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Abstract

We consider the problem of recovering the graph
structure of a “hub-networked” Ising model
given i.i.d. samples, under high-dimensional set-
tings, where number of nodes p could be poten-
tially larger than the number of samples n. By a
“hub-networked” graph, we mean a graph with a
few “hub nodes” with very large degrees. State
of the art estimators for Ising models have a sam-
ple complexity that scales polynomially with the
maximum node-degree, and are thus ill-suited to
recovering such graphs with a few hub nodes.
Some recent proposals for specifically recover-
ing hub graphical models do not come with theo-
retical guarantees, and even empirically provide
limited improvements over vanilla Ising model
estimators. Here, we show that under such low
sample settings, instead of estimating “difficult”
components such as hub-neighborhoods, we can
use quantitative indicators of our inability to do
so, and thereby identify hub-nodes. This simple
procedure allows us to recover hub-networked
graphs with very strong statistical guarantees
even under very low sample settings.

1. Introduction
Graphical Models are a popular class of multivariate prob-
ability distributions that are widely used in applications
across science and engineering. The key idea here is to rep-
resent probability distributions compactly as a product of
functions over the cliques of an underlying graph. The task
of graphical model selection is to learn the underlying undi-
rected graph given samples drawn from the distribution it
represents. This task becomes particularly difficult in high-
dimensional data settings, where the number of variables p
could be larger than the number of samples n.
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Due in part to its importance, many practical algorithms
with strong statistical guarantees have been proposed for
this graphical model selection problem. In this paper, we
focus on binary Ising models, where the variables are bi-
nary. For such Ising graphical models, Ravikumar et al.
(2010) show that “local” node-wise `1-regularized logistic
regressions can recover the underlying graph exactly with
high probability, when given n = O(d3 log(p)) i.i.d. sam-
ples, where p is the number of nodes, and d is the maximum
node-degree of the graph. Another class of methods are
based on local search and thresholding (Abbeel et al., 2006;
Csiszár & Talata, 2006; Bresler et al., 2008; Anandkumar
et al., 2011), but in the absence of other stringent assump-
tions, their computational complexity scales exponentially
with the local node-degrees d. Among more “global” ap-
proaches, Ji & Seymour (1996); Csiszár & Talata (2006);
Peng et al. (2009) and others have proposed penalized
pseudo-likelihood (Besag, 1975) based approaches; while
Yang & Ravikumar (2011) have proposed penalized esti-
mators based on variational approximations to the graphi-
cal model log-likelihood; however the sample complexity
of these methods also scale polynomially with the maxi-
mum node-degree of the graph.

In this paper, we consider the setting where the graphs
have a few hub nodes, which are highly connected nodes
whose degree could scale as large as linearly in the num-
ber of nodes. An importance instance of this are power-law
graphs, which occur ubiquitously in many real-world set-
tings, and in which hub-nodes with large degrees are few
in number but not non-existent, and their maximum node
degree could be very large. Since the sample complexity
of the state of the art methods listed above scale polyno-
mially with the maximum node-degree, they would thus
not be very suitable in recovering such power-law graphs
with hub nodes. Motivated by this, there have been a few
statistical estimators proposed that explicitly target power-
law graphical model estimation. Liu & Ihler (2011) pro-
pose a novel non-convex regularization motivated by the
power-law degree distribution, a convex variant of which
was also considered in (Defazio & Caetano, 2012). While
these methods did not provide theoretical guarantees, even
their experimental results demonstrated limited improve-
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ments in sample complexity over `1 regularization based
methods. Peng et al. (2009) propose a pseudo-likelihood
based procedure for learning discrete graphical models that
minimizes the sum of weighted node-wise conditional log-
likelihoods, where the node-wise weights could potentially
be tuned to encourage power-law structure, but this was
suggested as a heuristic. For the specific case of Gaus-
sian graphical models, Hero & Rajaratnam (2012) provide
an approach based on thresholding sample partial correla-
tion matrices, and provide asymptotic expressions for false
discovery rates under stringent weak dependence assump-
tions.

Consider the following leading question: what if we do not
have enough samples to solve for the node-conditional dis-
tribution of a hub-node in an Ising model i.e. what if we
we have less than d3h log p samples, where dh is the degree
of the hub node? The estimators above that focus on the
estimation of a hub-networked graphical model all focus
in part on the estimation of such “difficult” sub-problems;
so that they have a large sample complexity for estimating
such hub-networked graphical models (Tandon & Raviku-
mar, 2013). In this paper, we propose to turn the problem
on its head, and use our inability to estimate such difficult
sub-problems given limited samples, to then turn around
and be able to estimate the hub-network. To provide in-
tuition for our strategy, consider a star-shaped graph, with
one hub node, and the rest being spoke nodes connected
only to the hub. The maximum degree of the hub node is
thus p − 1, so that estimating the node-conditional distri-
bution of the hub-node would require samples scaling as
p3 log p. What if only have samples scaling as log p? But
suppose we are also able to realize that we are unable to
estimate the node-conditional distribution of the hub-node;
and only those of the spoke nodes. We can then ignore the
neighborhood estimation of the hub-node, and use the reli-
able neighborhood estimates of just the spoke nodes: this
suffices to estimate the star-graph.

In this paper, we formalize this strategy: we provide a
quantitative criterion for checking whether or not the given
number of samples suffice for regularized node-conditional
distribution estimation as in (Ravikumar et al., 2010) at a
given node. We then use this to detect “hub nodes,” and use
only the neighborhood estimates from the remaining nodes
to construct the graph estimate. We note that our notion of
“hub nodes” is specifically related to the difficulty of node-
neighborhood estimation, which only roughly corresponds
to the node-degree (while the required sample size scales as
O(d3 log p), the constants matter in finite sample settings).

Our criterion is based on the following key observations on
`1 regularized node-neighborhood estimation for any node
u ∈ V conditioned on the rest of the nodes. Consider the
variance of the Bernoulli event of the incidence of any node

v ∈ V \u in the node-neighborhood estimate, as a function
the regularization penalty. When the penalty is very small,
the node-neigborhood estimate will include all nodes, and
the variance will be zero; when the penalty is “just right,”
the node-neighborhood estimate will be correct and will in-
clude v iff it is a neighbor with very high probability, so
that the variance will again be (close to) zero, and when
the penalty is very large, the node-neighborhood estimate
will be null, and the variance will again be zero. Con-
trast this behavior with the setting where there are very few
samples to allow for neighborhood recovery at any value
of the regularization penalty: then the variance starts off
at zero, rises, and then slowly goes to zero as the node-
neighborhood becomes null. The difference in the observ-
able behaviors between these two settings thus allows us
to differentiate “hub” nodes from non-hubs. As we show,
we are able to provide concrete statistical guarantees for
our procedure, demonstrating improved sample complexity
over the vanilla `1 regularized node-regression procedure.

We note that the approach of Liu & Ihler (2012) is simi-
lar in spirit to ours, utilizing a weighted combination of the
node wise estimates to obtain the overall estimate, where
the weights are the inverse of an alternate notion of vari-
ance. However, their approach deals with parameter es-
timation in the asymptotic sense, and is not applicable to
structure estimation in the high dimensional setting.

Overall, our paper makes a key advance in the esti-
mation of hub-networked graphical models: we provide
a tractable procedure with strong statistical guarantees
even under very low-sample settings where we cannot
even estimate the node-conditional distributions of the hub
nodes. Our methods involve binary reliability indicators for
node-conditional distribution estimation, which could have
broader applications in many scientific and engineering ap-
plications, even outside the context of graphical model es-
timation.

2. Notation and Preliminaries
LetX = (X1, . . . , Xp) be a random vector, with each vari-
able Xi (i ∈ [p]) taking values from a discrete set X . Let
G = (V,E) be an undirected graph over p nodes, cor-
responding to the p variables {X1, . . . , Xp}. A pairwise
Markov random field over X = (X1, . . . , Xp) is a proba-
bility distribution specified by non-negative pairwise func-
tions φrt : X × X → R for each edge (r, t) ∈ E:

P(x) ∝
∏
rt∈E

φrt(xr, xt) (1)

Note that we use rt as a shorthand for the edge (r, t). In
this paper, we focus on the Ising model setting i.e. where
we have binary variables with X = {−1, 1}, and where
φrt = exp (θrtxrxt) for a given set of parameters θ =
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{θrt | rt ∈ E}. In this case, (1) can be rewritten as :

Pθ(x) =
1

Z(θ)
exp

{∑
rt∈E

θrtxrxt

}
, (2)

where Z(θ) =
∑

x∈{−1,1}p
exp

{∑
rt∈E θrtxrxt

}
.

Let D := {x(1) . . . , x(n)} be n samples drawn i.i.d from
the Ising model distribution Pθ∗ with parameters θ∗ ∈ R(p

2)

and Markov graph G∗ = (V,E∗), |V | = p. Note that
each sample x(i) is a p-dimensional binary vector x(i) ∈
{−1, 1}p. The edge set E∗ is related to the parameters θ∗

as E∗ = {(r, t) ∈ V × V | θ∗rt 6= 0}.

The task of graphical model selection is to infer this edge
set E∗ using the n samples. Any estimator Ên for this task
is said to be sparsistent if it satisfies P

[
Ên = E∗

]
→ 1 as

n→∞.

2.1. `1-regularized estimator

We now briefly review the state-of-the-art estimator of
(Ravikumar et al., 2010) (called the `1-estimator hence-
forth). The key idea there is to estimate the true graph
E∗ by estimating the neighbourhood of each node r ∈
V in turn. Suppose N ∗(r) denotes the true neighbours
of the vertex r, so that N ∗(r) = {t | (r, t) ∈ E∗}.
The `1-estimator uses sparsistent neighborhood estimators
N̂n(r) ⊂ V ∀ r ∈ V s.t. P

[
N̂n(r) = N ∗(r)

]
→ 1 as

n → ∞, to then obtain a sparsistent estimate of the entire
graph.

Note that for any r ∈ V , the set of parameters
θ∗ is related to the true neighbourhood as N ∗(r) =
{t | θ∗rt 6= 0, t ∈ V }. The `1-estimator exploits this to pose
neighbourhood selection as an `1-regularized logistic re-
gression problem, minimizing the negative conditional log-
likelihood for each node with an additional `1-penalty.
Note that for a set of parameters θ and a node r ∈ V ,
the conditional distribution of Xr conditioned on XV \r is
given as

Pθ
(
xr |xV \r

)
=

exp(2xr
∑
t∈V \r θrtxt)

1 + exp(2xr
∑
t∈V \r θrtxt)

. (3)

Defining θ\r = {θrt | t ∈ V, t 6= r} and x\r =
{xt | t ∈ V, t 6= r}, the negative conditional log-likelihood
of the samples D would be given by

L(θ\r;D) =

1

n

n∑
i=1

{
log
(

1 + exp
(

2x(i)r θT\rx
(i)
\r

))
− 2x(i)r θT\rx

(i)
\r

}
.

(4)

The `1-estimator solves the following optimization prob-
lem for each r ∈ V :

arg min
θ\r∈Rp−1

{
L(θ\r;D) + λ‖θ\r‖1

}
. (5)

Let θ̂\r(D) correspond to the solution of (5). Then the
neighbourhood estimate is given as the non-zero locations
or support of θ̂\r(D): N̂λ(r;D) = Support

(
θ̂\r(D)

)
. Fi-

nally, the edge estimate is computed by taking the union
of all neighbourhood estimates: Ên,λ = ∪

r∈V
{(r, t) | t ∈

N̂λ(r;D)}.

The `1-estimator has been shown to have strong statisti-
cal guarantees under certain incoherence conditions. Be-
low, we restate the incoherence conditions of (Ravikumar
et al., 2010), for the sake of completeness. These are stated
in terms of the Hessian (in expectation) of the likelihood
function for the true parameter vector θ∗\r, which is given
as Q∗r = E

[
∇2 logPθ∗

(
xr |xV \r

)]
. For brevity, we shall

briefly write Q∗r as Q∗, the true neighbourhood set N ∗(r)
as N , and its complement, V \ N ∗(r) as N c. Then, their
incoherence conditions (with r ∈ V being implicit in Q∗

and N ) are :

(A1) ∃ a const. Cmin > 0 s.t. Λmin (Q∗NN ) ≥ Cmin. Also,

∃ a const. Cmax s.t. Λmax

(
E
[
XV \rX

T
V \r

])
≤

Cmax

(A2) ∃ a constant α ∈ (0, 1] s.t.
∥∥∥Q∗N cN (Q∗NN )

−1
∥∥∥
∞
≤

1− α

Note that Λmin(·) and Λmax(·) correspond to the minimum
and maximum eigenvalues of a matrix respectively, and
‖·‖∞ corresponds to the standard `∞-matrix norm.

Now, we restate the main theorem below from (Ravikumar
et al., 2010) using our notation, and refer the reader to their
paper for details.
Theorem 1 (Guarantee for the `1-estimator; see (Raviku-
mar et al., 2010)). Suppose an Ising graphical model with
true parameter set θ∗ satisfies conditions (A1) and (A2)
for all nodes r ∈ V . Consider any r ∈ V , and let
dr = ‖θ∗\r‖0 denote its degree. Then, there exist constants

c1, c2, c3, c4 such that if we have λ ≥ c1

√
log p
n and n >

c2 d
3
r log p and N ∗sub(r) =

{
t ∈ N ∗(r)

∣∣∣ |θ∗rt| ≥ c3√drλ},
then

P
(
N̂λ(r;D) = N ∗sub(r)

)
≥ 1− 2 exp

(
−c4λ2n

)
. (6)

Based on Theorem 1, and a simple application of the union
bound, we can see that the sample complexity for recov-
ering the entire graph scales as n = Ω(d3max log p) sam-
ples, where dmax is the maximum degree of the graph
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G∗ = (V,E∗). However, as detailed earlier, dmax may
be huge for hub-graphs, so that the sample complexity of
the `1-estimator will be large for such graphs.

3. Our Algorithm
As noted in the introduction, our approach is based on
using a quantitative criterion for checking whether or not
the given number of samples suffice for regularized node-
conditional distribution estimation as in the `1-estimator at
a given node. Given such a criterion, we can then take
the union of only those neighborhood estimates which the
method is guaranteed to estimate accurately, and not con-
sider the “junk” estimates. Towards building such a observ-
able “sufficiency” criterion, we first setup some notation.

3.1. Sufficiency Measure

For every r ∈ V and t ∈ V \ r, we define pr,n,λ(t) =

P
(
t ∈ N̂λ(r;D)

)
, as the probability of variable t being

included in the neighbourhood estimate of variable r, es-
timated by the `1-estimator with regularization λ, given n
samples drawn i.i.d. from the underlying Ising model. Note
that the probability is taken over n samples. Based on The-
orem 1, we have the following simple corollary.
Corollary 1. For any r ∈ V , suppose θ∗ and (n, λ) satisfy
all conditions of Theorem 1 with constants c1, c2, c3, c4;
then

pr,n,λ(t) ≥ 1− 2 exp
(
−c4λ2n

)
if t ∈ N ∗sub(r) and,

pr,n,λ(t) ≤ 2 exp
(
−c4λ2n

)
if t /∈ N ∗sub(r),

(7)

where N ∗sub(r) =
{
t ∈ N ∗(r)

∣∣∣ |θ∗rt| ≥ c3√dλ}.

Thus, when the number of samples n is sufficient for neigh-
borhood recovery, depending on whether node t is in the
true neighborhood of r, pr,n,λ(t) goes extremely close to
zero or one; equivalently pr,n,λ(t) (1− pr,n,λ(t)) goes ex-
tremely close to zero. Building on this observation, let us
define the “sufficiency” measure

Mr,n,λ = max
t∈V \r

pr,n,λ(t) (1− pr,n,λ(t)) . (8)

It can thus be seen that this sufficiency measure goes to zero
when the number of samples n is sufficient for recovering
the neighborhood of node r.

In the sequel, we will analyze a natural U -statistic to esti-
mate this sufficiency measure from data. We first require
some more notation. For any b

(
1 < b < n

2

)
, we define

Sb(D) as the set of all possible subsamples of size b, drawn
from D without replacement, so that

Sb(D) = {(x(i1), . . . , x(ib)) | 1 ≤ i1 < . . . < ib ≤ n}.
(9)

Given any subsample Db ∈ Sb(D) of size b, let F tλ,r(Db)
be a function such that

F tλ,r(Db) =

{
1 if t ∈ N̂b,λ(r;Db)

0 otherwise.
(10)

Now, we consider the U-statistic (of order b),

p̃r,b,λ(t;D) =
1(
n
b

) ∑
Db∈Sb(D)

F tλ,r(Db). (11)

Note that E [p̃r,b,λ(t;D)] = pr,b,λ(t). We are now ready to
provide the U -statistic estimate of the sufficiency measure
in (8):

M̃r,b,λ(D) = max
t∈V \r

p̃r,b,λ(t;D) (1− p̃r,b,λ(t;D)) .

(12)

Computing M̃r,b,λ(D) would require computing
p̃r,b,λ(t;D) for every t ∈ V \ r, which in turn would
require considering all possible

(
n
b

)
sub-samples of D.

However, as we show below (see also analyses in (Liu
et al., 2010; Politis et al., 1999) on sub-sampling), it
suffices to choose a number N ≥ n/b of subsamples
drawn at random. Thus, our actual estimate for pr,b,λ(t) is

p̂r,b,λ(t;D) =
1

N

N∑
i=1

F tλ,r(Di), (13)

where D1, . . . , DN are subsamples chosen independently
and uniformly at random from Sb(D), and the estimate for
the sufficiency measure is

M̂r,b,λ(D) = max
t∈V \r

p̂r,b,λ(t;D) (1− p̂r,b,λ(t;D)) .

(14)

We describe the procedure to calculate M̂r,b,λ(D) in Al-
gorithm 1.

Once M̂r,b,λ(D) has been computed, we have the follow-
ing lemma which shows that it is ε-close to Mr,b,λ with
high probability, provided we have sufficiently many sam-
ples .

Proposition 1 (Concentration of M̂r,b,λ(D) to Mr,b,λ).
For any δ ∈ (0, 1] and ε > 0, if we have n >
18b
ε2 [log p+ log (4/δ)] and N ≥ dnb e, then,

P
(
|M̂r,b,λ(D)−Mr,b,λ| ≤ ε

)
≥ 1− δ. (15)

3.2. Behavior of the Sufficiency Measure

The key question of interest is whether we can use
the sufficiency measure Mr,b,λ (via its sample estimate
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Algorithm 1 Estimating M̂r,b,λ(D)

Input : Data D := {x(1), . . . , x(n)}, Regularization pa-
rameter λ, Sub-sample size b , No. of sub-samples
N

Output: An estimate of M̂r,b,λ(D)

∀ t ∈ V \ r, p̂r,b,λ(t;D)← 0
for i = 1 to N do

Pick a sub-sampleDi chosen uniformly randomly from
Sb(D)

Compute N̂b,λ(r;Di) by solving (5) (`1-estimate)
for t ∈ N̂b,λ(r;Di) do

p̂r,b,λ(t;D)← p̂r,b,λ(t;D) + 1

∀ t ∈ V \ r, p̂r,b,λ(t;D)← p̂r,b,λ(t;D)/N

M̂r,b,λ(D)← max
t∈V \r

p̂r,b,λ(t;D) (1− p̂r,b,λ(t;D))

M̂r,b,λ(D)) to detect “hub-nodes” that we define specifi-
cally as those nodes for which we do not have enough sam-
ples for the `1-estimator to be sparsistent. Correspondingly,
let us define “non-hub” nodes in this context as those nodes
for which we do have enough samples for the `1-estimator
to be sparsistent. We formalize these notions below.

Definition 1 (Non-Hub Node vs. Hub Node). Assume that
the true parameter set θ∗ satisfies the incoherence condi-
tions, (A1) and (A2), for all nodes r ∈ V . Consider any
node r ∈ V . It is termed a “non-hub node” w.r.t. n sam-
ples if ∃ a regularization parameter λ s.t. (n, λ) satisfy all
conditions of Theorem 1 with constants c1, c2, c3, c4. Oth-
erwise, the node is termed a “hub” node.

Since the sample complexity of neighborhood estimation
via the `1-estimator scales cubically with the node-degree
(from Theorem 1), hub nodes as we define here correspond
loosely to high-degree nodes, but in the sequel, the exact
specification of “hub” and “non-hub” nodes are as detailed
by the definition above.

Before we describe the behaviour of Mr,b,λ for “hub”
nodes and “non-hub” nodes, we impose the following tech-
nical assumptions on the behaviour of pr,b,λ(t) needed for
our algorithm to work.

Assumption 1. ∀ r ∈ V , pr,b,λ(t) satisfies the following:
For fixed b and some constant c(> 0), let

λmin(t) = min {λ ≥ 0 | pr,b,λ(t) ≤ 1− 2 exp (−c log p)} ,
and,

λmax(t) = max {λ ≥ 0 | pr,b,λ(t) ≥ 2 exp (−c log p)} .
(16)

Then, λmin(t) and λmax(t) are attained at finite values s.t.

(a) For any t ∈ V \ r and λ ∈ (λmin(t), λmax(t)), we
have

pr,b,λ(t) ∈ [2 exp(−c log p), 1− 2 exp(−c log p)] .
(17)

(b) For all t /∈ N ∗(r),

λmin(t) ≤ λmin < λmax ≤ λmax(t), (18)

for some finite λmin, λmax ≥ 0 independent of t.

(c) For any t ∈ V \r, ∃ t′ /∈ N ∗(r) : λmin(t′) < λmax (t).

Additionally, pr,b,λ(t) is a continuous function of λ.

To build intuition for the assumptions, as well as our anal-
ysis in the sequel, it will be instructive to consider the be-
havior of the inclusion probability pr,b,λ(t) as we increase
λ from zero to infinity. When λ is zero, the `1-estimator
reduces to the unregularized conditional MLE: any vari-
able t ∈ V \r will always occur in the neighborhood esti-
mate of node r, and pr,b,λ(t) will be equal to one. As λ
increases, the inclusion probability in turn reduces, and at
a very large value of λ, the inclusion probability pr,b,λ(t)
will become equal to zero: this follows from the property
of the `1-estimator, where there exists a large regulariza-
tion weight when the parameter estimate becomes equal to
zero.

In the assumptions above, it can be seen that if λmin(t) and
λmax(t) exist, then by definition, we must have λmin(t) ≤
λmax(t). Part (a) of the assumption is a smoothness con-
straint that ensures that if the probability of inclusion or
exclusion of a variable into a neighbourhood gets close to
1, then it stays close to 1, and does not vary wildly. Part
(b) ensures that ranges of [λmin(t), λmax(t)] intersect at
least for all irrelevant variables t /∈ N ∗(r). This is a very
mild assumption that ensures that the inclusion probabil-
ity of an irrelevant variable does not stay exactly at one
as we increase λ, and reduces at least very slightly (below
the threshold of 1 − 2 exp(−c log p)) before other irrele-
vant variables have their inclusion probability drop from
one all the way to zero. Part (c) is a closely related mild
assumption that ensures that the probability of inclusion
of atleast one irrelevant variable would have dropped by
a small value from 1 before any other variable has its in-
clusion probability drop from one all the way to zero. We
note that these mild technical assumptions on the inclusion
probabilities always hold in our empirical observations.

Armed with these assumptions, we now analyze the behav-
ior of our sufficiency measure Mr,b,λ. Our next propo-
sition shows that there exists atleast one “bump” in the
graph of the sufficiency measure against the regularization
penalty λ.
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(a) Mr,b,λ for a hub node
(degree = 19)
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(b) Mr,b,λ for a non-hub node
(degree = 1)

Figure 1. Behaviour ofMr,b,λ for non-hub nodes and hub-nodes
in a star graph on p = 100 nodes

Proposition 2 (“First Bump”). Suppose Assumption 1
holds with constant c > 0. Let

γ = 2 exp(−c log p) (1− 2 exp(−c log p)) . (19)

For any node r ∈ V , let λl = inf {λ ≥ 0 :Mr,b,λ ≥ γ}
be the smallest regularization penalty where the sufficiency
measure is greater than a small threshold above zero, and
λu = inf {λ > λl :Mr,b,λ < γ} be the next value of the
regularization penalty where the sufficiency measure falls
below that threshold. Then, (a) the infima above are at-
tained at finite values, and (b) for any k ∈ (γ, 1/4],
∃λ ∈ (λl, λu) s.t.Mr,b,λ ≥ k.

Our next two propositions track the behavior of the `1-
estimate N̂b,λ(r;D) after the first bump outlined above.
The very next proposition provides the behavior for “non-
hub” nodes.

Proposition 3 (Behavior at λu for “non-hub nodes”). Let
r ∈ V be a “non-hub node” w.r.t. b samples, and constants
for all conditions of Theorem 1 being c1, c2, c3, c4. Let As-
sumption 1 hold for a constant c > 1 with c < c1c4, and
let λu be as defined in Proposition 2. Then, N̂b,λu

(r;D)
recovers the neighborhood with high probability:

P
(
N ∗sub(r) ⊆ N̂b,λu

(r;D) ⊆ N ∗(r)
)

> 1− 2 exp (−(c− 1) log p) ,

where N ∗sub(r) =
{
t ∈ N ∗(r)

∣∣∣ |θ∗rt| ≥ c3√dλ}.

The proposition thus tells us that for “non-hub nodes”, af-
ter the first bump when the value ofMr,b,λ becomes very
close to zero, the `1-estimator recovers N ∗sub(r) w.h.p. (as
also indicated by Theorem 1). Note that when increas-
ing λ further, there would be further bump(s): the value
of Mr,b,λ would rise, but would again drop back to zero:
when λ is very large, the neighborhood estimate is null, so
that the probability for any node to be in the neighborhood
will be exactly zero; so that the sufficiency measure will be

equal to zero. Figure 1(b) demonstrates this behavior in a
simulated dataset.

On the other hand, for “hub nodes”, the behavior of
N̂b,λ(r;D) at λ = λu, defined in Proposition 2, is given
by the following proposition.

Proposition 4 (Behavior at λu for “hub nodes”). Let r ∈ V
be a “hub node” w.r.t. b samples. Also, let Assumption
1 hold with constant c > 1. Then N̂b,λu(r;D) excludes
irrelevant variables with high-probability:

P
(
N̂b,λu

(r;D) ⊆ N ∗(r)
)
> 1− 2 exp (−(c− 1) log p) .

The proposition thus tells us that for “hub nodes”, after the
first bump when the value of Mr,b,λ becomes very close
to zero, irrelevant variables are excluded, though however
there is no guarantee on relevant variables being included.
Empirically in fact, the end of the first bump typically oc-
curs at a very large value of λ when all variables are ex-
cluded; in particular, the graph of Mr,b,λ against λ typi-
cally has a single bump. Figure 1(a) demonstrates this be-
havior in a simulated dataset.

Propositions 3 and 4 thus motivate using the behaviors of
the sufficiency measure as outlined above to distinguish
hub nodes and non-hub nodes; and then compute the graph
estimate using the neighborhood estimates from the non-
hubs alone. This natural procedure is described in Algo-
rithm 2.

Algorithm 2 Algorithm to compute neighborhood estimate
N̂ (r), for each node r ∈ V , and the overall edge estimate
Ê

Input : Data D := {x(1), . . . , x(n)} , Regularization pa-
rameters Λ := {λ1, . . . , λs} , Sub-sample size b,
No. of sub-samples N , Thresholds on sufficiency
measure tl and tu, Node r ∈ V

Output: An estimate N̂ (r) of the neighborhood for each
r ∈ V , and the overall edge estimate Ê

foreach r ∈ V do
∀λ ∈ Λ, Compute M̂r,b,λ(D) using Algorithm 1
λ′ ← Smallest λ ∈ Λ s.t. M̂r,b,λ(D) > tu
Λ← {λ ∈ Λ : λ > λ′}
λ0 ← Smallest λ ∈ Λ s.t. M̂r,b,λ(D) < tl

N̂ (r)←
{
t | p̂r,b,λ0

(t;D) ≥ 1+
√
1−4tl
2

}
Ê ←

⋃
r∈V
{(r, t) | t ∈ N̂ (r)}

The following theorem is a natural corollary of Theorem 1,
and Propositions 3 and 4. Note that in the below, we as-
sume that the true parameter set θ∗ satisfies the incoherence
conditions, (A1) and (A2), for all nodes r ∈ V ; and that
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Assumption 1 holds ∀ r ∈ V , with an appropriate constant
c > 2, satisfying conditions of Proposition 3 for “non-hub
nodes”.
Theorem 2 (Guarantee for the estimator of Algo-
rithm 2). Suppose we run Algorithm 2 setting tl =
2 exp(−c log p)(1 − 2 exp(−c log p)) + ε, tu = 1/4 − ε,
the sub-sample size b = f(n) (with

√
n ≤ f(n) < n/2),

and number of sub-samples N ≥ dn/f(n)e, such that

n > 18f(n) [log p+ log (4/δ)] /ε2. (20)

For any degree-value d ∈ {1, . . . , p} and constant c′′ > 0,
denote

Ed =

{
(s, t) ∈ E∗

∣∣∣ min(d(s), d(t)) ≤ d, |θ∗st| ≥ c′′
√
d log p

n

}
(21)

where d(v) corresponds to the degree of vertex v in E∗.
Then, there exist constants c, c′, c′′, c′′′, such that if the sub-
sample size scales as

f(n) > c′d3 log p, (22)

then the graph structure estimate Ê of Algorithm 2 satis-
fies:

P
(
Ed ⊆ Ê ⊆ E∗

)
≥ 1− 2 exp (−c′′′ log p)− δ. (23)

Now, let us define the critical degree, dc, of a graph G∗ =
(V,E∗), as the minimum degree such that neighborhoods
of vertices with at most the said degree cover the whole
graph, i.e.

dc = min d

s.t. ∀ (s, t) ∈ E∗, either d(s) ≤ d or d(t) ≤ d.
(24)

The following corollary then gives the sample complexity
for exact recovery of the graph, assuming that the edges
have sufficient weight.
Corollary 2. Let the conditions of Theorem 2 be satisfied,
with b = f(n) as the sub-sample size. Let dc be the crit-
ical degree of the graph G∗. Then there exist constants
c′, c′′, c′′′ s.t. if the sub-sample size scales as

f(n) > c′d3c log p, (25)

and |θ∗st| ≥ c′′
√

dc log p
n ∀ (s, t, ) ∈ E∗, then

P
(
Ê = E∗

)
≥ 1− 2 exp(−c′′′ log p), (26)

where Ê is the graph structure estimate from Algorithm 2.

Note that we may choose f(n) = c′n1−ρ, for some value
of ρ ∈ (0, 0.5], as the sub-sample size. The choice of ρ
would be governed by dc for the graph under consideration.
For example, if dc is a constant (e.g. dc = 1 in a star
graph), then the optimal choice of ρ would be 0.5, yielding
a overall sample complexity of Ω

(
(log p)2

)
.

4. Experiments
In this section, we present experimental results demonstrat-
ing that our algorithm does indeed succeed in recovering
graphs with a few hubs.

4.1. Synthetic Data

We first performed structure learning experiments on sim-
ulated data using 3 types of graphs:

(a) a collection of stars with p = 100 nodes involving 5
hub nodes with degree d = 19, each connected to 19
other degree d = 1 nodes.

(b) a grid graph with 81 nodes (9 × 9), with 2 additional
high degree hub-nodes of degree d = 12 (so that p =
83) attached to random points in the grid.

(c) a power-law graph on p = 100 nodes generated us-
ing the preferential attachment scheme (Barabasi &
Albert, 1999).

For each graph, we considered a pairwise Ising model with
edge weight θ∗rt = ω

max(dr,dt)
, for some ω > 0, and where

dr and dt were the degrees of r and t respectively. For
each such Ising model, we generated n i.i.d. samples D =
{x(1), . . . , x(n)} using Gibbs sampling.

In all our experiments, for our algorithm (denoted as SL1
in our plots), the value of N , the number of times to sub-
sample, was fixed to 60. We set lower and upper thresh-
olds on the sufficiency measure as tl = 0.1 and tu = 0.2.
The number of subsamples was set to b = min

(
20
√
n, n2

)
and the set of regularization parameters was taken as Λ =
{0.005, 0.01, 0.015, . . . , 1}. We performed comparisons
with the `1-estimator (Ravikumar et al., 2010) (denoted as
L1 in our plots) and the reweighted `1-estimator for scale-
free graphs (Liu & Ihler, 2011) (denoted as RWL1 in our
plots). For both these methods, the best regularization pa-
rameter was chosen using the Bayesian information crite-
rion (BIC) from the grid of regularization parameters Λ.
Figure 2 shows plots of the Average Hamming Error (i.e.
average number of mismatches from the true graph) with
varying number of samples for our method and the base-
lines, computed over an average of 10 trials. Since our
estimate uses subsamples to compute its sufficiency mea-
sure, when the number of samples is extremely low, the
deviation of the sample sufficiency measure estimate from
the population sufficiency measure becomes large enough
so that the resulting mistakes made by our method in des-
ignating hubs and non-hubs increase its overall Hamming
error. We note however that at such extremely low number
of samples, it can be seen that the overall Hamming error
of any estimator is quite high, so that none of the estimators
provide useful graph estimates in any case. It can be seen
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(a) Stars Graph
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(b) Hub+Grid Graph

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

70

80

Number of Samples

H
am

m
in

g 
E

rr
or

 

 
L1
RWL1
SL1

(c) Preferential Attachment Graph

Figure 2. Plots of Average Hamming Error vs Number of Samples

(a) L1 with BIC (b) Our Algorithm

Figure 3. Graphs obtained using US Senate voting records data from the 109th congress (Bannerjee et al., 2008)

that other than at such extremely few samples, we achieve
much lower Hamming error than both L1 and RWL1, and
which is particularly pronounced for scale-free graphs such
as those provided by the preferential attachment model.

4.2. Real World Data

We ran our algorithm on a data set consisting of US sen-
ate voting records data from the 109th congress (2004 -
2006) (Bannerjee et al., 2008). It consists of 100 nodes
(p = 100), corresponding to 100 senators. There are 542
samples, each representing a bill that was put to vote. For
each (senator, bill) pair, the vote is recorded as either a 1
(representing a yes), a −1 (representing a no) or a 0 (repre-
senting a missed vote). For the purpose of the experiment,
all 0 entries were replaced by −1, as also done in (Banner-
jee et al., 2008).

Our algorithm was run with the parameters N =
60, tl = 0.1, tu = 0.2, b = 450 and Λ =
{0.005, 0.01, 0.015, . . . , 1}. Figure 3(b) shows the graph
obtained using our method, whiles Figure 3(a) shows the

graph obtained by running the `1-estimator (Ravikumar
et al., 2010) with the regularization parameter being cho-
sen using the Bayesian Information Criterion (BIC) from
the set of regularization parameters Λ.

We see that the graph obtained using the `1-estimator with
BIC is much denser than what we obtain. This also corrob-
orates the observation of (Liu et al., 2010), that BIC leads
to larger density in high dimensions. A few of the nodes
in the graph using our algorithm are seen to have 0 degree,
and are thus disconnected from the graph. This might be
because these might be higher degree “hub” nodes, but for
which the number of samples is not sufficient enough to
provide a reliable estimate of the neighbourhoods vis-à-vis
their degree. Overall, the sparse graph we obtained using
our reliability indicator based method suggests the need for
such reliability indicators to prevent the inclusion of spuri-
ous edge-associations.
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