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In this supplement, we present all of the details we mentioned in the main text.

A. Proof of Lemma 1
Before we prove Lemma 1, let us cite the following technical lemma.

Lemma 15. (Hiriart-Urruty & Lemaréchal, 1993) The function f is equal to its biconjugate f∗∗ if and only if f ∈ Γ0(<n).

We are now ready to derive a simple proof of Lemma 1 based on Lemma 15.

Proof. In order to show ϕ∗∗ = ϕ, it is enough to show ϕ ∈ Γ0(<) according to Lemma 15. Therefore we only to check
the following three conditions:

1). Properness: because ϕ : < → <+, i.e., there exists t ∈ < such that ϕ(t) is finite, ϕ is proper.

2). Lower semi-continuality: ϕ is lower semicontinuous because it is continuous.

3). Convexity: the convexity of ϕ is due to the its sublinearity, see Definition 1.

Thus, we have ϕ ∈ Γ0(<), which completes the proof.

B. Proof of Lemma 2
To prove Lemma 2, we need to following results.

Lemma 16. (Ruszczyński, 2006) Let Z ⊆ <n be a convex and closed set. Let us define the support function of Z as

σZ(s) := sup
x∈Z

sTx, (29)

and the indicator function ιZ as

ιZ(x) =

{
0, if x ∈ Z,
∞, otherwise.

(30)

Then

σ∗Z = ιZ , amd ι∗Z = σZ . (31)

Theorem 17. (Hiriart-Urruty & Lemaréchal, 1993) Let σ ∈ Γ0(<n) be a sublinear function, then σ is the support function
of the nonempty closed convex set

Sσ := {s ∈ <n : sTd ≤ σ(d), ∀d ∈ <n}. (32)

We are now ready to prove Lemma 2.

Proof. Due to Lemma 16 and Theorem 17, we can see that, there is a nonempty closed convex set Z ⊆ < such that

ϕ(t) = sup
s∈Z

st, ∀t ∈ <, (33)

where

Z := {s : st ≤ ϕ(t), ∀t ∈ <}. (34)
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Let t = 1 and −1 respectively, Eq. (34) implies that

sup
s∈Z

s ≤ ϕ(1) and inf
s∈Z

s ≥ ϕ(−1). (35)

Therefore, Z is a closed and bounded interval, i.e., Z = [α, β] with α, β ∈ <.

Next, let us show that α 6= β. In fact, in view of the nonnegativity of ϕ and Eq. (34), it is easy to see that 0 ∈ Z. Therefore,
if α = β, we must have Z = {0}. Thus, Lemma 16 implies that

ϕ = ι∗Z ≡ 0, (36)

which contradicts the fact that ϕ is a nonconstant function. Hence, we can conclude that α < β, which completes the
proof.

C. Derivation of the KKT Condition in Eq. (14)
The problem in (12) can be written as follows:

min
θ

C

2
‖ZT θ‖2 − 〈ȳ, θ〉, (37)

s.t. θi ∈ [α, β], i = 1, . . . , l.

Therefore, we can see that the Lagrangian is

L(θ, µ, ν) =
C

2
‖ZT θ‖2 − 〈ȳ, θ〉 (38)

+

l∑
i=1

µi(α− θi) +

l∑
i=1

νi(θi − β),

where µ = (µ1, . . . , µl)
T , ν = (ν1, . . . , νl)

T , and µi ≥ 0, νi ≥ 0 for all i = 1, . . . , l. µ and ν are in fact the vector of
Lagrangian multipliers.

For simplicity, let us denote θ∗(C) by θ∗. Then the KKT conditions (Boyd & Vandenberghe, 2004) are

∂L(θ, µ, ν)

∂θ
|θ∗ = 0⇒ CZZT θ∗ − ȳ − µ+ ν = 0, (39)

µi(α− θ∗i ) = 0,
νi(θ

∗
i − β) = 0,

i = 1, . . . , l. (40)

Eq. (40) is known as the complementary slackness condition. The equation in (39) actually involves l equations. We can
write down the ith equation as follows:

C〈ZT θ∗, aixi〉 − µi + νi = biyi. (41)

Recall that the ith column of Z is aixi. In view of Eq. (40) and Eq. (41), we can see that:

1. if θ∗i = α, then νi = 0 and Eq. (41) results in

C〈ZT θ∗, aixi〉 ≥ biyi; (42)

2. if θ∗i ∈ (α, β), then µi = νi = 0 and Eq. (41) results in

C〈ZT θ∗, aixi〉 = biyi; (43)

3. if θ∗i = β, then µi = 0 and Eq. (41) results in

C〈ZT θ∗, aixi〉 ≤ biyi. (44)

Then, in view of the inequalities in (42), (43) and (44), and Eq. (13), it is straightforward to derive the KKT condition in
(14).
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D. Proof of Lemma 3
Proof. The first part of the statement is trivial by the definition of R̂ and L̂. Therefore, we only consider the second part
of the statement.

Let G = ZZT . By permuting the columns and rows of G, we have

Ĝ =

(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
=

(
[XT ]TŜc

[XT ]Ŝc [XT ]TŜc
[XT ]Ŝ

[XT ]TŜ [XT ]Ŝc [XT ]TŜ [XT ]Ŝ

)
.

As a result, the objective function of problem (12) can be rewritten as

C

2
[θ]TŜcĜ11[θ]Ŝc − ŷT [θ]Ŝc +R([θ]Ŝ) (45)

where

ŷ = yŜc − CĜ12[θ]Ŝ , , (46)

R([θ]Ŝ) =
C

2
[θ]TŜ Ĝ22[θ]Ŝ − yTŜ [θ]Ŝ (47)

Due to the assumption that [θ∗(C)]Ŝ is known, ŷ and R([θ]Ŝ) can be treated as constants, and thus problem (12) reduces
to problem (15).

E. Review of the Dual Coordinate Descent Method
Problem (15) can be efficiently solved by the dual coordinate descent method (Hsieh et al., 2008).

More precisely, the optimization procedure starts from an initial point θ̂0 ∈ <|Ŝc| and generates a sequence of points
{θ̂k}∞k=0. The process from θ̂k to θ̂k+1 is referred to as an outer iteration. In each outer iteration, we update the components
of θ̂k one at a time and thus get a sequence of points θ̂k,i ∈ <|Ŝc|, i = 1, . . . , |Ŝc|. Suppose we are at the kth outer iteration.
To get θ̂k,i from θ̂k,i−1, we need to solve the following optimization problem:

min
t

C

2
(θ̂k,i−1 + tei)

T Ĝ11(θ̂k,i−1 + tei) (48)

− ŷT (θ̂k,i−1 + tei)

s.t. [θ̂k,i−1]i + t ∈ [α, β], i = 1, . . . , l,

where ei = (0, . . . , 1, . . . , 0)T . Clearly, problem (48) is equivalent to the following 1D optimization problem:

min
t

C

2
[Ĝ11]i,it

2 + (CeTi Ĝ11θ̂
k,i−1 − [ŷ]i)t (49)

s.t. [θ̂k,i−1]i + t ∈ [α, β],

which admits a closed form solution t∗. Once t∗ is available, we can set θ̂k,i = θ̂k,i−1 + t∗ei. For more details, please
refer to Hsieh et al. (2008).
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F. Proof of Theorem 6
Proof. We will prove the first half of the statement. The second half can be proved analogously. To show [θ∗(C)]i = α,
i.e., i ∈ R, (R1) implies that we only need to show C〈ZT θ∗(C), aixi〉 > biyi. Thus, we can see that

C〈ZT θ∗(C), aixi〉 = C

〈
ZT θ∗(C)− C0 + C

2C
ZT θ∗(C0), aixi

〉
+ C

〈
C0 + C

2C
ZT θ∗(C0), aixi

〉
≥ C0 + C

2
〈ZT θ∗(C0), aixi〉 − C

∥∥∥∥ZT θ∗(C)− C0 + C

2C
XT θ∗(C0)

∥∥∥∥ ‖aixi‖
≥ C0 + C

2
〈ZT θ∗(C0), aixi〉 −

C − C0

2
‖ZT θ∗(C0)‖‖aix‖

> biyi.

Note that, the second inequality is due to Theorem 5, and the last line is due to the statement. This completes the proof.

G. Improving SSNSV via VI
In this section, we describe how to strictly improve SSNSV by using the same technique used in DVI rules in a detailed
manner.

Estimation of w∗ via VI

We show that Ω[sb,sa] in Eq. (25) can be strictly improved by the variational inequalities. Consider Fsa . Because sa > sb,
we can see that w∗(sb) ∈ Fsa . Therefore, by Theorem 4, we have

〈w∗(sa),w∗(s)−w∗(sa)〉 ≥ 0, (50)

which is the first constraint in (25). Similarly, consider Fsb . Since ŵ(sb) ∈ Fsb , Theorem 4 implies that

〈w∗(s), ŵ(sb)−w∗(s)〉 ≥ 0,

which is equivalent to

‖w∗(s)− 1
2ŵ(sb)‖ ≤ 1

2‖ŵ(sb)‖. (51)

Clearly, the radius determined by the inequality (51) is only a half of the radius determined by the second constraint in
(25). In view of the inequalities in (50) and (51), we can see that w∗(s) can be bounded inside the following region:

Ω′[sb,sa] :=

{
w :

〈w∗(sa),w −w∗(sa)〉 ≥ 0,
‖w − 1

2ŵ(sb)‖ ≤ 1
2‖ŵ(sb)‖

}
It is easy to see that Ω′[sb,sa] ⊂ Ω[sb,sa]. As a result, the bounds in (R1′) and (R2′) with Ω′[sb,sa] are tighter than that
of Ω[sb,sa]. Thus, SSNSV (Ogawa et al., 2013) can be strictly improved by the estimation in (26). In fact, we have the
following theorem:
Theorem 18. Suppose we are given two parameters sa > sb > 0, and let w∗(sa) and ŵ(sb) be the optimal solution at
s = sa and a feasible solution at s = sb, respectively. Moreover, let us define

ρ = −‖w∗(sa)‖2 + 1
2 〈w

∗(sa), ŵ(sb)〉

v⊥ = v − vTw∗(sa)
‖w∗(sa)‖2w

∗(sa),∀v ∈ <n.

Then, for all s ∈ [sb, sa],

〈w∗(sa), x̄i〉 > 2‖x̄i‖
‖ŵ(sb)‖ρ and `i > 1⇒ i ∈ R ⇔ αi = 0, (52)

where

`i = − 〈w
∗(sa),x̄i〉
‖w∗(sa)‖2 ρ+ 1

2 〈ŵ(sb), x̄i〉 (53)

− ‖x̄⊥i ‖
√

1

4
‖ŵ(sb)‖2 − ρ2

‖w∗(sa)‖2 .
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Similarly,

ui < 1⇒ i ∈ L ⇔ αi = c, (54)

where

ui =



1
2 (〈ŵ(sb), x̄i〉+ ‖ŵ(sb)‖‖x̄i‖) ,

if 〈w∗(sa), x̄i〉 ≥ − 2‖x̄i‖
‖ŵ(sb)‖ρ

− 〈w
∗(sa),x̄i〉
‖w∗(sa)‖2 ρ+ 1

2 〈ŵ(sb), x̄i〉

+‖x̄⊥i ‖
√

1
4‖ŵ(sb)‖2 − ρ2

‖w∗(sa)‖2 ,

otherwise.

(55)

For convenience, we call the screening rule presented in Theorem 18 as the “enhanced” SSNSV (ESSNSV).

To prove Theorem 18, we first establish the following technical lemma.

Lemma 19. Consider the problem as follows:

min
w

f(w) = vTw, s.t. uTw ≤ d, ‖w − o‖ ≤ r, (56)

where r > 0. Let d′ = d− uTo and the optimal solution of problem (56) be f∗. Then we have

1. If vTu + ‖v‖d′
r ≥ 0, then

f∗ = vTo− r‖v‖.

2. Otherwise,

f∗ = vTo− ‖v⊥‖

√
r2 − (d′)2

‖u‖2
+

vTud′

‖u‖2
,

where v⊥ = v − vTu
‖u‖2u.

Notice that, we assume problem (56) is feasible, i.e., |u
T o−d|
‖u‖ ≤ r.

Proof. Let z = w − o, problem (56) can be rewritten as:

min
z

vT z + vTo, s.t. uT z ≤ d− uTo, ‖z‖ ≤ r. (57)

Problem (57) reduces to

min
z

vT z, s.t. uT z ≤ d′, ‖z‖ ≤ r. (58)

To solve problem (58), we make use of the Lagrangian multiplier method. For notational convenience, let F := {z :
uT z ≤ d′, ‖z‖ ≤ r}.

min
z∈F

vT z = min
z

max
µ≥0,
ν≥0

vT z + ν(uT z− d′) +
µ

2
(‖z‖2 − r2)

= max
µ≥0,
ν≥0

min
z

vT z + ν(uT z− d′) +
µ

2
(‖z‖2 − r2)

= max
µ≥0,
ν≥0

− 1

2µ
‖v + νu‖2 − νd′ − µr2

2
. (59)
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Notice that, in Eq. (59), we make the assumption that µ > 0. However, we can not simply exclude this possibility. In fact,
if µ = 0, we must have

v + νu = 0, (60)

since otherwise the function value of
vT z + ν(uT z− d′)

in the second line of Eq. (59) can be made arbitrarily small. As a result, we will have

g(µ, ν) = −∞,

which contradicts the strong duality of problem (56) (Boyd & Vandenberghe, 2004). [Problem (56) is clearly lower bounded
since the feasible set is compact.] Therefore, in view of Eq. (60), we can conclude that µ = 0 only if v point in the opposite
direction of u.

Let us first consider the general case, i.e., v does not point in the opposite direction of u. In view of Eq. (59), let g(µ, ν) =

− 1
2µ‖v + νu‖2 − νd′ − µr2

2 . It is easy to see that

∂g(µ, ν)

∂ν
= 0⇔ ν = −vTu + µd′

‖u‖2
. (61)

Since ν has to be nonnegative, we have

ν = max

{
0,−vTu + µd′

‖u‖2

}
. (62)

Case 1. If −vTu+µd′

‖u‖2 ≤ 0, then ν = 0 and thus

∂g(µ, ν)

∂µ
= 0⇔ µ =

‖v‖
r
. (63)

Then g(µ, ν) = −r‖v‖ and the optimal value of problem (56) is given by

vTo− r‖v‖. (64)

Case 2. If −vTu+µd′

‖u‖2 > 0, then ν = −vTu+µd′

‖u‖2 and

g(µ, ν) = − 1

2µ
‖v⊥‖2 − µ

2

(
r2 − (d′)2

‖u‖2

)
+

vTud′

‖u‖2
, (65)

Thus,

∂g(µ, ν)

∂µ
= 0⇔ µ =

‖v⊥‖√
r2 − (d′)2

‖u‖2

(66)

Then g(µ, ν) = −‖v⊥‖
√
r2 − (d′)2

‖u‖2 + vTud′

‖u‖2 and the optimal value of problem (56) is given by

vTo− ‖v⊥‖

√
r2 − (d′)2

‖u‖2
+

vTud′

‖u‖2
. (67)

Now let us consider the case with v pointing in the opposite direction of u. We can see that there exists γ = − uTv
‖u‖2 > 0

such that v = −γu. By plugging v = −γu in problem (56) and following an analogous argument as before, we can see
that the statement in Lemma 19 is also applicable to this case.

Therefore, the proof of the statement is completed.
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We are now ready to prove Theorem 18.

Proof. To prove the statements in (52) and (53), we only need to set

v := x̄i, u : −w∗(sa), d := −‖w∗(sa)‖2,
o := 1

2ŵ, r := 1
2‖ŵ‖,

d′ := ρ = −‖w∗(sa)‖2 +
1

2
〈w∗(sa), ŵ〉,

and then apply Lemma 19. Notice that, for case 1, the optimal value

f∗ =
1

2
(〈ŵ(sb), x̄i〉 − ‖ŵ(sb)‖‖x̄i‖) ≤ 0,

and thus none of the non-support vectors can be identified [recall that, according to (R1′), f∗ has to be larger than 1 such
that x̄i can be detected as a non-support vector]. As a result, we only need to consider case 2.

The statement in (54) and (55) follows with an analogous argument by noting that

max
w∈Θ′

[sb,sa]

〈w, x̄i〉 = − min
w∈Θ′

[sb,sa]

−〈w, x̄i〉.


