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This document contains proofs and additional experiments for the paper “The Falling Factorial Basis and
Its Statistical Applications”. In Section A, we provide proofs to the key technical results in the main paper.
In Section B, we give some motivating arguments and additional experiments for the higher order KS test.

A Proofs and technical details

A.1 Proof of Lemma 1 (recursive decomposition)
The falling factorial basis matrix, as defined in (4), (5), can be expressed as H(k) = [H

(k)
1 H

(k)
2 ], where

H
(k)
1 =



1 0 0 · · · 0
1 x2 − x1 0 · · · 0

1 x3 − x1 (x3 − x2)(x3 − x1) · · ·
...

...
...

...
. . .

...
1 xk+1 − x1 (xk+1 − x2)(xk+1 − x1) · · ·

∏k
`=1(xk+1 − x`)

...
...

...
. . .

...
1 xn − x1 (xn − x2)(xn − x1) · · ·

∏k
`=1(xn − x`)


∈ Rn×(k+1),

and

H
(k)
2 =


0(k+1)×1 0(k+1)×1 · · · 0(k+1)×1∏k

`=1(xk+2 − x1+`) 0 · · · 0∏k
`=1(xk+3 − x1+`)

∏k
`=1(xk+3 − x2+`) · · · 0

...
...

. . .
...∏k

`=1(xn − x1+`)
∏k
`=1(xn − x2+`) · · ·

∏k
`=1(xn − xn−k−1+`)

 ∈ Rn×(n−k−1).

Lemma 1 claims that H(0) = Ln, the lower triangular matrix of 1s, which can be seen directly by inspection
(recalling our convention of defining thee empty product to be 1). The lemma further claims that H(k) can
be recursively factorized into the following form:

H(k) = H(k−1) ·
[
Ik 0
0 ∆(k)

]
·
[
Ik 0
0 Ln−k

]
, (A.1)

for all k ≥ 1. We prove the above factorization in this current section. In what follows, we denote the last
n− k − 1 columns of the product (A.1) by M̃ (k) ∈ Rn×(n−k−1), and also write

M̃ (k) =

[
0(k+1)×(n−k−1)

L̃(k),

]
,
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i.e., we use L̃(k) to denote the lower (n− k − 1)× (n− k − 1) submatrix of M̃ (k). To prove the lemma, we
show that M̃ (k) is equal to the corresponding block H(k)

2 , by induction on k. The proof that the first block of
k + 1 columns of the product is equal to H(k)

1 follows from the arguments given for the proof of the second
block, and therefore we do not explicitly rewrite the proof for this part.

We begin the inductive proof by checking the case k = 1. Note

M̃ (1) =

[
02×(n−2)

L̃(1)

]
=

[
01×(n−1)
Ln−1

]
(∆(k))−1

[
01×(n−2)
Ln−2

]

=


02×1 02×1 · · · 02×1
x3 − x2 0 · · · 0
x4 − x2 x4 − x3 · · · 0

...
...

. . .
...

xn − x2 xn − x3 · · · xn − xn−1

 .

This gives precisely the last n− 2 columns of H(1), as defined in (4).
Next we verify that if the statement holds for some k ≥ 1, then it is true for k+1. To avoid confusion, we

will use i, j as indices H(k+1) and α, β as indices of L̃(k+1). The universal rule for the relationship between
the two sets of indices is (

i
j

)
=

(
α
β

)
+ k + 2.

We consider an arbitrary element, L̃(k+1)
αβ . Due to the upper triangular shape of L̃(k), we have L̃(k)

αβ = 0 if
α < β. For α ≥ β, we plainly calculate, using the inductive hypothesis

L̃
(k+1)
αβ =

1+α∑
q=1+β

L̃
(k)
1+α,q · (∆(k+1))−1qq

=

1+α∑
q=1+β

k∏
`=1

(xk+2+α − xq+`) · (xk+1+q − xq)

=

k+1∏
`=1

(xk+2+α − xβ+`) ·A = H
(k)
ij ·A,

where A is the sum of terms that scales each summand to the desired quantity (by multiplying and dividing
by missing factors). To complete the inductive proof, it suffices to show that A = 1. It turns out that there are
two main cases to consider, which we examine below.

Case 1. When α− β ≤ k, the term A can be expressed as

A =
xk+1+1+β − x1+β
xk+2+α − x1+β

+
(xk+1+2+β − x2+β)(xk+2+α − xk+1+1+β)

(xk+2+α − x1+β)(xk+2+α − x2+β)

+ · · ·+ (xk+1+γ+β − xγ+β)(xk+2+α − xk+2+β) · · · (xk+2+α − xk+γ+β)

(xk+2+α − x1+β) · · · (xk+2+α − xγ−1+β)(xk+2+α − xγ+β)

+ · · ·+ (xk+1+α − xα)(xk+2+α − xk+2+β) · · · (xk+2+α − xk+1+α)

(xk+2+α − x1+β) · · · (xk+2+α − xα−1)(xk+2+α − xα)

+((
((((

((
(xk+2+α − x1+α)(xk+2+α − xk+2+β) · · · (xk+2+α − xk+1+α)

(xk+2+α − x1+β) · · · (xk+2+α − xα)(((
((((

(
(xk+2+α − x1+α)

.

Note that in the last term, the factor (xk+2+α − x1+α) in both the denominator and numerator cancels
out, leaving the denominator to be the same as the second to last term. Combining the last two terms, we
again get a common factor (xk+2+α − xα) in denominator and numerator, which cancels out, and makes
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the denominator of this term the same as that previous term. Continuing in this manner, we can recursively
eliminate the terms from last to the first, leaving

���
�xk+2+β − x1+β + xk+2+α −����xk+2+β

xk+2+α − x1+β
= 1.

In other words, we have shown that A = 1.
Case 2. When α− β ≥ k + 1, the denominators in terms of A will remain the same after they reach

(xk+2+α − x1+β) · · · (xk+2+α − x1+k+β) =

k+1∏
`=1

(xk+2+α − xβ+`) := B.

Again, we begin by expressing A explicitly as

A =
xk+1+1+β − x1+β
xk+2+α − x1+β

+
(xk+1+2+β − x2+β)(xk+2+α − xk+1+1+β)

(xk+2+α − x1+β)(xk+2+α − x2+β)

+ · · ·+ (xk+1+γ+β − xγ+β)(xk+2+α − xk+2+β) · · · (xk+2+α − xk+γ+β)

(xk+2+α − x1+β) · · · (xk+2+α − xγ−1+β)(xk+2+α − xγ+β)

+ · · ·+ (xk+1+k+1+β − xk+1+β)(xk+2+α − xk+2+β) · · · (xk+2+α − xk+k+1+β)

(xk+2+α − x1+β) · · · (xk+2+α − x1+k+β)

+
(xk+1+k+2+β − xk+2+β)(xk+2+α − xk+3+β) · · · (xk+2+α − xk+k+2+β)

(xk+2+α − x1+β) · · · (xk+2+α − x1+k+β)

+ · · ·+ (xk+1+α − x1+α)(xk+2+α − x1+α) · · · (xk+2+α − xk+α)

(xk+2+α − x1+β) · · · (xk+2+α − x1+k+β)

+
(xk+1+1+α − x1+α)(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α)

(xk+2+α − x1+β) · · · (xk+2+α − x1+k+β)
.

Now we divide first factor of the transition term, in the third line above, into two halves by

xk+1+k+1+β − xk+1+β = (xk+2+α − x1+k+β) + (xk+1+k+1+β − xk+2+α).

The first half triggers the recursive reduction on the first k terms exactly as in the first case, so the sum of the
first k terms equal to 1 and we get

B(A− 1) =− (xk+2+α − xk+k+2+β)(xk+2+α − xk+2+β) · · · (xk+2+α − xk+k+1+β)

+ (xk+1+k+2+β − xk+2+β)(xk+2+α − xk+3+β) · · · (xk+2+α − xk+k+2+β)

+ · · ·+ (xk+1+α − x1+α)(xk+2+α − x1+α) · · · (xk+2+α − xk+α)

+ (xk+1+1+α − x1+α)(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α).

Now we can do a recursive reduction starting from the first two terms, the sum of which is[
xk+1+k+2+β − xk+2+β − (xk+2+α − xk+2+β)

]
(xk+2+α − xk+3+β) · · · (xk+2+α − xk+k+2+β)

=− (xk+2+α − xk+1+k+2+β)(xk+2+α − xk+3+β) · · · (xk+2+α − xk+k+2+β)

This can be combined with the third term in a similar fashion and the recursion continues. At the end, we get

B(A− 1) =− (xk+2+α − xk+1+α)(xk+2+α − x1+α) · · · (xk+2+α − xk+α)

+ (xk+1+1+α − x1+α)(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α)

=
[
xk+1+1+α − x1+α − (xk+2+α − x1+α)

]
(xk+2+α − x2+α) · · · (xk+2+α − xk+1+α) = 0.

That is, we have shown that A = 1.
With A = 1 proved between these two cases, we have completed the inductive argument, and hence the

proof of the lemma.
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A.2 Proof of Lemma 2 (inverse representation)
We prove Lemma 2, which claims that he inverse of falling factorial basis matrix is

(H(k))−1 =

[
C

1
k! ·D

(k+1)

]
, (A.2)

where D(k+1) is the (k + 1)st order discrete difference operator defined in (10), and the rows of the matrix
C ∈ R(k+1)×n obey C1 = e1 and

Ci+1 =

[
1

i!
· (∆(i))−1 ·D(i)

]
1

, i = 1, . . . k.

Again we use induction on k. When k = 0, it is easily verified that

(H(0))−1 = L−1n =

[
e1
D(1)

]
=

[
e1

1
0! ·D

(1)

]
.

The rest of the inductive proof is relatively straightforward, following from Lemma 1, i.e., from (A.1). In-
verting both sides of (A.1) gives

(H(k))−1 =

[
Ik 0
0 Ln−k

]−1
·
[
Ik 0
0 ∆(k)

]−1
· (H(k−1))−1

=

[
Ik 0
0 L−1n−k

]
·
[
Ik 0
0 (∆(k))−1

]
· (H(k−1))−1.

Now, using that L−1n−k =

[
e1
D(1)

]
, and assuming that (H(k−1))−1 obeys (A.2),

(H(k))−1 =

 Ik 0

0

[
e1
D(1)

]  · [ Ik 0
0 (∆(k))−1

]
·



e1[
1
1! (∆

(1))−1D(1)
]
1

...[
1

(k−1)! (∆
(k−1))−1D(k−1)

]
1

1
(k−1)! ·D

(k)



=



e1[
1
1! (∆

(1))−1D(1)
]
1

...[
1

(k−1)! (∆
(k−1))−1D(k−1)

]
1

1
k!

[
e1
D(1)

]
· k(∆(k))−1 ·D(k)


=



e1[
1
1! (∆

(1))−1D(1)
]
1

...[
1

(k−1)! (∆
(k−1))−1D(k−1)

]
1[

1
(k)! (∆

(k))−1D(k)
]
1

1
k! ·D

(k+1)


=

[
C

1
k! ·D

(k+1)

]
,

as desired.

A.3 Algorithms for multiplication by (H(k))T and [(H(k))T ]−1

Recall that, given a vector y, we write ya:b to denote its subvector (ya, ya+1, . . . yb), and we write cumsum
and diff for the cumulative sum pairwise difference operators. Furthermore, we define flip to be the oper-
ator the reverses the order of its input, e.g., flip((1, 2, 3)) = (3, 2, 1), and we write ◦ to denote operator
composition, e.g., flip ◦ cumsum. The remaining two algorithms from Lemma 3 are given below, in Algo-
rithms 3 and 4.
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Algorithm 3 Multiplication by (H(k))T

Input: Vector to be multiplied y ∈ Rn, order k ≥ 0, sorted inputs vector x ∈ Rn.
Output: y is overwritten by (H(k))T y.
for i = 0 to k do

if i 6= 0 then
y(i+1):n = y(i+1):n ./ (x(i+1):n − x1:(n−i)).

end if
y(i+1):n = flip ◦ cumsum ◦ flip(y(i+1):n).

end for
Return y.

Algorithm 4 Multiplication by [(H(k))T ]−1

Input: Vector to be multiplied y ∈ Rn, order k ≥ 0, sorted inputs vector x ∈ Rn.
Output: y is overwritten by [(H(k))T ]−1y.
for i = k to 0 do
y(i+1):n−1 = flip ◦ diff ◦ flip(y(i+1):n).
if i 6= 0 then
y(i+1):n = (x(i+1):n − x1:(n−i))−1 .∗ y(i+1):n.

end if
end for
Return y.

A.4 Proof of Lemma 4 (proximity to truncated power basis)
Recall that we denote

δ = max
i=1,...n

(xi − xi−1),

and write x0 = 0 for notational convenience. Taking the elementwise difference between the falling factorial
and truncated power basis matrices, we get

Hij −Gij =



0 for i = 1, . . . n, j = 1∏j−1
`=1(xi − x`)− xj−1i for i > j − 1, j = 2, . . . k + 1

−xj−1i for i ≤ j − 1, j = 2, . . . k + 1

0 for i ≤ j − dk/2e, j ≥ k + 2

−(xi − xj−dk/2e)k for j − dk/2e < i ≤ j − 1, j ≥ k + 2∏k
`=1(xi − xj−k−1+`)− (xi − xj−dk/2e)k for i > j − 1, j ≥ k + 2.

(A.3)
In the above, we use dze to denote the least integer greater than or equal to z (the ceiling function). We will
bound the absolute value of each nonzero difference Hij −Gij in (A.3). Starting with the second row,∣∣∣∣∣
j−1∏
`=1

(xi − x`)− xj−1i

∣∣∣∣∣ ≤ xj−1i − (xi − xj−1)j−1

= xj−1

[
xj−2i + xj−3i (xi − xj−1) + . . .+ xi(xi − xj−1)j−3 + (xi − xj−1)j−2

]
≤ xj−1 · (j − 1) · xj−2i ≤ kδ · k · 1 ≤ k2δ.

In the second line above, we used the expansion

ak − bk = (a− b)(ak−1 + ak−2b+ . . .+ bk−1), (A.4)
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and in the third line, we used the fact that j − 1 ≤ k, so that xj−1 ≤ kδ, and also 0 ≤ xi ≤ 1. The third row
of (A.3) is simpler. Since 0 ≤ xi ≤ 1 and i ≤ j − 1 < k,

| − xj−1i | ≤ xi ≤ kδ.

For the fourth row in (A.3), using the range of i, j, and the fact that kδ ≤ 1,

| − (xi − xj−dk/2e)k| ≤ (xj−1 − xj−dk/2e)k ≤ (kδ)k ≤ kδ.

This leaves us to deal with the last row in (A.3). Defining p = i, q = j − (k + 1), the problem transforms
into bounding

k∏
`=1

(xp − x`+q)− (xp − xb k+2
2 c+q

)k,

for any p = k+ 2, k+ 3, . . . n, q = 1, . . . p−k, where now bzc denotes the greatest integer less than or equal
to z (the floor function). We let µpq = xp − xb k+2

2 c+q
and ηq = xp − xq+1 − µpq . Note that ηq is the gap

between the maximum multiplicant in the first term above and µpq . Then

ηq = xb k+2
2 c+q

− xq+1 ≤ kδ.

Therefore
k∏
`=1

(xp − x`+q)− (xp − xb k+2
2 c+q

)k ≤ (xp − x1+q)k − µkpq

= (µpq + ηq)
k − µkpq

= kδ ·
k−1∑
`=0

(µpq + ηq)
`µk−`pq

≤ k2δ · (µpq + ηq)
k ≤ k2δ.

The third line above follows again from the expansion (A.4), and the fact that ηq ≤ kδ. The fourth line uses
µpq + ηq ≥ µpq , and ultimately µpq + ηq = xp − x1+q ∈ [0, 1]. This completes the proof.

A.5 Proof of Theorem 1 (trend filtering rate, fixed inputs)
This proof follows the same strategy as the convergence proofs in Tibshirani (2014). Recall that the trend
filtering estimate (13) can be expressed in terms of the lasso problem (14), in that β̂ = H(k)α̂; also consider
consider the problem

θ̂ = argmin
θ∈Rn

1

2
‖y −G(k)θ‖22 + λ′ ·

n∑
j=k+2

|θj |, (A.5)

where G(k) is the truncated power basis matrix of order k. Let µ = (f0(x1), . . . f0(xn)) ∈ Rn denote the
true function evaluated across the inputs. Then under the assumptions of Theorem 1, it is known that

‖G(k)θ̂ − µ‖22 = OP(n−(2k+2)/(2k+3)),

when λ = Θ(n1/(2k+3)); see Theorem 10 of Mammen & van de Geer (1997). It now suffices to show that
‖H(k)α̂−G(k)θ̂‖22 = OP(n−(2k+2)/(2k+3)), since ‖H(k)α̂− µ‖22 ≤ 2‖H(k)α̂−G(k)θ̂‖22 + 2‖G(k)θ̂ − µ‖22.
For this, we can use the results in Appendix B of Tibshirani (2014), specifically Corollary 4 of this work, to
argue that we have ‖H(k)α̂−G(k)θ̂‖22 = OP(n−(2k+2)/(2k+3)) as long as λ = (1 + δ)λ′ for any δ > 0, and

n(2k+2)/(2k+3) · max
i,j=1,...n

|G(k)
ij −H

(k)
ij | → 0 as n→∞.

But by Lemma 4, and our condition (16) on the inputs, we have maxi,j=1,...n |G(k)
ij −H

(k)
ij | ≤ k2 log n/n,

which verifies the above, and hence gives the result.
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A.6 Proof of Lemma 5 (maximum gap between random inputs)
Given sorted i.i.d. draws x1 ≤ . . . ≤ xn from a continuous distribution supported on [0, 1], whose density
is bounded below by p0 > 0, we consider the maximum gap δ = maxi=1,...n(xi − xi−1) (recall that we set
x0 = 0 for notational convenience). This is a well-studied quantity. In the case of a uniform distribution on
[0, 1], we know that the spacings vector follows a symmetric Dirichelet distribution, which is equivalent to
uniform sampling from an n-simplex, e.g., see David & Nagaraja (1970). Furthermore, the asymptotics of
the kth largest gap have also been extensively studied, e.g., in Barbe (1992). Here, we provide a simple finite
sample bound on δ, without using distributional or geometric characterizations, but rather a direct argument
based on binning.

Consider an arbitrary point x in [0, 1−α]. Then the probability that at least one draw from our underlying
distribution occurs in [x, x+α] is bounded below by 1− (1− p0α)n. Now divide [0, 1] into bins of length α
(the last bin can be overlapping with the second to last bin). Note that the event in which there is at least one
sample point in each bin implies that the maximum gap δ between adjacent points is less than or equal to 2α.
By the union bound, this event occurs with probability at least 1− d 1αe(1− p0α)n.

Let α = r log n/(p0n), and assume n is sufficiently large so that r log n/(p0n) < 1. Then we have⌈ 1

α

⌉
(1− p0α)n ≤

( 1

α
+ 1
)

(1− p0α)n =
p0n+ r log n

r log n

(
1− r log n

n

)n
≤ 2p0n exp(−r log n) = 2p0n

1−r.

Plugging in r = 11, we get the desired result for C = 22, i.e., with probability at least 1 − 2p0n
−10, the

maximum gap satisfies δ ≤ 22 log n/(p0n).

A.7 Proof of Corollary 1 (trend filtering rate, random inputs)
The proof of this result is entirely analogous to the proof of Theorem 1; the only difference is that

max
i=1,...n−1

(xi+1 − xi) = OP(log n/n),

(i.e., convergence in probability now), and so accordingly,

n(2k+2)/(2k+3) · max
i,j=1,...n

|G(k)
ij −H

(k)
ij |

p→ 0 as n→∞,

employing Lemmas 4 and 5. The same arguments now apply; the stability result in Corollary 4 in Appendix
B of Tibshirani (2014) must now be applied to random predictor matrices, but this is an extension that is
straightforward to verify.

B The higher order KS test

B.1 Motivating arguments
As described in the text, the classical KS test is

KS(X(m), Y(n)) = max
zj∈Z(m+n)

∣∣∣∣∣ 1

m

m∑
i=1

1{xi ≤ zj} −
1

n

n∑
i=1

1{yi ≤ zj}

∣∣∣∣∣ , (B.1)

over samples X(m) = (x1, . . . xm) and Y(n) = (y1, . . . yn), written in combined form as Z(m+n) = X(m) ∪
Y(n) = (z1, . . . zm+n). It is well-known that the above definition is equivalent to

KS(X(m), Y(n)) = max
f : TV(f)≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ , (B.2)
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where we write ÊX(m)
for the empirical expectation under X(m), so ÊX(m)

[f(X)] = 1/m
∑m
i=1 f(xi), and

similarly for ÊY(n)
. The equivalence between these two definitions follows from the fact that the maximum

in (B.2) always occurs at an indicator function, f(x) = 1{x ≤ zi}, for some i = 1, . . .m+ n.
We now will step through a sequence of motivating arguments that lead to the definition of the higher

order KS test in (20). The basic idea is to alter the constraint set in (B.2), and consider functions of bounded
variation in their kth derivative, for some fixed k ≥ 0. This gives

max
f : TV(f(k))≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ . (B.3)

Is it possible to compute such a quantity? By a variational result in Mammen & van de Geer (1997), the
maximum in (B.3) is always achieved by a kth order spline function. In principle, if we knew some finite set
T containing the knots of the maximizing spline, then we could restrict our attention to the space of splines
with knots in T . However, when k ≥ 2, such a set T is not generically easy to find, because the knots of the
maximizing spline in (B.3) can lie outside of the set of data samples Z(m+n) = {z1, . . . zm+1} (Mammen
& van de Geer, 1997). Therefore, we further restrict the functions in consideration in (B.3) to be kth order
splines with knots contained in Z = Z(m+n). Letting S(k)Z denote the space of such spline functions, we
hence examine

max
f∈S(k)

Z : TV(f(k))≤1

∣∣∣ÊX(m)
[f(X)]− ÊY(n)

[f(Y )]
∣∣∣ . (B.4)

As S(k)Z is a finite-dimensional function space (in fact, (m + n)-dimensional), we can rewrite (B.4) in
a parametric form, similar to (B.1). Let g1, . . . gm+n denote the kth order truncated power basis with knots
over the set of joined data samples Z. Then any function f ∈ S(k)Z with TV(f (k)) ≤ 1 can be expressed as
f =

∑m+n
j=1 αjgj , where the coefficients satisfy

∑m+n
j=k+2 |αj | ≤ 1. In terms of the evaluations of the function

f over z1, . . . zm+n, we have (
f(z1), . . . f(zm+n)

)
= G(k)α,

where G(k) is the truncated power basis matrix, i.e., its columns give the evaluations of g1, . . . gm+n over the
points z1, . . . zm+n. Therefore (B.4) can be re-expressed as

max∑m+n
j=k+2 |αj |≤1

∣∣∣∣ 1

m
1TX(m)

G(k)α− 1

n
1TY(n)

G(k)α

∣∣∣∣ . (B.5)

Here 1X(m)
is an indicator vector of length m + n, indicating the membership of each point in the joined

sample Z(m+n) to the set X(m). The analogous definition is made for 1Y(n)
.

Upon inspection, some care must be taken in evaluating the maximum in (B.5). Let us decompose the
coefficient vector into blocks as α = (α1, α2), where α1 denotes the first k + 1 coefficients and α2 the last
m + n − k − 1. Then the constraint in (B.5) is simply ‖α2‖1 ≤ 1, and it is not hard to see that since α1 is
unconstrained, we can choose it to make the criterion in (B.5) arbitrarily large. Therefore, in order to make
(B.5) well-defined (finite), we employ the further restriction α1 = 0, yielding

max
‖α2‖1≤1

∣∣∣∣ 1

m
1TX(m)

G
(k)
2 α2 −

1

n
1TY(n)

G
(k)
2 α2

∣∣∣∣ , (B.6)

where G(k)
2 denotes the last m−n− k− 1 columns of G(k). A simple duality argument shows that (B.6) can

be written in terms of the `∞ norm, finally giving

KS
(k)
G (X(m), Y(n)) =

∥∥∥∥(G
(k)
2 )T

(
1X(m)

m
−
1Y(n)

n

)∥∥∥∥
∞
, (B.7)

matching the our definition of the kth order KS test in (20). Note that when k = 0, this reduces to the usual
(classic) KS test in (B.1).
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For k ≥ 1, unlike the usual KS test which requires O(m + n) operations, the kth order KS test in (B.7)
requires O((m+n)2) operations, due to the lower triangular nature of G(k). Armed with our falling factorial
basis, we can approximate KS

(k)
G (Xm, Y n) by

KS
(k)
H (X(m), Y(n)) =

∥∥∥∥(H
(k)
2 )T

(
1X(m)

m
−
1Y(n)

n

)∥∥∥∥
∞
, (B.8)

where H(k) is the kth order falling factorial basis matrix (and H(k)
2 its last m+ n− k− 1 columns) over the

points z1, . . . zm+n. After sorting z1, . . . zm+n, the statistic in (B.8) can be computed in O((k + 1)(m+ n))
time; see Algorithm 3, described above in Section A.3.

B.2 Additional experiments
In the main text, we presented two numerical experiments, on testing between samples from different distri-
butions P,Q. In the first experiment P = N(0, 1) and Q = t3, so the difference between P,Q was mainly in
the tails; in the second, P = Laplace(0) andQ = Laplace(0.3), and the difference between P,Qwas mainly
in the centers of the distributions. The first experiment demonstrated that the power of the higher order KS
test generally increased as we increased the polynomial degree k, the second demonstrated the opposite, i.e.,
that its power generally decreased for increasing k. Refer back to Figures 3 and 4 in the main text.

We should note that the first experiment was not carefully crafted in any way; the same performance is
seen with a number of similar setups. However, we did have to look carefully to reveal the negative behavior
shown in the second experiment. For example, in detecting the difference between mean-shifted standard
normals (as opposed to Laplace distributions), the higher order KS tests do not encounter nearly as much
difficulty. To demonstrate this, we examine a third experiment here with P = N(0, 1) and Q = N(0.3, 1).
Figure B.1 gives a visual illustration of the distributions across the three experimental setups (the first two
considered in the main text, and the third investigated here).

The ROC curves for experiment 3 are given in Figure B.2. The left panel shows that the test for k = 1
improves on the usual test (k = 0), even though the difference between the two distributions is mainly near
their centers. The right panel shows that the higher order KS tests are competitive with other commonly used
nonparametric tests in this setting. The results of this experiment hence suggest that the higher order KS
tests provide a utility beyond simply detecting finer tail differences, and the tradeoff induced by varying the
polynomial order k is not completely explained as a tradeoff between tail and center sensitivity.
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(b) Experiment 2
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(c) Experiment 3

Figure B.1: An illustration of distribution P vs. Q in our numerical experiments.

We also study the sample complexity of tests in the three experimental setups. Specifically, over R =
1000 repetitions, we find the true positive rate associated with a 0.05 false positive rate, as we let n vary over
10, 20, 50, 100, 200, . . . 1000. The results for this sample complexity sudy are shown in Figures B.3, B.4,
and B.5. We see that the higher order KS tests perform quite favorably the first experimental setup, not so
favorably in the second, and somewhere in the middle in the third.
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Figure B.2: ROC curves for experiment 3, normal vs. shifted normal.
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(a) Comparing higher order KS tests
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Figure B.3: Sample complexities at the level α = 0.05 for experiment 1, normal vs. t.
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Figure B.4: Sample complexities at level α = 0.05 in experiment 2, Laplace vs. shifted Laplace.
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Figure B.5: Sample complexities at level α = 0.05 in experiment 3, normal vs. shifted normal.
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