Supplementary material for: Doubly Stochastic
Variational Bayes for non-Conjugate Inference

A Proof for the concavity of the bound when log g(8) is concave

Proposition 1. Assume a continuous probability density function ¢(z) in R” and a joint
density model function g(@) which is log concave with respect to & € RP. The variational
lower bound

F(p,C) = /RD q(0|p, C)log q(eg|(,f,)0)d9’

where ¢(0|u, C) = ﬁ(b (C~1(6 — p)), is concave with respect (p, C).

Proof: By applying the transformation z = C~1(8 — ) where C is taken to be a positive
definite matrix, F(u, C) can be written as

Fp, C) = - (2) [log g(Cz + p)] dz + log |C| + H(4(2)),

where H(¢p(z)) is constant with respect to (u, C'). Since C' is positive definite, log |C| is con-
cave. Further, if log g(Cz+p) is concave with respect to (u, C), then [, ¢(z) [log g(Cz + )] dz
would also be concave since it would be a non-negative linear combination of concave func-
tions and for the same reason F(u,C) would overall be concave. Therefore, what remains
to show is that log g(Cz + p) is concave with respect to (p, C). It holds that for o € [0,1],
a=1—aand 0,0, ¢ RP

log g(af1 + af2) > alog g(61) + alog g(02),
because log g(8) is concave with respect to 8. We want to show that
E(C, pn) =logg(Cz + p)
is concave w.r.t. (C, pu). We have

E(aCy + aCs,ap + ap) =log g (a(Crz + py) + a(Caz + py))
> alogg(Ciz + py) + alog g(Caz + py)
:aE(Clvul)+@E(02au2) (1)

which means that log g(Cz + ) is jointly concave with respect to the variational parameters

(1, C).

B DSVI for variable selection

Pseudo-code for the application of DSVI for variable selection is given in Algorithm 2 below.
The instantaneous value for the lower bound (a rolling-window average of such values, of size
200, is displayed in Figure 3 in the main paper and Figure 1 below) is defined as a single-
sample Monte Carlo estimate of the exact bound. IL.e. at the tth iteration of the algorithm
the instantaneous value of the lower bound is

FO =1logg(8") +1og |CY| + H,, 69 ~ ¢(8]p,C).

This corresponds to the general DSVI algorithm while for the DSVI-ARD case the instanta-
neous bound is defined analogously.

C Further information for the Gaussian process hyperparameter in-
ference experiments

For the GP regression experiments the joint probability density ¢g(@) is written in the form
9(8) = N(y|0.K + o I)p(8),



Algorithm 2 Doubly stochastic variational inference for variable selection (DSVI-ARD)
Input: ¢, y, 6, Vlogg.
Initialise u(®,c©), ¢t = 0.

repeat

t=t+1;
z ~ §(2);
0t — (-1 5 4 4 H(t—1);

(t)y _  (t—1) Blog'g(e(t*l)) u(til) _ .
Hg™ = HKq + pt ( 90, - (c{(f*l));ﬂuf;*l))? , d=1,...,D;

(t) _ (t=1) 310g§(9(t71)) 1 c(’ti1> _ .
Cy =Cq + pe ( 20, zd + D - (cl(it—l))g_'_(u((;,l))Q , d=1,...,D;

until convergence criterion is met.

where K is the covariance matrix defined from the GP prior, @ = (log(£7), .. .. log(¢},),log(c7),log(c?))
and p(6) = N(0]0,101) is the Gaussian prior. Notice that N (y|0,K + o21) is simply the
marginal likelihood of the GP regression model.

Furthermore, DSVT is applied by using a full scale matrix C' so that a fully dependent
Gaussian approximation is fitted to the exact posterior over the hyperparameters. The
learning rate sequences and annealing schedule when applying DSVI to all GP hyperpa-
rameter inference problems were chosen as follows. The learning rate p; is initialised to
po = 0.5/#training examples and scaled every 1000 iterations by a factor of 0.95. This learn-
ing rate is used to update u, whereas 0.1p; was used to update C. A total of 20000 iterations
was considered for all problems (i.e. 20 stages in the annealing schedule where in each stage
the learning rate remains constant).

Next, we provide all plots for the three GP regression experiments. Firstly, Figure 1
shows the evolution of rolling-averages of instantaneous lower bounds computed as described
previously. Then, Figures 2, 3 and 4 display the complete set of the marginal posterior
distributions for all hyperparameters in the three datasets.
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Figure 1: Rolling-averages (over a window of previous 200 iterations) of the instantaneous
lower bound values for Boston (left), Bodyfat (middle) and Pendulum (right) datasets.
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Figure 2: All marginal posterior distributions for all hyperparameters in Boston dataset. The
black solid lines show the ground-truth empirical estimates obtained by a very long run of
MCMC. The red dashed lines show the Gaussian marginals found by stochastic variational

inference.
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Figure 3: All marginal posterior distributions for all hyperparameters in Bodyfat dataset.
The black solid lines show the ground-truth empirical estimates obtained by a very long run
of MCMC. The red dashed lines show the Gaussian marginals found by stochastic variational

inference.
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Figure 4: All marginal posterior distributions for all hyperparameters in Pendulum dataset.
The black solid lines show the ground-truth empirical estimates obtained by a very long run
of MCMC. The red dashed lines show the Gaussian marginals found by stochastic variational
inference.



