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Abstract
Topic models such as the latent Dirichlet allo-
cation (LDA) have become a standard staple in
the modeling toolbox of machine learning. They
have been applied to a vast variety of data sets,
contexts, and tasks to varying degrees of success.
However, to date there is almost no formal theory
explicating the LDA’s behavior, and despite its
familiarity there is very little systematic analysis
of and guidance on the properties of the data that
affect the inferential performance of the model.
This paper seeks to address this gap, by providing
a systematic analysis of factors which character-
ize the LDA’s performance. We present theorems
elucidating the posterior contraction rates of the
topics as the amount of data increases, and a thor-
ough supporting empirical study using synthetic
and real data sets, including news and web-based
articles and tweet messages. Based on these re-
sults we provide practical guidance on how to
identify suitable data sets for topic models, and
how to specify particular model parameters.

1. Introduction
Topic models such as the latent Dirichlet allocation (LDA)
have become a familiar tool in machine learning (Blei et al.,
2003; Pritchard et al., 2000). They have played an im-
portant role in a variety of data mining tasks, both within
the scope of computer science (Blei et al., 2003; Griffiths
& Steyvers, 2004; Ramage et al., 2010; Liu et al., 2009;
Wang & Blei, 2011) and reaching out to other fields, such
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as biomedical informatics (Ling et al., 2007), scientomet-
rics (Griffiths & Steyvers, 2004; McCallum et al., 2006),
social and political science (Ramage et al., 2009; Grim-
mer, 2010), and digital humanities (Mimno, 2012). Despite
these successes, a thorough understanding of the LDA’s sta-
tistical behavior is lacking. Certain properties of the LDA
have become part of the machine learning folklore, but
never been formally proven; some other properties seem to
be misunderstood, resulting in instances of the model being
used but not truly applicable.

For instance, the LDA is known to achieve promising
results in modeling text collections such as news arti-
cles (Blei et al., 2003; Newman et al., 2006), scientific
papers (Griffiths & Steyvers, 2004; Wang & Blei, 2011),
and blogs (Liu et al., 2009). However, the results are
mixed when it is applied to unconventional data sets such as
tweets (i.e., short messages posted on Twitter.com) (Hong
& Davison, 2010; Zhao et al., 2011), query logs (Bing
et al., 2011; Carman et al., 2010), digital books (Mimno &
McCallum, 2007), and metadata records (Newman et al.,
2010). These data sets, harvested from different real tasks,
usually fall into the situations where there are too few doc-
uments (e.g., Shakespeare’s plays), the documents are too
short (e.g., tweets, queries), or a document contains many
topics (e.g., books). As a result, ad hoc heuristics have
to be employed to preprocess the documents, such as to
break books into pages so that each page becomes a shorter
“document” (Mimno & McCallum, 2007), or to aggregate
tweets with the same attribute (e.g., written by the same
user) into longer “documents” (Hong & Davison, 2010;
Bing et al., 2011). Alternatively, arbitrary manipulations
of the LDA model have to be introduced in order to adapt
the topic model to a particular context (e.g., Mimno & Mc-
Callum (2007); Zhao et al. (2011); Carman et al. (2010)).

We are motivated by eager non-expert consumers of topic
modeling, who often ask questions such as: Is my data
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topic-model “friendly?” Why did the LDA fail on my data?
How many documents do I need to learn 100 topics? It is
difficult even for experts to provide quick and satisfactory
answers to those questions. As noted above some behaviors
of the LDA are known intuitively in the machine learning
folklore, but they are never theoretically justified, such as
the LDA’s deficiency in handling short documents. Other
situations remain quite mysterious, such as how the LDA
performs on a few lengthy documents, and what happens
when it overfits with a larger number of topics than actu-
ally present in the data. We will show in this paper, like
Liebig’s barrel, the performance of LDA is limited by the
length of the shortest stave, making it challenging to judge
its effectiveness without thorough empirical experiments.

In this paper we aim to provide a systematic analysis of
the behavior of the LDA in various settings. We identify
several limiting factors whose interactions play the crucial
role in determining the LDA’s performance. These factors
include the number of documents, the length of individual
documents, the number of topics, and the Dirichlet (hy-
per)parameters. The main contributions include (i) theoret-
ical results explicating the convergence behavior of the pos-
terior distribution of latent topics as the amount of training
data increases – as shown in Section 2, the convergence be-
havior is found to depend on the interactions of the limiting
factors mentioned above; (ii) a thorough empirical study re-
ported in Section 3 that provides support for the theory, by
varying the settings of the limiting factors on synthetic and
real data sets; (iii) these findings are translated to a num-
ber of concrete guidelines regarding the practical use of the
LDA model – these are discussed in details in Section 4.

2. Posterior Contraction Analysis of Topic
Polytope in the LDA

The latent Dirichlet allocation (LDA) model explains the
generation of text documents, which can be viewed as sam-
ples from a mixture of multinomial distributions over a vo-
cabulary of words. Each multinomial mixture component
is called a “topic”. We refer the reader to Blei et al. (2003)
and Pritchard et al. (2000) for a background on the model.
Here we provide a geometric reformulation of the LDA
model and present several theoretical results that explain
the behavior of the posterior distribution of the latent topic
variables, as the number of training data increases.

2.1. Latent Topic Polytope in the LDA

Let V denote the vocabulary (set of words). Each topic φk
is a vector in ∆|V |−1 – the (|V |−1)-dimensional probabil-
ity simplex. We assume that the documents are generated
by K topics Φ = (φ1 . . . , φK). Each document in the cor-
pus d ∈ {1, . . . , D} is then associated with a topic propor-
tion vector θd = (θd,1, . . . , θd,K) ∈ ∆K−1, where θd,k is

the probability that each word in document d is assigned to
topic k. Equivalently, document d uniquely corresponds to
a word probability vector ηd =

∑K
k=1 θd,kφk ∈ ∆|V |−1.

The words of document d, i.e. W d
[Nd]

:= (wdn)Nd
n=1, are in-

dependent and identically distributed samples from a multi-
nomial distribution parameterized by this probability vec-
tor ηd. To simplify the analysis, we assume all documents
have the same number of words Nd = N . The joint dis-
tribution of the full data set W [D]

[N ] := (W d
[N ])

D
d=1, denoted

by PDW[N]
, is the product distribution of all single document

distributions: PDW[N]
(W

[D]
[N ] ) :=

∏D
d=1 PW[N]

(W d
[N ]). Our

primary interest is the inference of the topic parameters Φ

on the basis of the sampled D × N words W [D]
[N ] , and how

this inference is affected by the way that the words form
into the documents. Note that compared to the original def-
inition of Blei et al. (2003), this alternative representation
does not involve latent assignment variables zdn’s – they
are simply marginalized out.

In a Bayesian estimation setting of the LDA model, the
document-topic and topic-word proportion vectors (θd and
φk’s) are assumed to be random and endowed with Dirich-
let prior distributions, parameterized by hyperparameters
α = (α1, . . . , αK) and β = (β1, . . . , β|V |), respectively.
Accordingly one is interested in the behavior of the pos-
terior distribution of the topic parameters Φ given the ob-
served documents. In particular, we want to understand
the convergence behavior of the posterior topic distribution
when the total amount of dataD×N increases to infinity. It
is expected that the posterior distribution of the topic vari-
ables should contract toward their true values as one has
more data. A natural question to ask is the rates at which
this posterior contraction phenomenon occurs.

In order to establish such an analysis, we shall introduce
a metric which describes the (contracting) neighborhood
centered at the true topic values, where the posterior dis-
tribution will be shown to place most its probability mass
on. The faster the contraction, the more efficient the statis-
tical inference. Although it would be ideal to examine the
convergence for each individual topic parameter, it is chal-
lenging due to the issue of identifiability: one relatively
minor problem is the “label-switching” issue, which means
that one can only identify the collection of Φ up to a per-
mutation. A more difficult identification problem is that,
any vector that can be expressed as a convex combination
of the topic parameters would be hard to identify and an-
alyze. To address these theoretical difficulties, instead of
investigating the convergence behavior of individual top-
ics, we study the convergence of the latent topic structure
through its convex hull:

G(Φ) = conv(φ1, . . . , φK),

which is referred to as the topic polytope (cf. Nguyen
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(2012)). By definition, all vectors that can be written as
a convex combination of the collection of topics will lie
in the polytope they span. To characterize the distance
between two polytopes G and G′, we use the “minimum-
matching” Euclidean distance metric, defined as:

dM(G,G′) = max{d(G,G′), d(G′, G)}, (1)

where

d(G,G′) := max
φ∈extr(G)

min
φ′∈extr(G′)

‖φ− φ′‖2, (2)

is the maximum value of the best matching distances be-
tween the extreme points of G and G′. Intuitively this met-
ric is a stable measure of the dissimilarity between two
topic polytopes. Under very mild conditions, this metric
can be proven to be equivalent to the well-known Hausdorff
metric in convex geometry (Nguyen, 2012). This metric
also has a very intuitive interpretation in the information
retrieval context, as will be discussed later in Section 3.

Using the minimum-matching Euclidean metric, the the-
orems in the sequel give explicit upper bounds for the
asymptotic posterior contraction rate, i.e., the rate at which
the posterior distribution of the topic variables contracts
around their true values.

2.2. Contraction of the Posterior of Topic Polytope

In order to state the theorems, several mild regularity con-
ditions are required on the true topic polytope and the in-
duced prior distribution Π on the polytopes. At a high
level, these assumptions are required to prevent the topic
polytope from being degenerate or collapsing. They are
also needed to ensure that the prior topic distribution is
thick (dense) enough in the space of parameters to be es-
timated (cf. Assumptions (S0)-(S3) in Nguyen (2012)). 1

Let G∗ = G(Φ∗) be the true topic polytope spanned by the
K∗ true topic parameters, based on which the D ×N data
set W [D]

[N ] is generated according to the true distribution de-
noted by PDW[N]|G∗ . In general we allow for K ≥ K∗. The
case ofK = K∗ means the number of true topics is known,
while K > K∗ corresponds to learning with an overfitted
LDA model. Now we state the main theorems.

Theorem 1 Assume the regularity conditions hold for
prior Π and G∗ is in the support of Π. If the Dirichlet
parameters for topic proportions αk ∈ (0, 1], and either
one of the following two conditions holds:

(A1) K = K∗, i.e. the true number of topics is known;

(A2) The Euclidean distance between every pair of topics
is bounded from below by a known positive constant r0;

1In the technical report (Nguyen, 2012), m,n are used instead
of D,N , respectively. The latter choice of notation is more com-
mon within the topic modeling literature.

then as data sizes D →∞ and N →∞ such that

log logD ≤ logN = o(D), (3)

for some sufficiently large constant C independent of N
and D,

Π
(
dM(G,G∗) ≤ C · δD,N |W [D]

[N ]

)
−→ 1 (4)

in PDW[N]|G∗ -probability. Here the upper bound for the con-
traction rate is

δD,N =

(
logD

D
+

logN

N
+

logN

D

) 1
2

. (5)

We make a number of observations:

1. Thm. 1 characterizes an upper bound for the learning
rate of the topic polytope through studying its extreme
points. In order to ensure the contraction rate to hold, D
and N are required to grow in a controlled manner as de-
scribed in (3). In particular, we should have logD ≤ N ,
which means the length of the documents should be at least
on the order of logD (up to a constant factor).

2. This upper bound rate is dominated by the maximum
one between ( logN

N )
1
2 , ( logD

D )
1
2 , as well as ( logN

D )
1
2 . Our

empirical study confirms the dependence on the first two
terms, while the last term does not appear to play a notice-
able role. We conjecture that the third term in the expres-
sion (5) may well be an artifact due to the proof techniques.

3. It should be emphasized that in practice the actual con-
traction rate of the LDA could be faster than the upper
bound given above. However, this looseness of the upper
bound only occurs in the exponent, the dependence on 1

D
and 1

N should remain due to a lower bound of the form
Ω( 1

DN ) (cf. Thm. 3(c) in Nguyen (2012)). In our empir-
ical study in Sec. 3.1.4, we find that the actual rate of the
LDA is well-approximated by

(
1
N + 1

D

)r
, where r ≥ 1/2.

4. The condition (A2) specifies a well-separated prior dis-
tribution (with known constant r0) on the topics, which is
reasonable in practice. Roughly speaking, this condition is
satisfied with high probability when the hyper-parameter of
the topic-word distribution is very small (β � 1), in which
case the topic vectors mostly concentrate on a few words.
This is also supported by our empirical study in the sequel.

5. That the convergence rate does not depend on the num-
ber of topics K is quite surprising and encouraging. This
suggests that once K is known, or the topics are well-
separated, the LDA inference is statistically efficient.

Observe that condition (A1) is probably not met in practice,
because the true number of topics K∗ is usually unknown.
While underfitting will result in a persistent error even with
infinite amount of data, we are most likely to prefer the
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overfitted setting, by having K � K∗. When neither Con-
dition (A1) nor (A2) holds, a much more pessimistic upper
bound is obtained, as stated in the following theorem:

Theorem 2 Assume the regularity conditions hold for
prior Π and G∗ is in the support of Π. If the Dirichlet
parameters for topic proportions αk ∈ (0, 1] and K∗ <
K ≤ |V |, then as D → ∞ and N → ∞ such as in (3),
Eq. (4) holds with

δD,N =

(
logD

D
+

logN

N
+

logN

D

) 1
2(K−1)

. (6)

This theorem gives an upper bound for the contraction rate
in general situations (i.e., either the selected number of top-
ics exceeds the truth, or the topics are not known to be well-
separated). Note how the upper bound deteriorates with K
– it behaves like a nonparametric rate. Note that the size
of the vocabulary |V | does not appear in the rate because
of the assumption that K ≤ |V |, so that the intrinsic di-
mension of the topic polytope is equal to K − 1. In fact,
when K > |V | one can obtain a contraction rate of similar
form, except that the exponent rate 1

2(K−1) is replaced by
1

2|V | . Although we give here only an upper bound, a mini-

max lower bound approximately of the form Ω(D−2/K) is
also obtained, confirming the statistical inefficiency of the
inference in general situations. The proofs of these results,
as well as theorems for the broader class of finite admix-
ture models are given in the technical report by one of the
authors (Nguyen, 2012).

3. Empirical Study
The contraction theorems provide a rigorous characteriza-
tion of the inference behavior of the LDA with the growth
of data. We next validate these theoretical findings us-
ing extensive experiments on both synthetic and real-world
data sets that present in different scenarios and with var-
ious configurations. We find that most empirical findings
are consistent with the conclusions of the theorems.

The metric: What we use for the empirical evaluation is
the minimum-matching Euclidean distance defined in (1)
between the true and learned topic polytopes. It is well-
known that when the number of vertices of a polytope in
general positions is smaller than the number of dimensions,
all such vertices are also the extreme points of their convex
hull. Since this is precisely the common setting of topic
modeling, the two quantities in (1) can be equivalently ex-
pressed as the following:

• Topic precision error (TPE):

d(G,G∗) = max
1≤k≤K

min
1≤j≤K∗

‖φk−φ∗j‖2 = TPE(G,G∗),

• Topic recall error (TRE):

d(G∗, G) = max
1≤j≤K∗

min
1≤k≤K

‖φ∗j−φk‖2 = TRE(G∗, G).

The TPE measures the largest deviation of the learned top-
ics with respect to the true topics, while the TRE measures
the largest deviation of the true topics from the collection
of the estimated ones. They are both common information
retrieval metrics applied to our topic learning problem.

3.1. Experiments on Synthetic Data

We first investigate the behavior of the LDA using synthetic
data sets that are generated by the LDA generative process
with different parameter configurations. We set the ground-
truth number of topics K∗ to be 3, the vocabulary size |V |
to be 5, 000, and the parameters of the symmetric Dirichlet
priors for topic proportions and word distributions to be
1 and 0.01, respectively, unless otherwise specified. The
same values of the hyperparameters are used to generate
the data and to learn the topics.

We focus on the variation of the following parameters:
the number of documents (D), the length of documents
(N ), the hyperparameter for the topic-word Dirichlet dis-
tribution (β), and the number of topics specified for infer-
ence (K). Collapsed Gibbs sampling (Griffiths & Steyvers,
2004) is used for model inference. The minimum-matching
Euclidean distance metric, i.e. the maximum one between
TPE and TRE metric, is used to evaluate the topic esti-
mates. In particular we report the learning error, which is
defined as the posterior mean of the aforementioned metric.
All the results reported are averaged over 30 simulations in
which the true topics and samples are all randomly gen-
erated according to the LDA model. The 95% confidence
intervals are also plotted.

3.1.1. SCENARIO I: FIXED N AND INCREASING D

In the first scenario, we fix the length of documents N =
500, and let the number of documents increase from 10
to 7,000. We consider two different values of K (corre-
sponding to the exact-fitted (K = K∗ = 3) and the over-
fitted (K = 10,K∗ = 3) scenarios, respectively), two dif-
ferent values of β (corresponding to well-separated topics
(β = 0.01) and more word-diffuse, less distinguishable
topics (β = 1)). The errors of the topics learned are re-
ported in Fig. 1. In this scenario, the main varying term

of the theoretical upper bound (5) is
(

logD
D

) 1
2

, which we
compare the empirical errors against. A few observations
can be made:
1. Compare plot (a) with (b), and (c) with (d) (same β but
different K), it can be seen that when the LDA is over-
fitted, the performance degenerates significantly. As pre-
dicted by Thm. 2, the error appears to either decrease very
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(a) K = K∗, β = 0.01
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(b) K > K∗, β = 0.01
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(c) K = K∗, β = 1
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(d) K > K∗, β = 1

Figure 1. Scenario I - Fixed N and increasing D. In the exact-fitted case, the error convergence rate well matches the result of Theorem
1. The over-fitted case leads to a much worse rate.
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(a) K = K∗, β = 0.01
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(b) K > K∗, β = 0.01
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(c) K = K∗, β = 1
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(d) K > K∗, β = 1

Figure 2. Scenario II - Fixed D and increasing N . In the over-fitted case, the error fails to vanish.

slowly due to the 1
2(K−1) exponent, or gradually become

flattened as the constant logN
N term in the bound becomes

the bottleneck.
2. Compare plot (a) with (c), and (b) with (d) (same K
but different β): when β is larger, the error curves decay
faster when less data is available. A possible explanation
is that the topics are clustered thus easier to identify on a
coarser level. As more data becomes available, the error
decreases more slowly due to the confusion between top-
ics on a finer level of inference. Interestingly, the error rate
flats out, even as the amount of data increases. By contrast,
when β is small, topics are more word-sparse and distin-
guishable, resulting in a more efficient learning rate.
3. When the number of topics is exactly fitted, the error

rate seems to match the function
(

logD
D

) 1
2

quite well. In
the over-fitted case however, the empirical rate is slower.
Later we will analyze the exact exponent of this rate.

3.1.2. SCENARIO II: FIXED D AND INCREASING N

We next fix the number of documents D to 1, 000 and let
the document length N range from 10 to 1, 400. We con-
sider the exact-fitted (K = K∗ = 3) and the over-fitted
case (K = 5), using the setting β = 0.01 (word-sparse
topics) and β = 1 (word-diffuse topics). The errors of the
topics learned by the LDA are reported in Fig. 2, in which

we compare against the varying term
(

logN
N

) 1
2

. The be-

havior of the LDA in this scenario is very similar to Sce-
nario I, as predicted by both theorems. In particular, in
the over-fitted case, the error fails to vanish even as N be-
comes large, possibly due to the presence of the constant
term logD

D in the upper bound.

3.1.3. SCENARIO III: N = D, BOTH INCREASING

We next apply the LDA to synthetic data generated with
D = N that is allowed to increase simultaneously from 10
to 1, 300. As before, both the exact-fitted (K = K∗ = 3)
and an over-fitted case (K = 5) with β = {0.01, 1} are
considered. The results are reported in Fig. 3, where the
error is plotted against logN

N = logD
D . Several observations

can be made:

1. As in previous scenarios, the LDA is effective in the
exact-fitted setting and when the word-distributions of the
topics are sparse (i.e., β is small). When both of these con-
ditions fail, the error rate fails to converge to zero, even as
the data sizes D = N increases (see Fig. 3).
2. Interestingly, when both D and N increase simultane-
ously, the empirical error decays at a faster rate than indi-

cated by the upper bound
(

logD
D

) 1
2

from Thm. 1. As in
the subsequent plots, a rough estimate could be Ω(1/D),
which actually matches the theoretical lower bound of the
error contraction rate (cf. Thm. 3 in Nguyen (2012)). This
suggests that the upper bound given in Thm. 1 could be
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0 200 400 600 800 1000 1200

0
.0

0
0
.0

5
0
.1

0
0
.1

5

D

E
rr

o
r Empirical results

0.1*log(D)/D

(b) K > K∗, β = 0.01
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(c) K = K∗, β = 1
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(d) K > K∗, β = 1

Figure 3. Scenario III - D = N . In the exactly-fitted case the error concentrates faster than the upper bound in Theorem 1. The
over-fitted case leads extremely slow error rates.
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(c) D = N , K = K∗
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Figure 4. Log-plot of the topic error rate against log(log(D)/D) whenD increases. Note that largerD corresponds to the left side of the
plot. We also plot straight lines with slopes indicating either the upper or the lower bound predicted by the theorems. (K∗ = 3,K = 5)

quite conservative in certain configurations and scenarios.

3.1.4. EXPONENTIAL EXPONENTS OF THE ERROR RATE

To precisely verify the theoretical bounds provided by the
theorems, we study the exact exponent of the empirical er-
ror rate of the LDA and present the results in Figure 4.

We consider two scenarios: (1) fixedN = 5 and increasing
D; and (2) D = N and both increasing. When the LDA is
exact-fitted (Fig. 4(a) and 4(c)), the slopes of the logarithm
of the error appear to be very close to 1, which matches
that of the lower bound Ω(1/D) mentioned above. On the
other hand, in the over-fitted setting (Fig. 4(b) and 4(d)),
the slopes of the logarithm of the error rate appear to tend
toward the range bounded by 1

2·K = 0.1 and 2
K = 0.4.

These are approximations of the exponents of lower/upper
bounds predicted by the theory, respectively.

3.2. Experiments on Real Data Sets

The results on synthetic data sets verified the soundness
of the theory. In this section, we present some empiri-
cal results when applying the LDA model to the follow-
ing widely studied real-world data sets: (1) Wikipedia arti-
cles, (2) news articles from the New York Times (NYT) 2,
and (3) short messages from Twitter.com. In all three col-

2http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

lections, stop words and infrequent words (i.e., words ap-
pearing less than 100 times in the Twitter data set or the
Wikipedia data set, and 50 times in the New York Times
data set) are excluded. For the Twitter data, we randomly
sample 10, 000 users who have at least 100 tweets collected
by the Twitter API (roughly 10% of all tweets) between
Jan. 14th and Jan. 20th of 2013. The statistics of the three
data sets are reported in Table 1.

Our goal is to test the effects of the four limiting fac-
tors on the performance of the LDA, namely the docu-
ment length (N ), the number of documents (D), and the
hyperparameters (α and β). In order to test the effect
of document lengths on the LDA’s performance, we con-
catenate all tweets posted by the same author as “pseudo-
documents,” which allows us to obtain longer documents.
For the same purpose, Wikipedia articles that contain less
than 50 words after preprocessing are excluded from the
analysis. We then construct data sets with various values
of N and D by randomly sampling words from each doc-
ument or randomly sampling documents from the corpus.
All results are averaged over 10 randomized simulations.
Hyper-parameters are set as α = 1 and β = 0.01 unless
otherwise specified.

As the ground-truth topics in real-world data are not avail-
able, it is necessary to introduce an alternative metric for
evaluation purposes. We adopt the widely used average

http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/
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Table 1. Statistics of the Real Data Sets
Data Set # documents # training documents # average document length vocabulary size (training)

Wikipedia 2,395,616 10,000 300.7 109,611
NYT 299,752 10,000 313.8 52,847

Twitter 81,553 10,000 417.3 122,035
For each data set, the entire set of documents are used for calculating PMI.

point-wise mutual information (PMI) to measure the qual-
ity of the learned topics (Newman et al., 2011). We have
also done the evaluation using perplexity on held-out data.
The findings are consistent with those observed with PMI.
Due to the space limitation, we omit these results.

Fig. 5 reports the empirical performance of the LDA on
the above real-world data sets via 10-fold cross-validations.
Rows in Fig. 5 correspond to the three data sets, and
columns correspond to different parameter configurations.

The results are consistent with the theory and the empiri-
cal analysis on synthetic data. When the data presents ex-
treme properties (e.g., very short or very few documents)
or when the hyperparameters are not appropriately set, the
LDA’s performance suffers. A turning point and a dimin-
ished return of the performance can be observed when in-
creasing N or D, suggesting favorable ranges of values of
the parameters. A benign range of the hyperparameters
also can be observed, e.g., a small β and either a small α
(Wikipedia) or a large α (NYT articles, Twitter) on differ-
ent data sets.

4. Discussion
Related work. Our main focus is to understand the lim-
iting factors of the LDA through studying the posterior dis-
tribution of the latent topic structure, as the amount of data
increases. Our results are based on mild geometric assump-
tions and are independent of inference algorithms (how-
ever, see a discussion on the limitations below). We note
some recent papers on the recoverability of the parame-
ters of the LDA (Arora et al., 2012; Anandkumar et al.,
2012). Both works rely on arguably stronger separabil-
ity/sparsity conditions on the true topics and are specific
to certain computationally efficient matrix factorization al-
gorithms.

The performance of the LDA has also been studied empir-
ically for various tasks and data sets using different eval-
uation measures (Newman et al., 2010; 2011). The con-
clusions are generally consistent with our findings. Mean-
while, Wallach et al. (2009) studied the role of asymmet-
ric Dirichlet priors. Mukherjee & Blei (2009) presented
an analysis of the difference between two inference al-
gorithms, collapsed variational inference and mean field
variational inference, and provided a relative performance
guarantee for the approximate inference. These studies
serve as a nice complement to our findings.

There are also interesting explorations of how to configure
the data to improve the performance of LDA in reality. For
example, Hong & Davison (2010) showed that LDA can
obtain better topics when trained on “pseudo-documents”
of aggregated tweets than on individual tweet. Mimno
& McCallum (2007) proposed to break digital books into
pages to obtain documents that are shorter and more con-
centrated on a few topics. These practices reconfirmed our
findings about the limiting factors. Our work provides a
theoretical justification and a thorough simulation based
validation of these heuristic procedures.

Implications and guidelines for lay users of the LDA.
We have presented the theory and supporting empirical
study of the LDA model-based posterior inference. These
findings are translated into the following guidance on the
use of the LDA in practice:

(1) The number of documents plays perhaps the most im-
portant role; it is theoretically impossible to guarantee iden-
tification of topics from a small number of documents, no
matter how long. Once there are sufficiently many docu-
ments, further increasing the number may not significantly
improve the performance, unless the document length is
also suitably increased. In practice, the LDA achieves com-
parable results even if thousands of documents are sampled
from a much larger collection.
(2) The length of documents also plays a crucial role: poor
performance of the LDA is expected when documents are
too short, even if there is a very large number of them. Ide-
ally, the documents need to be sufficiently long, but need
not be too long: in practice, for very long documents, one
can sample a fraction of each document and the LDA still
yields comparable topics.
(3) When a very large number of topics than needed are
used to fit the LDA, the statistical inference may become
inescapably inefficient. In theory, the convergence rate de-
teriorates quickly to a nonparametric rate, depending on the
number of topics used to fit the LDA. This implies, in prac-
tice, the user needs to exercise extra caution to avoid select-
ing overly large number of topics for the model.
(4) The LDA performs well when the underlying topics are
well-separated in the sense of Euclidean metric; e.g., this is
the case if the topics are concentrated at a small number of
words. Another favorable scenario is concerned with the
distribution of documents within the topic polytope: when
individual documents are associated mostly with small sub-
sets of topics, so that they are geometrically concentrated
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Figure 5. Empirical performance of the LDA on real-world data sets evaluated by averaged PMI. Rows correspond to different data sets,
from top to bottom: (1) Wikipedia, (2) New York Times, and (3) Twitter. Columns correspond to different parameter configurations,
from left to right: (a) fixing D and increasing N , (b) fixing N and increasing D, (c) fixing N and D and varying α, and (d) varying β.

mostly near the boundary of the topic polytope.
(5) If it is believed that each document is associated with
few topics, the Dirichlet parameter of the document-topic
distributions should be set small (e.g. α ≈ 0.1). If the
topics are known to be word-sparse, the Dirichlet parameter
of the word distributions β is set small (e.g., 0.01), in which
case learning is efficient. Large β means more word-diffuse
and similar topics, which might be inefficient to learn.

Limitations of existing results. There are several limi-
tations of our results, particularly as we try to establish an
asymptotic theory and link them to the empirical behaviors
of the LDA model in practice:

(1) As the first attempt to address the posterior contraction
behavior of the LDA model, we required several geomet-
rically intuitive assumptions, some of which may not be
commonly enforced in practice. For instance, in reality we
do not know how separated the topics are, and whether their
convex hull is geometrically degenerate or not. These un-
favorable conditions, if true, would probably lead to worse
learning rates than what is established by the current theory.
This suggests that it may be beneficial to impose additional

geometric constraints on the prior distribution in a compu-
tationally efficient way to prevent degenerate situations.
(2) Our theoretical analysis focuses on the behavior of the
true posterior distribution of the latent topic variables. In
practice, however, the posterior is obtained via approxi-
mation techniques (e.g., MCMC sampling). Therefore our
empirical results inevitably contain such approximation er-
ror, which is dependent on the choice of the inference algo-
rithm and its settings. Although there is currently no ma-
ture theory or practically simple way of jointly assessing
both the computational complexity and statistical efficiency
in a latent variable model such as the LDA, this is an inter-
esting and important question worth exploring further.
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