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Abstract
The Fisher linear discriminant analysis (LDA) is
a classical method for classification and dimen-
sion reduction jointly. A major limitation of the
conventional LDA is a so-called singularity is-
sue. Many LDA variants, especially two-stage
methods such as PCA+LDA and LDA/QR, were
proposed to solve this issue. In the two-stage
methods, an intermediate stage for dimension
reduction is developed before the actual LDA
method works. These two-stage methods are
scalable because they are an approximate alter-
native of the LDA method. However, there is
no theoretical analysis on how well they approx-
imate the conventional LDA problem. In this pa-
per we present theoretical analysis on the approx-
imation error of a two-stage algorithm. Accord-
ingly, we develop a new two-stage algorithm.
Furthermore, we resort to a random projection
approach, making our algorithm scalable. We
also provide an implemention on distributed sys-
tem to handle large scale problems. Our algo-
rithm takes LDA/QR as its special case, and out-
performs PCA+LDA while having a similar scal-
ability. We also generalize our algorithm to ker-
nel discriminant analysis, a nonlinear version of
the classical LDA. Extensive experiments show
that our algorithms outperform PCA+LDA and
have a similar scalability with it.

1. Introduction
The Fisher linear discriminant analysis (LDA) has received
wide applications in multivariate analysis and machine
learning such as face recognition (Belhumeur et al., 1997;
Martı́nez & Kak, 2001), text classification, microarray data
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classification, etc. The conventional LDA problem at-
tempts to find an optimal linear transformation by minimiz-
ing the total class distance and maximizing the between-
class distance simultaneously. It is well known that this
optimization problem can be solved by applying eigenvalue
decomposition to the scatter matrices. However, this re-
quires the total scatter matrix to be nonsingular, which is
usually not the case in real world applications. For exam-
ple, we usually meet microarray datasets which have the
“large p but small n” regime.

To address this singularity issue, the pseudoinverse and reg-
ularization methods have been widely employed (Hastie
et al., 2009; Zhang et al., 2010). Recently, a two-stage
approximate approach, such as the PCA+LDA algorithm
(Belhumeur et al., 1997) and the LDA/QR algorithm (Ye
& Li, 2005), has been also proposed. Typically, the two-
stage approach applies a cheap intermediate dimension re-
duction method before the conventional LDA algorithm is
performed. This class of algorithms is more scalable than
the exact algorithm. To the best of our knowledge, how-
ever, there is no theoretical analysis on how well these al-
gorithms approximate the exact LDA problem.

In this paper we first give theoretical analysis on how well
a two-stage algorithm approximates the exact LDA in the
sense of maximizing the LDA objective function. The the-
oretical analysis motivates us to devise a new two-stage
LDA algorithm. Our algorithm outperforms the PCA+LDA
(Belhumeur et al., 1997) while both have the similar scala-
bility. To make our algorithm more scalable, we introduce
a random-projection-based SVD (RSVD) method (Ma-
honey, 2011; Halko et al., 2011). Furthermore, we provide
an implemention of our algorithm on distributed system to
handle large scale problems. Additionally, we also show
that our algorithm could naturally generalize to the kernel
discriminant analysis (KDA) problem (Mika et al., 1999;
Baudat & Anouar, 2000; Park & Park, 2005), which is a
nonlinear generalization of the conventional LDA.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the classical LDA and two two-stage al-
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gorithms for efficiently solving LDA, the PCA+LDA algo-
rithm and the LDA/QR algorithm. In Section 3, we present
our algorithm and some theoretical analysis. We conduct
empirical analysis and comparison in Section 4, and con-
clude our work in Section 5.

2. The Fisher Discriminant Analysis
In this section we briefly review the conventional Fisher
LDA and KDA problems, as well as efficient algorithms
for solving them.

2.1. Linear Discriminant Analysis

We are given a data matrix X = [x1, . . . ,xn]T ∈ Rn×p
where xi is a p-dimensional input instance. Suppose the
input instances are partitioned into m classes, such that
XT = [XT

1 , X
T
2 , . . . , X

T
m] where Xi ∈ Rni×p contains

ni instances from the i-th class and
∑m
i=1 ni = n. The

conventional LDA is to find the optimal linear transforma-
tion G ∈ Rp×q that preserves the class structure in a low-
dimensional space as well as in the original space. That is,
Gmaps each xi ofX in the p-dimensional space to a vector
yi in the q-dimensional space.

The between-class, and total scatter matrices are defined by

Sw =
1

n

m∑
i=1

∑
x∈Xi

(x− ci)(x− ci)
T ,

Sb =
1

n

m∑
i=1

ni(ci − c)(ci − c)T ,

St =
1

n

n∑
i=1

(xi − c)(xi − c)T ,

where ci = 1
ni

∑
x∈Xi

x is the mean of the j-th class and
c = 1

n

∑
x∈X x is the mean of the whole data set. In the

low-dimensional space defined by the linear transformation
G, the between-class, and total scatter matrices become
SGb = GTSbG, and SGt = GTStG, respectively.

We can simplify the formulation of the scatter matrices
through precursors Hb, and Ht as

Hb =
1√
n

[
√
n1(c1 − c), . . . ,

√
nm(cm − c)] , (1)

Hw =
1√
n

[
XT

1 − c1e
T
1 , · · · , XT

m − cmeTm
]
,

Ht =
1√
n

(XT − ceT ), (2)

where ei = [1, · · · , 1]T ∈ Rni and e = [1, . . . , 1]T ∈
Rn. Hence, it can be shown that we can rewrite the scatter
matrices as Sb = HbH

T
b , and St = HtH

T
t .

An optimal transformation G can be obtained by solving
the following optimization problem:

argmax
G

{
J(G) , trace

(
(SGt )−1SGb

)}
.

The solution to the optimization can be obtained through
eigen-decomposition of the matrix S−1t Sb whenever St is
nonsingular (Fukunaga, 1990). However, when St is sin-
gular, we can use the eigen-decomposition of S†tSb, where
S†t is the Moore-Penrose inverse of St.

Recently, an SVD-based algorithm was proposed to solve
the eigen problem(Ye, 2005), which is described in Algo-
rithm 1. Let G∗ be obtained from Algorithm 1. Then
it consists of the top q eigenvectors of S†tSb. Here q =
rank(Hb) which is usually m−1 in most cases. We also
have (G∗)TStG

∗ = Iq and (G∗)TSbG
∗ = Σ2

q . Hence the
objective function of LDA is actually trace(Σ2

q).

Algorithm 1 The SVD based LDA algorithm
1: calculate Ht and Hb (2)
2: compute the reduced SVD of Ht as Ht = UtΣtV

T
t

3: B ← Σ−1t UTt Hb

4: compute the reduced SVD of B as B = PqΣqQ
T
q

5: return G∗ ← UtΣ
−1
t Pq

2.2. Kernel Discriminant Analysis

To apply LDA to nonlinear data, many KDA algorithms
have been devised by using a so-called kernel trick (Mika
et al., 1999; Baudat & Anouar, 2000; Park & Park, 2005).
The kernel method first maps the original data into a high-
dimensional space H by a nonlinear transformation Φ :
Rp → H. Typically, Φ is implicitly available and we
only know a kernel function κ : Rp × Rp → R such that
κ(x1,x2) = Φ(x1)TΦ(x2).

Let Kb = [bij ]1≤i≤n,1≤j≤m where

bij =
√
nj

( 1

nj

∑
xk∈Xj

κ(xi,xk)− 1

n

n∑
k=1

κ(xi,xk)
)
, (3)

and Kt = [tij ]1≤i≤n,1≤j≤n where

tij =
√
n
(
κ(xi,xj)−

1

n

n∑
k=1

κ(xi,xj)
)
. (4)

Then the objective function of KDA becomes

J̃(G) = trace
(
(ATKtK

T
t A)−1(ATKbK

T
b A)

)
,

where A = [aij ]1≤i≤n,1≤j≤q satisfies [G(x)]j =∑n
i=1 aijκ(x,xi) for any x ∈ Rp (Park & Park, 2005).

This objective function has a similar form with the LDA
objective function. That is, it replaces Hb with Kb and Ht

with Kt. Therefore, Algorithm 1 could be easily applied to
KDA. Here we omit the details.
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2.3. Two-stage methods

There exist two important two-stage methods for the con-
ventional LDA, namely, PCA+LDA (Belhumeur et al.,
1997; Yang & Yang, 2003) and LDA/QR (Ye & Li, 2005;
Ye, 2005) or OCM+LDA (Park et al., 2003). These two
algorithms first yield a column-orthogonal transformation
matrix Z in the first stage and then implement the classical
LDA algorithm on the reduced space obtained via Z.

The PCA+LDA algorithm first computes ZPCA to maxi-
mize trace(ZTStZ), which is equivalent to computing the
top r left singular vectors of Ht. LDA maximizes the trace
of ratio of between the class scatter matrix and the total
scatter matrix. However, PCA maximizes the trace of the
total scatter matrix, which is not compatible to the objec-
tive function of LDA. So some useful information which
may be important for discrimination might be lost in the
PCA stage.

The LDA/QR first computes a column orthogonal ma-
trix ZOCM by maximizing trace(ZTSbZ). This objective
function is more compatible to the objective function of
LDA. Ye & Li (2005) showed that if the QR decomposition
with pivoting (Golub & Loan, 1996) of Hb is Hb = QRΠ,
then we can take ZOCM as Q. The LDA/QR algorithm
reduces the dimension to q, which is too small for many
problems, thus a lot of information in the original data ma-
trix might be lost.

3. Methodology
In this section we first give a theoretical bound on how well
a two-stage LDA algorithm approximates the exact LDA
algorithm when the transformation matrix of the first stage
is given. We then propose a fast two-stage LDA algorithm
based on the theoretical analysis. We also generalize our
algorithm to the KDA problem.

3.1. Theoretical Analysis

In the first stage of a two-stage algorithm, we introduce a
linear transformation Z ∈ Rp×r to reduce the dimension to
r. We assumeZ to be column-orthonormal, that is, ZTZ =
Ir. In the second stage we apply the conventional LDA
algorithm on the reduced total scatter matrix S̃t = ZTStZ
and the reduced between-class scatter matrix S̃b = ZTSbZ
to obtain a linear transformation G̃. The final result then
becomes ĜZ = ZG̃.

Intuitively, a good Z should keep as much information as
possible in both St and Sb. Fortunately, rank(Sb) = q ≤
m−1 is small under the assumption that number of classes
m is small. Therefore, if we let R(Hb) ⊂ R(Z), all in-
formation will be kept after linear transformation Z. Here
R(·) is the range (or column-spanned space) of a matrix.

The following theorem shows how well we can approxi-
mate the solution of exact LDA using such a Z.

Theorem 1 If Z ∈ Rp×r satisfies R(Hb) ⊂ R(Z) and
ZTZ = Ir, then we have

J(ĜZ) ≥ 1

‖(G∗)TZZTHt‖22
J(G∗)

≥ 1

‖H†tZZTHt‖22
J(G∗).

Here ‖ · ‖2 is the spectral norm of a matrix, and G∗ is the
solution of Algorithm 1.

3.2. The SVD-QR-LDA Algorithm

To obtain a more accurate two-stage LDA algorithm, we
can maximize the right-hand side of the inequality in The-
orem 1. The optimization problem is

min
Z
‖H†tZZTHt‖2 s.t ZTZ = Ir, R(Hb) ⊂ R(Z).

Unfortunately, it is hard to solve this minimization prob-
lem. Therefore, we use some heuristics to solve it approxi-
mately.

First, we observe that without the constraint R(Hb) ⊂
R(Z), there is a closed-form solution to this maximization
problem. Let U ∈ Rp×s be the left singular vectors of Ht,
where s = rank(Ht). For any index set I ⊂ {1, . . . , s},
let UI be the columns of U indexed by I. By direct cal-
culation, we see that for any I, ‖H†tUIUTI Ht‖2 = 1. Be-
cause we always have ‖H†tZZTHt‖2 ≥ 1 for any column-
orthonormal matrix Z, Z = UI is the desired solution.

Second, we simply add some columns to UI to form
ZI such that all conditions in Theorem 1 are satisfied.
We first do QR decomposition with pivoting such that
(I − UIU

T
I )Hb = QRΠ. Then, ZI = [UI , Q] is the

required result. We can easily see that ZTI ZI = I and
R(Hb) ⊂ R(ZI). Moreover, ZI admits the following
property:

Lemma 1 The matrix ZI described above satisfies

‖H†tZIZTIHt‖2 ≤
max1≤i≤s,i6∈I σi(Ht)

σs(Ht)
,

where σj(Ht) is the j-th singular value ofHt in decreasing
order.

According to Lemma 1, we choose UI to be the left singu-
lar vectors associated with the largest r−q singular values
ofHt, to minimize max1≤i≤s,i6∈I σi(Ht). The pseudocode
of our algorithm is given in Algorithm 2.

When r = q, we can easily see that Z1 in our algorithm dis-
appears and our algorithm becomes the same as LDA/QR.
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Algorithm 2 SVD-QR-LDA algorithm
Input: give the target dimension r of the first stage

1: calculate Ht and Hb by (2), q ← rank(Hb)
2: Z1 ← the top r − q left singular vectors of Ht

3: compute QR decomposition with pivoting of Hb −
Z1Z

T
1 Hb as QRΠ = Hb − Z1Z

T
1 Hb

4: Z2 ← first q columns of Q, Z ← [Z1, Z2]
5: H̃b ← ZTHb, H̃t ← ZTHt

6: G̃ ← result of the conventional LDA algorithm on H̃b

and H̃t

7: return Ĝ← ZG̃

Therefore, our algorithm can be regarded as a generaliza-
tion of LDA/QR, with larger intermediate dimension r. But
our algorithm gives a more accurate result than LDA/QR
when r is much larger than q.

Note that ZPCA in PCA+LDA does not hold the conditions
in Theorem 1. Thus, we cannot compare our algorithm with
PCA+LDA theoretically. However, we will see in Section 4
that the objective function of our algorithm is usually larger
than the one of PCA+LDA when the intermediate dimen-
sion r is the same.

3.3. The Randomized SVD Algorithm

The time complexity of our algorithm is TPCA(r) +
O(nrm), where TPCA(r) is the time complexity of calcu-
lating the top r singular vectors. If we use a classical algo-
rithm for SVD, the time complexity is O(npmin{n, p}),
which is too slow for large-scale matrices. To make our
algorithm scalable, we use a random projection based
algorithm (Halko et al., 2011) to calculate SVD. The
time complexity is O(npr), which is much smaller than
O(npmin{n, p}) when r is small. Although the Krylov
subspace method has the same time complexity O(npr),
Halko et al. (2011) showed that random projection based
algorithms are more scalable. When the data matrix is not
fitted in memory, randomized algorithms require only con-
stant number of passes over the data, while the subspace
method requires at least O(r) passes. In our algorithm, we
need as large r as possible to make our algorithm more ac-
curate. Thus the number of passes that the Krylov subspace
method needs is too large. Randomized algorithms are also
more robust and are easily parallelized. Moreover, we will
show empirically in Section 4 that the loss in accuracy in-
curred by using the randomized algorithm is very small.

We describe this randomized approach in Algorithm 3. We
refer to Algorithm 2 based on the randomized approach
as RSVD-QR-LDA for short. The time complexity of our
RSVD-QR-LDA is O(npr), which is similar to that of
PCA+LDA using the same SVD algorithm. Since the data
matrix in question possibly has singular values that decay

slowly, we need some power iteration steps. Setting the
number of power iterations qSVD to 1 usually suffices in
practice.

Algorithm 3 randomized SVD algorithm
Input: give an p×nmatrixA, a target dimension kSVD, an

exponent qSVD, and an oversampling parameter pSVD
1: Ω← an n× (kSVD + pSVD) Gaussian test matrix
2: Y ← (AAT )qSVDAΩ
3: compute QR decomposition of Y as Y = QR
4: B ← QTA
5: compute SVD of B as B = ŨΣV T

6: UkSVD ← first kSVD columns of QŨ , ΣkSVD ← first
kSVD columns and kSVD rows of Σ, VkSVD ← first kSVD
columns of V

7: return UkSVD , ΣkSVD , VkSVD

3.4. Implementation on Distributed systems

For large problems with millions of training data or fea-
tures, it may be impractical to apply our algorithm on a
single machine. Therefore, we implementat our algorithm
on distributed systems. Our implementation requires that
the scale of r should be moderate, such that a matrix of
size r × r can fit in the memory of a single machine.

Our algorithm employs the randomized SVD algorithm de-
scribed in section 3.3 for performing SVD. In section 3.3,
we have discussed a lot of the scalability issues of the ran-
domized SVD algorithm and the Krylov subspace method.
Furthermore, compared with the randomized SVD algo-
rithm, the Krylov subspace method requires much more
iterations. Each iteration depends on the results of the
previous iteration to proceed. Thus, it needs data transfer
and synchronization work in each iteration. On distributed
systems, the cost of data transfer and synchronization is
large. Therefore, the Krylov subspace method can be much
slower than the randomized method on distributed systems.

There are two operations in our algorithm that need to be
implemented on distributed systems: matrix multiplication
of large matrices and the QR decomposition of tall-and-
skinny matrices. Here “tall-and-skinny matrix” means ma-
trix which has a large row size and a small column size.
Large matrix multiplication can be parallelized naturally.
To implement the QR decomposition of thin matrix on dis-
tributed systems, many methods have been proposed (Cos-
nard et al., 1986; Halko, 2012). We use the Cholesky de-
composition based algorithm for the QR decomposition to
make our implementation simple. For a tall-and-skinny
matrix Y , we compute the Cholesky decomposition of
Y TY as Y TY = RTR, whereR is an upper triangular ma-
trix. Then the QR decomposition of Y should be Y = QR
where Q = Y R−1.
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3.5. Generalization to KDA

Algorithm 2 can be easily generalized to solve the KDA
problem, because the objective function of KDA has a sim-
ilar form as LDA. We present the detailed procedure in Al-
gorithm 4.

Algorithm 4 RSVD-QR-KLDA algorithm
Input: give the target dimension r of the first stage

1: calculate Kt and Kb by (3) and (4), q ← rank(Kb)
2: Z1 ← the top r−q left singular vectors of Kt

3: compute QR decomposition with pivoting of Kb −
Z1Z

T
1 Kb as QRΠ = Kb − Z1Z

T
1 Kb

4: Z2 ← first q columns of Q, Z ← [Z1, Z2]
5: K̃b ← ZTKb, K̃t ← ZTKt

6: Ã← result of the conventional KDA algorithm on K̃b

and K̃t

7: return Â← ZÃ

We can also use the randomized SVD algorithm in Step 2
of Algorithm 4. The time complexity of the resulting al-
gorithm is Tk + O(n2r), where Tk is the time for calcu-
lating the kernel matrix K. Thus, our algorithm and the
PCA+LDA algorithm also have the similar computational
complexity.

4. Experiments
In this section we perform empirical analysis of our pro-
posed algorithms on two face datasets, YaleB&E and CMU
PIE, two middle-sized document datasets, News20 (Lang,
1995) and RCV1 (Lewis et al., 2004), and a large dataset,
Amazon7 (Dredze et al., 2008; Blondel et al., 2013). The
sizes of the five datasets are described in Table 1.

The YaleB&E dataset consists of Yale Face Database B
(Georghiades et al., 2001) and the extended Yale Face
Database B (Lee et al., 2005). We collect a subset of 2414
face images of 38 subjects, and crop and resize each im-
age to 32× 32. For the CMU PIE dataset, we use a subset
containing 11554 images of 68 subjects, and the images are
cropped and resized to 64× 64. For these two datasets, we
randomly pick 70% of data for training and the remaining
for test. We repeat this procedure 5 times and report the
averages of the objective function, classification accuracy
and running time on these 5 repeats.

For News20, we use the first 80% of the original data for
training and the left 20% for test. For RCV1, we follow
the preprocessing process of Bekkerman & Scholz (2008).
That is, we map all categories to the second level and delete
all data with multiple labels. We also follow the setting in
Bekkerman & Scholz (2008) for the training and test data.

Amazon7 dataset contains 1,362,109 reviews of Amazon
product. We randomly pick 80% of the dataset for training,

and the remaining is for test. We follow the preprocessing
process of Blondel et al. (2013).

Table 1. The summary of datasets where n is the number of train-
ing data, p is the number of the input features, and m is the num-
ber of classes.

Data set n test size p m
YaleB&E 1,689 725 1,024 38

PIE 8,087 3,467 4,096 68
News20 15,935 3,993 62,061 20
RCV1 15,564 518,571 47,236 53

Amazon7 1,089,687 272,422 262,144 7

4.1. Experiments with LDA Algorithms

We compare our RSVD-QR-LDA algorithm with the PCA-
LDA algorithm. For the two small-size face datasets
YaleB&E and CMU PIE, we also compare our algorithm
with the conventional LDA solved by Algorithm 1, as well
as DSVD-QR-LDA in Algorithm 2 where the SVD (Step
2) is computed by the classical SVD algorithm. After the
LDA algorithm, we perform the k-NN classification algo-
rithm on the reduced space. Particularly, k is selected via
10-fold cross-validation. The SVD step in both RSVD-
QR-LDA and PCA-LDA is computed by Algorithm 3 with
qSVD = 1 and pSVD = 0.1kSVD. All the algorithms are im-
plemented in python 2.7 on a PC with an Intel Xeon X5675
3.07 GHz CPU and 12GB memory.

In Figures 1, 2, 3 and 4, we report the average of the ob-
jective function of LDA, classification accuracy, and run-
ning time of the LDA algorithm, with respect to different
r. For RSVD-QR-LDA and PCA-LDA, we run the algo-
rithm 10 times for each training-test splitting, and report
the standard deviation of both value of objective function
and classification accuracy. The standard deviation is taken
with respect to different running on the same splitting. For
YaleB&E and CMU PIE, we let r from m−1 to about
1000, while for News20 and RCV1, we let r from m−1
to about 2000. When r = m−1, our algorithm is identi-
cal to LDA/QR. Thus, we also compare our algorithm with
LDA/QR. We summarize the experimental results in Table
2, in which we report the best accuracy, the value of r for
which the best accuracy is achieved, and the running time.
Here the best r value is hand-picked best value on test data,
and the standard deviation in Table 2 is taken with respect
to different train/test splitting.

From these results, we can see that for both PCA-LDA
and SVD-QR-LDA, the value of the objective function in-
creases as r increases. For same r, the objective function
of SVD-QR-LDA is larger than that of PCA-LDA. With re-
gard to the classification accuracy, we find that in News20
and RCV1, SVD-QR-LDA outperforms PCA-LDA, and
in YaleB&E and CMU PIE, both our algorithm and the
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Table 2. The best mean classification accuracy (acc) and corresponding standard deviation (std), the best r value for which the best
accuracy is achieved, and the running time of the algorithms (in second). Here “N/A” means that LDA is not applicable to this dataset.

Dataset RSVD-QR-LDA PCA-LDA LDA
acc (± std) best r time (± std) acc (± std) best r time (± std) acc (± std) time (± std)

YaleB&E 95.5(± 0.6) 429 0.85(± 0.03) 95.4(± 0.6) 723 1.38(± 0.04) 93.7(± 1.1) 0.74(± 0.03)
CMU PIE 96.6(± 0.4) 167 6.3(± 0.3) 96.3(± 0.4) 267 4.3(± 0.7) 93.0(± 0.4) 69.3(± 18.2)
News20 85.8 2052 184 83.1 2052 180 N/A N/A
RCV1 84.0 302 14 82.3 2052 135 N/A N/A
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Figure 1. Objective function, classification accuracy and running time of two algorithms on the News20 dataset with respect to interme-
diate dimension r. We also draw the standard deviations of objective function and classification accuracy in the figure. The standard
deviations are taken with respect to different running on the same training-test splitting.
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Figure 2. Objective function, classification accuracy and running time of two algorithms on the RCV1 dataset.
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Figure 3. Objective function, classification accuracy and running time of four algorithms on the YaleB&E dataset.
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Figure 4. Objective function, classification accuracy and running time of four algorithms on the CMU PIE dataset.

PCA-LDA algorithm suffer from the problem of overfit-
ting. However, our algorithm achieves the best accuracy
when taking a smaller r, which makes our algorithm more
efficient. Additionally, in YaleB&E and CMU PIE, both
our algorithm and the PCA-LDA algorithm outperform the
exact LDA algorithm. The running time of RSVD-QR-
LDA is nearly the same with PCA-LDA on the same r, and
both are much faster than the conventional LDA, especially
on large scale datasets.

We can also see that RSVD-QR-LDA performs nearly the
same with DSVD-QR-LDA and that the standard devia-
tions are also small. This implies that the accuracy loss
incurred by using the randomized algorithm is very small.

4.2. Experiments on the distributed system

We test our implementation on the distributed system on
a Hadoop (Borthakur, 2007) cluster on Amazon Elastic
MapReduce (EMR). We use an EMR cluster consisting of
8 m1.xlarge instance. Each m1.xlarge instance uses a In-
tel Xeon Family quad-core CPU and 15GB memory. The
version of Hadoop we use is 1.0.3.

In Figure 5, we report the objective function of LDA, clas-
sification accuracy, and running time of the LDA algorithm,
with respect to different r. In Table 3, we report the best
accuracy, the value of r for which the best accuracy is
achieved, and the running time.

From these results, we can see that our algorithm outper-
forms PCA-LDA in both the value of objective function
and classification accuracy, and the running times of the
two algorithms are nearly the same.

4.3. Experiments with KDA Algorithms

For KDA algorithms, we only conduct comparison on two
face datasets: YaleB&E and CMU PIE. We use RBF kernel
κ(x1,x2) = exp(−‖x1−x2‖2

θ ) in our experiment, where θ
was set to the mean Euclidean distance among training data
points. We report the objective function, classification ac-
curacy and running time of the three algorithms in Figures

3 and 4. Here the running time does not include the time
for computing the kernel matrix. We also summarize our
results in Table 4, including the best accuracy, the value of
r on which the best accuracy is achieved, and the running
time.

It is seen from the results that our algorithm outperforms
PCA+KDA in both the optimal value of objective function
and classification accuracy. The running times of the two
algorithms are nearly the same. But they are much faster
than the conventional KDA on larger scale datasets.

5. Conclusion
In this paper we have proposed a novel two-stage algo-
rithm for approximately solving the LDA problem, based
on our theoretical analysis on the approximation error of
two-stage methods. Our algorithm includes LDA/QR as a
special case. We have made our algorithm scalable by us-
ing a randomized SVD algorithm and generalized our algo-
rithm to the kernel LDA problem. Furthermore, we devise
an implementation of our algorithm on distributed systems.
We have conducted empirical analysis on several different
datasets. The experimental results show that our algorithm
outperforms PCA+LDA while they have the same scalabil-
ity.
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Figure 5. Objective function, classification accuracy and running time of the three algorithms on the Amazon7 dataset.

Table 4. The best mean classification accuracy (acc) and the standard deviation (std), the best r value and the running time of algorithm
(in second).
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Figure 6. Objective function, classification accuracy and running time of the three algorithms on the YaleB&E dataset.
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A. Proof of Theorem 1
The following Lemma is a famous inequality for Hermitian
matrices (See (Marshall & Olkin, 1979; Lasserre, 1995)).

Lemma 2 For any two Hermetian matrix A,B ∈ Rn×n,

trace(AB) ≤
n∑
i=1

λi(A)λi(B),

where λi(A) is the i-th largest eigenvalue of A.

First of all, since R(Hb) ⊂ R(Z), we have
Hb = ZZTHb, thus SG

∗

b = (G∗)THbH
T
b G
∗ =

(G∗)TZZTHbH
T
b ZZ

TG∗ = SZZ
TG∗

b . Then

J(G∗)− J(ĜZ)

≤ J(G∗)− J(ZZTG∗)

= trace
(

((SG
∗

t )−1 − (SZZ
TG∗

t )−1)SG
∗

b

)
= trace

(
(I − (SZZ

TG∗

t )−1)Σ2
q

)
(a)

≤
q∑
i=1

(
1− 1

λi(SZZ
TG∗

t )

)
α2
i

≤
(

1− 1

λ1(SZZ
TG∗

t )

) q∑
i=1

α2
i

=

(
1− 1

‖(G∗)TZZTHt‖22

)
J(G∗),

where αi is the i-th diagonal entry of Σq , and (a) follows
from Lemma 2. Then

J(ĜZ) ≥ 1

‖(G∗)TZZTHt‖22
J(G∗).

As for the second inequality, it then follows from

‖(G∗)TZZTHt‖2 = ‖PTq Σ−1t UtZZ
THt‖2

≤ ‖PTq ‖2‖Σ−1t UTt ZZ
THt‖2

= ‖VtΣ−1t UTt ZZ
THt‖2

= ‖H†tZZTHt‖2.

B. Proof of Lemma 1
Without loss of generality, let Z =

[
UI Z2

]
,

Σt =

[
ΣI 0
0 ΣIc

]
and Ut =

[
UI UIc

]
,

where Ic is the complement set of I in {1, . . . , s}, ΣI ∈
R(r−q)×(r−q), ΣIc ∈ R(s−r+q)×(s−r+q), UI ∈ Rp×(r−q),
UIc = Rp×(s−r+q) and Z2 = Rp×q . Then

UTt ZZ
TUt =

[
I 0
0 UTIcZ2Z

T
2 UIc

]
.

Therefore,

‖H†tZZTHt‖2
= ‖Σ−1t UTt ZZ

TUtΣt‖2

=

∥∥∥∥[ Σ−1I 0
0 Σ−1Ic

] [
I 0
0 UTIcZ2Z

T
2 UIc

] [
ΣI 0
0 ΣIc

]∥∥∥∥
2

=

∥∥∥∥[ I 0
0 Σ−1Ic U

T
IcZ2Z

T
2 UIcΣIc

]∥∥∥∥
2

= max{1, ‖Σ−1Ic U
T
IcZ2Z

T
2 UIcΣIc‖2}

≤ max{1, ‖Σ−1Ic ‖2‖U
T
IcZ2Z

T
2 UIc‖2‖ΣIc‖2}

= max{1, ‖Σ−1Ic ‖2‖ΣIc‖2}

=
max1≤i≤s,i6∈I σi(Ht)

σs(Ht)
.
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