On Robustness and Regularization of Structural Support Vector Machines: Supplementary Material

MohamadAli Torkamani
 Daniel Lowd

ALI@CS.UOREGON.EDU
LOWD@CS.UOREGON.EDU
Computer and Information Science Department, University of Oregon

Proof of Lemma 4.1:

Proof. We form $\delta_{\tilde{\boldsymbol{y}}}^{\mathcal{C}}(\boldsymbol{x}, \boldsymbol{y}, \tilde{\boldsymbol{x}})$ (from Eq. (7) in the paper):

$$
\begin{align*}
& \boldsymbol{\delta}^{\mathcal{C}}=\boldsymbol{\delta}_{\tilde{\tilde{y}}}^{\mathcal{C}}(\boldsymbol{x}, \boldsymbol{y}, \tilde{\boldsymbol{x}})= \\
& \phi_{\mathcal{C}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}})-\phi_{\mathcal{C}}(\tilde{\boldsymbol{x}}, \boldsymbol{y})-\phi_{\mathcal{C}}(\boldsymbol{x}, \tilde{\boldsymbol{y}})-\phi_{\mathcal{C}}(\boldsymbol{x}, \boldsymbol{y})= \\
& \sum_{\left(c_{x}, c_{y}\right) \in \mathcal{C}}\left(\prod_{i \in c_{x}} \tilde{\boldsymbol{x}}_{i}-\prod_{i \in c_{x}} \boldsymbol{x}_{i}\right)\left(\prod_{i \in c_{y}} \tilde{\boldsymbol{y}}_{i}-\prod_{i \in c_{y}} \boldsymbol{y}_{i}\right) \tag{1}
\end{align*}
$$

For an individual elements of the vector $\boldsymbol{\delta}$ as expanded in (1), we can apply Hölder's inequality to the right-hand side:

$$
\begin{aligned}
& \left|\boldsymbol{\delta}^{\mathcal{C}}\right| \leq \\
& \left(\sum_{c_{x} \in \mathcal{C}}\left|\prod_{i \in c_{x}} \tilde{\boldsymbol{x}}_{i}-\prod_{i \in c_{x}} \boldsymbol{x}_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{c_{y} \in \mathcal{C}}\left|\prod_{i \in c_{y}} \tilde{\boldsymbol{y}}_{i}-\prod_{i \in c_{y}} \boldsymbol{y}_{i}\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Since $\left|\prod_{i \in c_{y}} \tilde{\boldsymbol{y}}_{i}-\prod_{i \in c_{y}} \boldsymbol{y}_{i}\right|^{q} \leq 1$, we will have: $\sum_{c_{y} \in \mathcal{C}}\left|\prod_{i \in c_{y}} \tilde{\boldsymbol{y}}_{i}-\prod_{i \in c_{y}} \boldsymbol{y}_{i}\right|^{q} \leq|\mathcal{C}|$, therefore:

$$
\left|\boldsymbol{\delta}^{\mathcal{C}}\right| \leq|\mathcal{C}|^{\frac{1}{q}}\left(\sum_{c_{x} \in \mathcal{C}}\left|\prod_{i \in c_{x}} \tilde{\boldsymbol{x}}_{i}-\prod_{i \in c_{x}} \boldsymbol{x}_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

After applying Lemma A and raising both sides of the inequality to the power of p, we will have:

$$
\begin{align*}
&\left|\boldsymbol{\delta}^{\mathcal{C}}\right|^{p} \leq|\mathcal{C}|^{\frac{p}{q}}\left(\alpha \sum_{c_{x} \in \mathcal{C}} \sum_{i \in c_{x}}\left|\tilde{\boldsymbol{x}}_{i}-\boldsymbol{x}_{i}\right|^{p}\right) \\
& \Rightarrow \quad \frac{\left|\boldsymbol{\delta}^{\mathcal{C}}\right|^{p}}{\alpha|\mathcal{C}|^{\frac{p}{q}}} \leq \sum_{c_{x} \in \mathcal{C}} \sum_{i \in c_{x}}\left|\tilde{\boldsymbol{x}}_{i}-\boldsymbol{x}_{i}\right|^{p} \tag{2}
\end{align*}
$$

where $\alpha=\max _{c_{x} \in \mathcal{C}}\left|c_{x}\right|^{(p-1)}$, and $\left|c_{x}\right|$ is the number of variables in c_{x}.

The proof of Lemma 4.1 depends on the following lemma: Lemma A. For any sequence $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$, such
that $0 \leq a_{i}, b_{j} \leq 1$, we have $\left|\prod_{i=1}^{n} a_{i}-\prod_{i=1}^{n} b_{i}\right|^{p} \leq$ $n^{(p-1)} \sum_{i=1}^{n}\left|a_{i}-b_{i}\right|^{p}$.

Proof. For $n=1$, the inequality is trivial. Let $u_{1}=$ $\prod_{i=1}^{\lfloor n / 2\rfloor} a_{i}, u_{2}=\prod_{i=1}^{\lfloor n / 2\rfloor} b_{i}, v_{1}=\prod_{i=\lfloor n / 2\rfloor+1}^{n} a_{i}$, and $v_{2}=\prod_{i=\lfloor n / 2\rfloor+1}^{n} a_{i}$. Also it is a known fact that $|f+g|^{p} \leq$ $2^{p-1}\left(|f|^{p}+|g|^{p}\right) g, f \in \mathbf{R}$. We have:

$$
\begin{aligned}
\left|\prod_{i=1}^{n} a_{i}-\prod_{i=1}^{n} b_{i}\right|^{p} & =\left|u_{1} v_{1}-u_{2} v_{2}\right|^{p} \\
& =\left|u_{1} v_{1}-u_{1} v_{2}+u_{1} v_{2}-u_{2} v_{2}\right|^{p} \\
& \leq 2^{p-1}\left(\left|u_{1} v_{1}-u_{1} v_{2}\right|^{p}+\left|u_{1} v_{2}-u_{2} v_{2}\right|^{p}\right) \\
& =2^{p-1}\left(u_{1}^{p}\left|v_{1}-v_{2}\right|^{p}+v_{2}^{p}\left|u_{1}-u_{2}\right|^{p}\right) \\
& \leq 2^{p-1}\left(\left|v_{1}-v_{2}\right|^{p}+\left|u_{1}-u_{2}\right|^{p}\right)
\end{aligned}
$$

by recursive application of the above procedure, the products can be decomposed at most $\log _{2} n$ times. Therefore,

$$
\begin{aligned}
\left|\prod_{i=1}^{n} a_{i}-\prod_{i=1}^{n} b_{i}\right|^{p} & \leq 2^{(p-1) \log _{2} n} \sum_{i=1}^{n}\left|a_{i}-b_{i}\right|^{p} \\
& =n^{p-1} \sum_{i=1}^{n}\left|a_{i}-b_{i}\right|^{p}
\end{aligned}
$$

Proof of Corollary 4.3:
Proof. We begin with the result of Theorem 4.3, where $\frac{1}{B\left(d \alpha_{i}\right)^{\frac{1}{p}}\left|\mathcal{C}^{\frac{1}{q}}\right|^{\frac{1}{q}}}$ is the coeficient of variations in the feature corresponding to clique \mathcal{C}_{i}. Since $p=1$ then $q=\infty$, and $\alpha_{i}=\max _{c_{x} \in \mathcal{C}_{i}}\left|c_{x}\right|^{(p-1)}=1$:

$$
\begin{aligned}
\frac{1}{B\left(d \alpha_{i}\right)^{\frac{1}{p}}\left|\mathcal{C}_{i}\right|^{\frac{1}{q}}} & =\frac{1}{B d\left|\mathcal{C}_{i}\right|^{\frac{1}{\infty}}} \\
& =\frac{1}{B d}
\end{aligned}
$$

Also in (2), set $p=1$ and $q=\infty$.

$$
\begin{aligned}
& \left|\boldsymbol{\delta}^{\mathcal{C}}\right| \leq \\
& \left(\sum_{c_{x} \in \mathcal{C}}\left|\prod_{i \in c_{x}} \tilde{\boldsymbol{x}}_{i}-\prod_{i \in c_{x}} \boldsymbol{x}_{i}\right|\right) \max _{c_{y} \in \mathcal{C}}\left|\prod_{i \in c_{y}} \tilde{\boldsymbol{y}}_{i}-\prod_{i \in c_{y}} \boldsymbol{y}_{i}\right|
\end{aligned}
$$

Since, $\max _{c_{y} \in \mathcal{C}}\left|\prod_{i \in c_{y}} \tilde{\boldsymbol{y}}_{i}-\prod_{i \in c_{y}} \boldsymbol{y}_{i}\right|=1$, we will be using a tighter upper-bound.

Proof of Proposition 5.7:

Proof. We prove the case when regularization function is $\|\boldsymbol{w}\|=\|\boldsymbol{w}\|_{\infty}$ (the proofs for $\left\|\boldsymbol{M}^{-1} \boldsymbol{w}\right\|_{\infty}$ and $\left\|\boldsymbol{M}^{-1} \boldsymbol{w}\right\|_{1}$ are very similar, but for simplicity we chose this case). Recall that the optimization program of the robust structural SVM is:

$$
\begin{align*}
& \underset{\boldsymbol{w}, \xi}{\operatorname{minimize}} c_{1} f(\boldsymbol{w})+c_{2}\|\boldsymbol{w}\|_{\infty}+\xi \quad \text { subject to } \tag{3}\\
& \quad \xi \geq \max _{\tilde{\boldsymbol{y}}} \boldsymbol{w}^{T}(\boldsymbol{\phi}(\boldsymbol{x}, \tilde{\boldsymbol{y}})-\boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y}))+\Delta(\boldsymbol{y}, \tilde{\boldsymbol{y}})
\end{align*}
$$

It can be re-written as:

$$
\begin{aligned}
& \underset{\boldsymbol{w}, \xi, t}{\operatorname{minimize}} c_{1} f(\boldsymbol{w})+c_{2} t+\xi \quad \text { subject to } \\
& \quad \xi \geq \max _{\tilde{\boldsymbol{y}}} \boldsymbol{w}^{T}(\boldsymbol{\phi}(\boldsymbol{x}, \tilde{\boldsymbol{y}})-\boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y}))+\Delta(\boldsymbol{y}, \tilde{\boldsymbol{y}}) \\
& \quad w_{i} \leq t,-w_{i} \leq t \forall w_{i}
\end{aligned}
$$

In vector form we can write these constraints as: $\boldsymbol{w} \leq \mathbf{1} t$ and $-\boldsymbol{w} \leq 1 t$. Clearly, there are two vectors s_{1} and s_{2} for which:

$$
\begin{aligned}
\boldsymbol{w}+\boldsymbol{s}_{\mathbf{1}}=\mathbf{1} t & \Rightarrow \quad \boldsymbol{w}=\mathbf{1} t-\boldsymbol{s}_{\mathbf{1}} \\
-\boldsymbol{w}+\boldsymbol{s}_{\mathbf{2}}=\mathbf{1} t & \Rightarrow \quad \boldsymbol{w}=s_{\mathbf{2}}-\mathbf{1} t
\end{aligned}
$$

Let $\boldsymbol{\gamma}=\left[\begin{array}{lll}\boldsymbol{s}_{1}^{T} & \boldsymbol{s}_{2}^{T} & t\end{array}\right]^{T}, \quad m=\operatorname{dim} \boldsymbol{w}, \quad \boldsymbol{I}_{\boldsymbol{s}_{1}}=$ $\left[\begin{array}{lll}\boldsymbol{I}_{m \times m} & \underline{\mathbf{0}}_{m \times m} & \mathbf{0}_{m \times 1}\end{array}\right], \boldsymbol{I}_{\boldsymbol{s}_{\mathbf{2}}}=\left[\underline{\mathbf{0}}_{m \times m} \boldsymbol{I}_{m \times m} \mathbf{0}_{m \times 1}\right]$, and $\boldsymbol{I}_{\boldsymbol{t}}=\left[\underline{\mathbf{0}}_{1 \times m} \underline{\mathbf{0}}_{1 \times m} 1\right]$. (i.e. $\boldsymbol{s}_{\mathbf{1}}=\boldsymbol{I}_{\boldsymbol{s}_{1}} \boldsymbol{\gamma}, \boldsymbol{s}_{\mathbf{2}}=\boldsymbol{I}_{\boldsymbol{s}_{2}} \boldsymbol{\gamma}$, $\left.t=\boldsymbol{I}_{\boldsymbol{t}} \gamma\right)$. By substitution:

$$
\begin{aligned}
\boldsymbol{w} & =\boldsymbol{I I}_{\boldsymbol{t}} \gamma-\boldsymbol{I}_{s_{1}} \gamma=\left(\mathbf{1} \boldsymbol{I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{1}}\right) \gamma \\
\boldsymbol{w} & =\boldsymbol{I}_{\boldsymbol{s}_{2}} \gamma-\boldsymbol{I}_{\boldsymbol{t}} \gamma=\left(\boldsymbol{I}_{\boldsymbol{s}_{2}}-\mathbf{1} \boldsymbol{I}_{\boldsymbol{t}}\right) \gamma
\end{aligned}
$$

which implies $\left(\mathbf{1} \boldsymbol{I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{1}}\right) \gamma=\left(\boldsymbol{I}_{\boldsymbol{s}_{2}}-\mathbf{1} \boldsymbol{I}_{\boldsymbol{t}}\right) \gamma$, therefore: $\left(2 * \boldsymbol{I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{1}}}-\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{2}}}\right) \gamma=\mathbf{0}$, or equivalently $\gamma \in \mathcal{N}\left(2 * \boldsymbol{1}_{\boldsymbol{t}}-\right.$ $\boldsymbol{I}_{\boldsymbol{s}_{1}}-\boldsymbol{I}_{\boldsymbol{s}_{2}}$), where $\mathcal{N}($.$) returns the null-space of the input$ matrix. Let columns of matrix \boldsymbol{B} span $\mathcal{N}\left(2 * \mathbf{1 I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{\boldsymbol{1}}}-\right.$ $\left.\boldsymbol{I}_{\boldsymbol{s}_{2}}\right)$, also let $\gamma=\boldsymbol{B} \boldsymbol{\lambda}$, we will have $\boldsymbol{w}=\left(\mathbf{1} \boldsymbol{I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{1}}\right) \boldsymbol{B} \boldsymbol{\lambda}$. Let $\boldsymbol{A}=\boldsymbol{B}^{T}\left(\mathbf{1} \boldsymbol{I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{1}}}\right)^{T}$ and $\boldsymbol{b}=\boldsymbol{I}_{\boldsymbol{t}}^{T}$, then we can rewrite Problem (3) as:

$$
\begin{aligned}
& \underset{\boldsymbol{\lambda} \geq 0, \xi}{\operatorname{minimize}} c_{1} f\left(\boldsymbol{A}^{T} \boldsymbol{\lambda}\right)+c_{2} \boldsymbol{b}^{T} \boldsymbol{\lambda}+\xi \quad \text { subject to } \\
& \quad \xi \geq \max _{\tilde{\boldsymbol{y}}} \boldsymbol{\lambda}^{T} \boldsymbol{A}(\boldsymbol{\phi}(\boldsymbol{x}, \tilde{\boldsymbol{y}})-\boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y}))+\Delta(\boldsymbol{y}, \tilde{\boldsymbol{y}})
\end{aligned}
$$

Note that since $\left(2 * \boldsymbol{1 I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{1}}}-\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{2}}}\right) \boldsymbol{B}=\underline{\mathbf{0}}$, we will have $\left(\mathbf{1 I}_{\boldsymbol{t}}-\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{1}}}\right) \boldsymbol{B}=\left(\boldsymbol{I}_{\boldsymbol{s}_{\mathbf{2}}}-\mathbf{1 I}_{\boldsymbol{t}}\right) \boldsymbol{B}$, and A can be transpose of any of them.

