\prime}\right)<2 \exp (-c \log p)$. This means that either $\lambda_{u}<\lambda_{\min }\left(t^{\prime}\right)$ or $\lambda_{u}>\lambda_{\max }\left(t^{\prime}\right)$. However, since $\lambda_{u}>\lambda_{l}=\lambda_{\text {min }}\left(t^{\prime}\right)$, we cannot have the former. Thus, $p_{r, b, \lambda_{u}}\left(t^{\prime}\right)<2 \exp (-c \log p)$.
So, to summarize,

$$
\begin{align*}
& \text { At } \lambda_{l}, p_{r, b, \lambda_{l}}\left(t^{\prime}\right)=1-2 \exp (-c \log p) \text { and } \\
& \text { at } \lambda_{u}, p_{r, b, \lambda_{u}}\left(t^{\prime}\right)<2 \exp (-c \log p) \tag{18}
\end{align*}
$$

i.e. between λ_{l} and $\lambda_{u}, p_{r, b, \lambda}\left(t^{\prime}\right)$ goes from a value close to 1 , to a value close to 0 . Now, continuity of $p_{r, b, \lambda}\left(t^{\prime}\right)$ implies that for any $k \in(\gamma, 1 / 4]$, there exists a λ s.t. $p_{r, b, \lambda}\left(t^{\prime}\right)\left(1-p_{r, b, \lambda}\left(t^{\prime}\right)\right) \geq k$, which implies $\mathcal{M}_{r, b, \lambda} \geq k$.

3.1. Proof of Claim 1

Proof. Let D be any set of b samples, $D=\left\{x^{(1)} \ldots, x^{(b)}\right\}$. Any solution, $\tilde{\theta}_{r r}$, of (7) (with the samples D) must satisfy

$$
\begin{equation*}
\nabla \mathcal{L}\left(\tilde{\theta}_{\backslash r} ; D\right)+\lambda z=0 \tag{19}
\end{equation*}
$$

for some $z \in \partial\left\|\widetilde{\theta}_{\backslash r}\right\|_{1}$.
Suppose we have $\lambda>\|\nabla \mathcal{L}(0 ; D)\|_{\infty}$ and we pick $z_{i}=-[\nabla \mathcal{L}(0 ; D)]_{i} / \lambda$. Then, $z \in \partial\left\|\widetilde{\theta}_{\backslash r}\right\|_{1}$ for $\widetilde{\theta}_{\backslash r}=0$ and $(0, z)$ satisfies (19). Thus, 0 is an optimum for (7). Also, since we have shown the existence of a subgradient z s.t. $\|z\|_{\infty}<1$, by Lemma 1 in (Ravikumar et al., 2010) we know that 0 is the only solution. If we pick $\lambda_{s}=\max _{D \in\{-1,1\}^{p b}}\|\nabla \mathcal{L}(0 ; D)\|_{\infty}$, then for any $\lambda>\lambda_{s}, 0$ is the unique optimum for any choice of D. This implies that $p_{r, b, \lambda}(t)=0 \forall t \in V \backslash r$ and $\mathcal{M}_{r, b, \lambda}=0$. Finally, note that

$$
\begin{equation*}
\|\nabla \mathcal{L}(0 ; D)\|_{\infty}=\max _{t \in V \backslash r}\left|\frac{1}{n} \sum_{i=1}^{b} x_{r}^{(i)} x_{t}^{(i)}\right| \leq 1 \Rightarrow \lambda_{s} \leq 1 \tag{20}
\end{equation*}
$$

4. Proof of Proposition 4

Proof. Consider any $t \in V \backslash r$. We have

$$
\begin{equation*}
\text { Either } \lambda_{u}<\lambda_{\min }(t) \text { or } \lambda_{u}>\lambda_{\max }(t) \tag{21}
\end{equation*}
$$

This can be seen as at λ_{u}, we have $\mathcal{M}_{r, b, \lambda_{u}}>\gamma=2 \exp (-c \log p)(1-2 \exp (-c \log p))$. This implies that

$$
\begin{equation*}
\text { Either } p_{r, b, \lambda_{u}}(t)>1-2 \exp (-c \log p) \text { or } p_{r, b, \lambda_{u}}(t)<2 \exp (-c \log p) \tag{22}
\end{equation*}
$$

Based on Assumption 1(a), this implies equation (21).
Now, consider this for any two irrelevant variables $t_{1}, t_{2} \notin \mathcal{N}^{*}(r)$. We cannot have $\lambda_{u}<\lambda_{\min }\left(t_{1}\right)$ and $\lambda_{u}>\lambda_{\max }\left(t_{2}\right)$ (or vice-versa), as this would violate Assumption 1(b). Thus, we must have

$$
\begin{equation*}
\text { Either } \lambda_{u}<\min _{t \notin \mathcal{N}^{*}(r)} \lambda_{\min }(t) \text { or } \lambda_{u}>\max _{t \notin \mathcal{N}^{*}(r)} \lambda_{\max }(t) \tag{23}
\end{equation*}
$$

We shall show that the former possibility cannot happen. To see this, assume $\lambda_{u}<\min _{t \notin \mathcal{N}^{*}(r)} \lambda_{\min }(t)$. Then, using Assumption 1(c), this means that $\lambda_{u}<\lambda_{\max }(\tilde{t})$, for any $\tilde{t} \in V \backslash r$. But, from (21), this must imply that $\lambda_{u}<\lambda_{\min }(\tilde{t})$, for any $\tilde{t} \in V \backslash r$. However, this is a contradiction, since $\lambda_{u}>\lambda_{l}=\min _{t \in V \backslash r} \lambda_{\min }(t)$, where the equality comes through the same argument used to show (16).

Thus, $\lambda_{u}>\max _{t \notin \mathcal{N}^{*}(r)} \lambda_{\max }(t)$. This implies that $p_{r, b, \lambda_{u}}(t)<2 \exp (-c \log p)$ for any $t \notin \mathcal{N}^{*}(r)$ i.e.

$$
\begin{equation*}
\text { For any } t \notin \mathcal{N}^{*}(r), \mathbb{P}\left(t \notin \widehat{\mathcal{N}}_{b, \lambda_{u}}(r ; D)\right) \geq 1-2 \exp (-c \log p) \tag{24}
\end{equation*}
$$

Using union bound on the irrelevant variables, we get that $\mathbb{P}\left(\widehat{\mathcal{N}}_{b, \lambda_{u}}(r ; D) \subseteq \mathcal{N}^{*}(r)\right) \geq 1-2 \exp (-(c-1) \log p)$.

5. Proof of Proposition 3

Proof. Following the same argument as in Proposition 4 above, we can infer that for any $t \notin \mathcal{N}^{*}(r), p_{r, b, \lambda_{u}}(t)<$ $2 \exp (-c \log p)$.
Using Corollary 1 , we know that there exists a λ_{0} s.t.

$$
\begin{align*}
& p_{r, b, \lambda_{0}}(t) \geq 1-2 \exp \left(-c_{1} c_{4} \log p\right)>1-2 \exp (-c \log p) \quad \text { if } t \in \mathcal{N}_{s u b}^{*}(r) \tag{25}\\
& p_{r, b, \lambda_{0}}(t) \leq 2 \exp \left(-c_{1} c_{4} \log p\right)<2 \exp (-c \log p) \quad \text { if } t \notin \mathcal{N}_{s u b}^{*}(r)
\end{align*}
$$

Based on Assumption 1, this means for any $t \in \mathcal{N}_{\text {sub }}^{*}(r)$ we have $\lambda_{0}<\lambda_{\min }(t)$, and for any $t \notin \mathcal{N}_{\text {sub }}^{*}(r)$ we have $\lambda_{0}>\lambda_{\text {max }}(t)$.

Observe that $\lambda_{0}>\lambda_{l}$. This is because for any $t^{\prime} \notin \mathcal{N}_{s u b}^{*}(r), \lambda_{0}>\lambda_{\max }\left(t^{\prime}\right)$ which implies $\lambda_{0}>\lambda_{\min }\left(t^{\prime}\right)$, whereas $\lambda_{l}=\min _{t^{\prime \prime} \in V \backslash r} \lambda_{\min }\left(t^{\prime \prime}\right)$, using arguments used to show (16).

Now, we shall show that we cannot have $\lambda_{0}<\lambda_{u}$. Suppose $\lambda_{0}<\lambda_{u}$. From (25), we have that $\mathcal{M}_{r, b, \lambda_{0}}<\gamma$, where γ is as defined in Assumption 1. So, we get $\lambda_{0} \in\left(\lambda_{l}, \lambda_{u}\right)$ s.t. $\mathcal{M}_{r, b, \lambda_{0}}<\gamma$. This is a contradiction since $\lambda_{u}=$ $\inf \left\{\lambda>\lambda_{l}: \mathcal{M}_{r, b, \lambda}<\gamma\right\}$. Therefore, we must have $\lambda_{u} \leq \lambda_{0}$.
So, for any $t \in \mathcal{N}_{s u b}^{*}(r), \lambda_{u}<\lambda_{\text {min }}(t)$, which means that $p_{r, b, \lambda_{u}}(t)>1-2 \exp (-c \log p)$. Now, taking a union bound over the exclusion of all irrelevant variables and the inclusion of all variables in $\mathcal{N}_{s u b}^{*}(r)$ proves the proposition.

6. Proof of Theorem 2

Since this is a simple corollary, we shall only provide an outline of the proof here. The conditions specified in the theorem ensure that Proposition 3 is true for any node $r \in V$ with degree, $d(r) \leq d$, and that, Proposition 4 is true for any other node. In addition, owing to the choice of n and N, Proposition 2 guarantees that $\widehat{\mathcal{M}}_{r, b, \lambda}$ would be reliable estimate for $\mathcal{M}_{r, b, \lambda}$ upto a tolerance of ϵ w.h.p. Thus, running Algorithm 2, with the parameters specified, for all nodes would yield the $\mathcal{N}_{s u b}^{*}(r)$ neighbourhoods of nodes with degree at most d, and yield subsets of the true neighbourhoods for the rest. E_{d} is defined to be the set of edges (u, v) such that atleast one of its endpoints is a node with degree at most d (say u), and the other belongs to the $\mathcal{N}_{s u b}^{*}$ neighbourhood of the first (i.e. $v \in \mathcal{N}_{s u b}^{*}(u)$). Then, if we consider the union of all neighbourhoods obtained from Algorithm 2, clearly, the set E_{d} gets recovered with high probability.

7. Proof of Corollary 2

This is again a simple consequence of Theorem 2. Under the conditions specified here, the set E_{d}, defined in Theorem 2, becomes the set of true edges E^{*}. Thus, we are guaranteed exact graph recovery in this setting.

References

Liu, Han, Roeder, Kathryn, and Wasserman, Larry A. Stability approach to regularization selection (stars) for high dimensional graphical models. In NIPS, pp. 1432-1440, 2010.

McDiarmid, C. On the method of bounded differences. In Surveys in Combinatorics, number 141 in London Mathematical Society Lecture Note Series, pp. 148-188. Cambridge University Press, August 1989.

Ravikumar, P., Wainwright, M. J., and Lafferty, J. High-dimensional ising model selection using ℓ_{1}-regularized logistic regression. Annals of Statistics, 38(3):1287-1319, 2010.

Serfling, Robert J. Approximation Theorems of Mathematical Statistics. Wiley-Interscience, 1981.

