
A Highly Scalable Parallel Algorithm for Isotropic Total Variation Models
(Supplemental Material)

Jie Wang JIE.WANG.USTC@ASU.EDU

Arizona State University, Tempe, AZ 85287 USA

Qingyang Li QINGYANG.LI@ASU.EDU

Arizona State University, Tempe, AZ 85287 USA

Sen Yang SENYANG@ASU.EDU

Arizona State University, Tempe, AZ 85287 USA

Wei Fan DAVID.FANWEI@HUAWEI.COM

Huawei Noahs Ark Lab, Hong Kong, China

Peter Wonka PWONKA@GMAIL.COM

Arizona State University, Tempe, AZ 85287 USA

Jieping Ye JIEPING.YE@ASU.EDU

Arizona State University, Tempe, AZ 85287 USA

In this supplement, we present all the necessary details we mentioned in the main text.

1. Algorithm of ADMM
Denote K the number of iterations required to meet the stopping criterion. The update rule in each iteration is given by
Algorithm 1. For more details, please refer to ?.

Algorithm 1 ADMM
Input: z0, θ0, γ > 0
for t = 0 to T do

xt+1 := argmin
x

Lγ(x, zt; θt) (1)

zt+1 := argmin
z

Lγ(xt+1, z; θt) (2)

θt+1 := θt + (xt+1 − zt+1) (3)
end for
Return: xT , zT



A Highly Scalable Parallel Algorithm for Isotropic Total Variation Models

2. Convergence Analysis
The standard form of ADMM is

min
x,y

f(x) + g(z) (4)

s.t. x− z = 0

Algorithm FAD finds the solution of the the following constrained convex optimization problem:

min
Z;X1,X2,X3

1

2
‖Z − Y ‖2F + λ

3∑
k=1

‖Xk‖TVk
(5)

s.t. Xk = Z, k = 1, 2, 3.

The convergence properties of ADMM to solve the standard form in (4) have been extensively explored by ???. Therefore,
to establish the convergence properties of Algorithm FAD, we only need to reformulate problem (5) as (4) and check if the
resulting formulation satisfies the conditions required for convergence.

Let us denote z := (ZT , ZT , ZT )T , x := (XT
1 , X

T
2 , X

T
3 )T , and T1 := (Im, 0, 0), T2 := (0, Im, 0), T3 := (0, 0, Im),

where Im ∈ <m×m is the identity matrix, and I ∈ <3m×m = (Im, Im, Im)T . Then problem (5) can be rewritten as:
min
x,z

f(x) + g(z) (6)

s.t. x− z = 0,

where

f(x) = λ

3∑
k=1

‖Tkz‖TVk
,

g(z) =
1

6
‖z− IY ‖2F .

Clearly, problem in (6) is exactly the same as (4). Since f and g are proper closed convex functions, the convergence
properties of Algorithm FAD can be readily established by ???. The convergence rate of Algorithm FAD can be shown as
O(1/k) by following the procedure in ?.

3. Dual Formulation
Recall that we need to solve

min
u

1

2
‖u−w‖22 + ρ

√
(u1 − u2)2 + (u3 − u2)2, (7)

where ρ = λ
γ .

3.1. Deviation of the Dual Formulation

Without loss of generality, assume w ∈ <2n+1, we solve the following optimization problem:

min
u

1

2
‖u−w‖22 + ρ

n∑
k=1

√
(u2k−1 − u2k)2 + (u2k+1 − u2k)2 (8)

Clearly, problem (8) reduces to problem (7) when n = 1. Let z ∈ <2n be defined as:
zi = ui+1 − ui, i = 1, 2, . . . , 2n.

Then problem (8) is equivalent to the following constrained optimization problem:

min
u

1

2
‖u−w‖22 + ρ

n∑
k=1

√
z22k−1 + z22k (9)

s.t. zi = ui+1 − ui, i = 1, 2, . . . , 2n.

Let G ∈ <2n×(2n+1) be defined as

gi,j =


1 if j = i+ 1

−1 if j = i

0 otherwise
(10)

we have z = Gu.
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By introducing the scaled dual variable ρs ∈ <2n, the Lagrangian of problem (8) can be written as:

L(u, z; s) =
1

2
‖u−w‖22 + ρ

n∑
k=1

√
z22k−1 + z22k + ρ〈s, Gu− z〉 (11)

and the dual problem is in fact
g(s) = min

u,z
L(u, z; s). (12)

Let

f1(u) =
1

2
‖u−w‖22 + ρ〈s, Gu〉

and

f2(z) = ρ

n∑
k=1

√
z22k−1 + z22k − ρ〈s, z〉

We can see that
L(u, z; s) = f1(u) + f2(z)

and
g(s) = min

u
f1(u) + min

z
f2(z) (13)

Let us first solve the optimization problem minu f1(u). Since∇f1(u) = u−w+ρGT s, by setting∇f1(u) = 0, we have
u∗ = argmin

u
f1(u) = w − ρGT s (14)

and

f1(u∗) = min
u
f1(u) = −ρ

2

2
‖GT s‖22 + ρ〈GT s,w〉 = −1

2
‖w − ρGT s‖22 +

1

2
‖w‖22

To solve the second optimization problem minz f2(z), let us make some conventions. For an arbitrary vector v, let
[v]ji = (vi, vi+1 . . . , vj)

T . Then f2(z) can be written as:

f2(z) = ρ

n∑
k=1

‖[z]2k2k−1‖2 − ρ〈s, z〉 (15)

and thus

[∇f2(z)]2k2k−1 ∈


ρ

{
[z]2k

2k−1

‖[z]2k
2k−1‖2

− [s]2k2k−1

}
, if [z]2k2k−1 6= 0

ρ

{
vk − [s]2k2k−1

}
, ‖vk‖2 ≤ 1, if [z]2k2k−1 = 0

(16)

For each k ∈ {1, . . . , n}, by setting [∇f2(z)]2k2k−1 = 0, it follows that
‖[s]2k2k−1‖2 ≤ 1 (17)

and
f2(z∗) = min

z
f2(z) = 0,

where z∗ = argminz f2(z).

Therefore, the dual function g(s) is found as:

g(s) = −1

2
‖w − ρGT s‖22 +

1

2
‖w‖22 (18)

All together, the dual problem of problem (8) is equivalent to the following optimization problem:

min
s

1

2
‖w − ρGT s‖22 (19)

s.t. ‖[s]2k2k−1‖2 ≤ 1, k = 1, 2, . . . , n.

3.2. KKT Conditions

The KKT conditions can be directly obtained from the last section. Assume u∗, z∗ and s∗ are the optimal solutions to the
problems (8) and (19) respectively, we summarize the KKT conditions as follows:

w = u∗ + ρGT s∗ (20)
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[s∗]2k2k−1 ∈


[z∗]2k2k−1

‖[z∗]2k2k−1‖2
, if [z∗]2k2k−1 6= 0

vk, ‖vk‖2 ≤ 1, if [z∗]2k2k−1 = 0
(21)

Because z∗ = Gu∗, condition (21) can be written more explicitly as:

[s∗]2k2k−1 ∈

{
(u2k−u2k−1,u2k+1−u2k)

T

‖(u2k−u2k−1,u2k+1−u2k)T ‖2 , if (u2k − u2k−1, u2k+1 − u2k)T 6= 0

vk, ‖vk‖2 ≤ 1, if (u2k − u2k−1, u2k+1 − u2k)T = 0
(22)

4. Proposition 1
Proposition 1. Given an image with m× n pixels, if we divide the image domain into three non-overlapping subset

Dk := {(i, j) ∈ D : mod (j − i, 3) = k − 1}, (23)
where k = 1, 2, 3, and we define

‖X‖(k)TV :=
∑

(i,j)∈Dk

‖Di,j‖2, k = 1, 2, 3,

then for each (i, j) ∈ Dk, ‖Di,j‖2 is separable from every other ‖Di′,j′‖2, where (i′, j′) ∈ Dk \ (i, j).

Proof. To simplify the proof, let us extend D to an infinite set, i.e.,
D = {(i, j) : i = −∞, . . . ,−1, 0, 1, . . . ,∞,

j = −∞, . . . ,−1, 0, 1, . . . ,∞.}
If the conclusion of Proposition 1 is true for the extendedD, then it also holds whenD is a finite set. Therefore let us prove
Proposition 1 for the former case.

Without loss of generality, let us consider D1. Every term ‖Di,j‖2 in ‖X‖(1)TV involves three variables, xi,j , xi+1,j and
xi,j+1 since the pixels (i, j), (i+ 1, j) and (i, j + 1) all belong to D1 (we extend D to an infinite set).

Consider variable xi,j . It is only appears in ‖Di−1,j‖2 and ‖Di,j−1‖. Since (i, j) ∈ D1, we have mod (j − i, 3) = 0.
Therefore it follows that

mod (j − (i− 1), 3) = 1 and mod ((j − 1)− i, 3) = 2.

According to the definition of D2 and D3, we can see that (i − 1, j) ∈ D2 and (i, j − 1) ∈ D3. In other words, except
‖Di,j‖2, the variable xi,j does not appear in any other term ‖Di′,j′‖2 where (i′, j′) ∈ D1. For the same reason, the
variables xi−1,j and xi,j−1 only appears in ‖Di,j‖2 among all ‖Di′′,j′′‖2 where (i′′, j′′) ∈ D1.

Therefore ‖Di,j‖2 is separable from all the other terms in ‖X‖(1)TV , which completes the proof.

5. Proof of Theorem 1
Proof. Denote the objective function of as f(s). Suppose ρ is large enough such that t∗(ρ) ∈ relint B̃ and thus s∗(ρ) ∈ B◦.
Then we have

∇f(s∗) = −ρG(w − ρGT s∗) = 0, (24)
which is equivalent to

(GGT )−1Gw = ρs∗. (25)
Therefore, we have

‖(GGT )−1Gw‖2 = ρ‖s∗‖2.
It follows that

ρ > ‖(GGT )−1Gw‖2 ⇒ ‖s∗‖2 < 1.

Consider the KKT condition u∗ = w − ρGT s∗ together with Eq. (25), u∗ is:
u∗ = w −GT (GGT )−1Gw,

which is the result in the statement. Note that u∗ is independent of ρ.

Recall that s∗(ρ) varies continuously with ρ. By the KKT condition u∗ = w− ρGT s∗, u∗ is also continuous with respect
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to ρ. Thus
u∗(ρmax) = lim

ρ↓ρmax

u∗(ρ) = w −GT (GGT )−1Gw,

which completes the proof.

6. Proof of Theorem 2
Proof. Let s∗ be the optimal solution to the dual problem. The KKT conditions are:

−ρG(w − ρGT s∗) + αs∗ = 0 (26)

α((s∗1)2 + (s∗2)2 − 1) = 0 (27)
where α > 0 is the Lagrange multiplier and Eq. (27) is the complementary condition.

By rearranging the terms, Eq. (26) becomes
ρ(ρ2GGT + αI)−1Gw = s∗.

It follows that
‖ρ(ρ2GGT + αI)−1Gw‖22 = ‖s∗‖22 (28)

⇒
∥∥∥∥ρ 1

ρ2

(
UΣ2UT +

α

ρ2
UUT

)−1
Gw

∥∥∥∥2
2

= ‖s∗‖22

⇒
∥∥∥∥U(Σ2 +

α

ρ2
I

)−1
ΣV Tw

∥∥∥∥2
2

= ρ2‖s∗‖22

⇒
∥∥∥∥(Σ2 +

α

ρ2
I

)−1
w̃

∥∥∥∥2
2

= ρ2‖s∗‖22
where

Σ2 = ΣΣT =

(
σ2
1 0

0 σ2
2

)
=

(
3 0
0 1

)
and w̃ = ΣV Tw.

Eq. (28) is equivalent to (
ρw̃1

ρ2σ2
1 + α

)2

+

(
ρw̃2

ρ2σ2
2 + α

)2

= ‖s∗‖22 (29)

Let v ∈ <2, where

v1 =
ρw̃1

ρ2σ2
1 + t

and v2 =
ρw̃2

ρ2σ2
2 + t

.

Clearly, v(t) is a plane curve parameterized by t ≥ 0 and it is easy to see that

lim
t→∞

‖v(t)‖22 = 0 and
d‖v(t)‖22

dt
< 0, ∀t ≥ 0.

Therefore, by Eq. (29), we can see that:

1) If ‖v(0)‖22 < 1, then ‖s∗‖22 = ‖v(α)‖22 < 1. The complementary condition Eq. (27) indicates that α = 0. Then Eq. (26)
reduces to Eq. (25), which has been solved in Theorem 1.

It is worthwhile to note that

‖v(0)‖22 = ‖(ρΣ2)−1w̃‖22 =
1

ρ2
‖U(ΣV TV ΣT )−1UTUw̃‖22

=
1

ρ2
‖(UΣV TV ΣTUT )−1Uw̃‖22 =

1

ρ2
‖(GGT )−1w‖22

Therefore, from ‖v(0)‖22 < 1, we can derive that ρ > ‖(GGT )−1w‖2 = ρmax which is consistent with the results in
Theorem 1.

2) If ‖v(0)‖22 > 1, we must have α > 0 since ‖v(α)‖2 = ‖s∗‖2 ≤ 1 [recall the constraint of problem (26) in the main
text]. The complementary condition implies that ‖s∗‖2 = 1. Clearly, the curve v(t), t ≥ 0 must intersect with the unit
circle at one unique point. Therefore Eq. (29) must have one unique positive root. Furthermore, from ‖v(0)‖22 > 1, we
can conclude that ρ < ‖(GGT )−1w‖2 = ρmax.

From the above, we know ρ < ρmax implies that ‖s∗‖2 = 1. Sorting the terms in Eq. (29) results in Eq. (30), which
completes the proof.
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In the proof of Theorem 2, we omit the case ‖v(0)‖2 = 1. By the same technique, we know ‖v(0)‖ = 1 implies ρ = ρmax,
which has been considered in Theorem 1. Actually, via the techniques in Theorem 2, the case ρ = ρmax is equivalent to
that Eq. (30) has a unique root at 0.

7. Discussion of Root Finding Technique
The quartic function we need to solve is solves the following quartic function:

α4 + c3α
3 + c2α

2 + c1α+ c0 = 0 (30)
where

c0 = ρ8σ4
1σ

4
2 − ρ6(w̃2

1σ
4
2 + w̃2

2σ
4
1),

c1 = 2ρ6(σ2
1σ

4
2 + σ4

1σ
2
2)− 2ρ4(w̃2

1σ
2
2 + w̃2

2σ
2
1),

c2 = ρ4(σ4
1 + σ4

2 + 4σ2
1σ

2
2)− ρ2(w̃2

1 + w̃2
2),

c3 = 2ρ2(σ2
1 + σ2

2).

In Theorem 2, we have already shown that Eq. (30) has a unique positive root when ρ < ρmax, we can find this positive
root efficiently by Newton’s method. If we denote p(t) as the quartic function in Eq. (30), it is worthwhile to note that
p(0) = c0 < 0 if ρ < ρmax. Therefore the initial point α0 can be chosen such that p(α0) > 0 (such α0 always exists
since p(α) → ∞ when α → ∞). Once the Newton’s method fails, e.g., there is a ᾱ ∈ (α, α0) such that p(ᾱ) > 0 and
p′(ᾱ) = 0, we switch to the more stable solver via eigendecomposition of a 4× 4 matrix (?). However, Newton’s method
never fails in our experiments and a few steps (less than 10) usually result in a very accurate solution (|p(αt)| < 1e − 18
where αt is the value returned by the Newton’s method after t iterations).

8. Proof of Theorem (3)
We are trying to solve:

min
u
h(u) =

1

2
‖u−w‖22 + ρ|u2 − u1| (31)

where ρ = λ/γ.

Proof. u∗ is the optimal solution of problem (31) if and only if 0 ∈ ∂uh(u∗), i.e.,
u∗ ∈ w + vρg (32)

where g = (1,−1)T and

v ∈


1, if u2 > u1

−1, if u2 < u1

[−1, 1], if u2 = u1

(33)

We write (32) in componentwise:
u∗1 = w1 + vρ and u∗2 = w2 − vρ.

Since |v| ≤ 1, then if
w1 − ρ > w2 + ρ, i.e., v = −1

we can conclude that u∗1 > u∗2. By (33), v has to be −1. Therefore
u∗1 = w1 − v and u∗2 = w2 + v.

Similarly, when
w1 + ρ < w2 − ρ, i.e., v = 1

we can see that u∗1 must be smaller than u∗2. Therefore (33), v has to be 1 and thus
u∗1 = w1 + v and u∗2 = w2 − v.

Otherwise, we have
w2 − 2ρ ≤ w1 ≤ w2 + 2ρ,

which implies

−1 ≤ w2 − w1

2ρ
≤ 1.
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Therefore if we set v = w2−w1

2ρ , we have
w1 + vρ = w2 − vρ,

i.e.,

u∗1 = u∗2 =
w1 + w2

2
.

The results above can be summarized as:

u∗ =


(w1 − ρ, w2 + ρ)T , if w1 > w2 + 2ρ

(w1 + ρ, w2 − ρ)T , if w1 < w2 − 2ρ

(w1+w2

2 , w1+w2

2 )T , otherwise
(34)

which completes the proof.


