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Abstract
This paper proposes a robust method to esti-
mate the inverse covariance under noisy mea-
surements. The method is based on the estima-
tion of each column in the inverse covariance ma-
trix independently via robust regression, which
enables parallelization. Different from previous
linear programming based methods that cannot
guarantee a positive semi-definite covariance ma-
trix, our method adjusts the learned matrix to sat-
isfy this condition, which further facilitates the
tasks of forecasting future values. Experiments
on time series prediction and classification under
noisy condition demonstrate the effectiveness of
the approach.

1. Introduction
Inverse covariance estimation of Gaussian variables in high
dimensional setting has shown its importance in classifica-
tion, structure learning, and time series prediction. A class
of typical solutions is based on l1 penalized log-likelihood,
which encourages sparsity on its entries. Many efficient op-
timization methods and theories have been developed along
this line (Yuan & Lin, 2007; Friedman et al., 2008; Baner-
jee et al., 2008; d’Aspremont et al., 2008; Rothman et al.,
2008; Duchi et al., 2008; Ravikumar et al., 2011; Hsieh
et al., 2011; 2013). Another class of solutions is based
on estimating each column of inverse covariance via linear
programming (Meinshausen & Buhlmann, 2006; Friedman
et al., 2008; Yuan, 2010; Cai et al., 2011). An advantage
of the linear-programing based methods is that the algo-
rithms can be executed in parallel easily as the estimation
of each column in the covariance matrix can be done inde-
pendently. Our work is thus aligned to estimation via linear
programming.
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To our knowledge, people have not yet considered esti-
mation of inverse covariance under noisy measurements.
Noisy measurements in the features are common in many
real-world applications utilizing sensor and networking
data. Forecasting or classification may not achieve a sat-
isfactory result without considering the existence of noise.
Therefore, this paper focuses on designing a robust method
in estimating the inverse covariance under noisy measure-
ments.

The second contribution of our work is to provide a gen-
erative counterpart of Gaussian conditional random field
(GCRF). GCRF models relations between two sets of ran-
dom variables (Sohn & Kim, 2012; Yuan & Zhang, 2012;
Wytock & Kolter, 2013). A promising empirical time series
forecasting by GCRF has been studied (Wytock & Kolter,
2013). The objective of these works are based on minimiz-
ing penalized l1 negative log-likelihood. Yet, such MLE
based methods need to consider all the variables together
to maximize the distribution during estimation, preventing
the usage of a divide-and-conquer strategy. This may cause
serious performance concern since, for instance, modeling
thousands of variables requires the estimation of millions
of entries in an inverse covariance matrix. Therefore, in
this paper we choose to focus on another direction that fa-
cilitates the usage of divide-and-conquer strategy for better
efficiency. Our generative counterpart jointly models the
covariance of the input and output variables by a series of
regression, and uses conditional distribution of Gaussian
variables to obtain the model.

More importantly, the proposed strategy allows us to seam-
lessly leverage techniques in robust optimization (Ben-Tal
et al., 2009) for estimation under noisy measurements. As
can be seen through our experiments, with robust optimiza-
tion techniques it is possible to significantly boost the fore-
casting and classification performance under noisy environ-
ment. For the l1 penalized likelihood approach, since it is
already a semi-definite programming problem. After robust
optimization integrated into the approach, the resulting al-
gorithm may become intractable. Though Banerjee et al.
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(2008) and d’Aspremont et al. (2008) point out that the
dual of l1 MLE objective can be interpreted as a worst-case
maximum likelihood with additive noise in the the sample
covariance, the approach is not equivalent to model the ad-
ditive noise in the features. Assuming the additive noise in
the features is more general than assuming it in the sample
covariance, since the former contains additional multiplica-
tive component of noise in the sample covariance.

Yet, previous approaches of estimation by regression
(Meinshausen & Buhlmann, 2006; Friedman et al., 2008;
Yuan, 2010; Cai et al., 2011) have concerns that they do
not guarantee the estimated matrix to be positive semi-
definite. Previous works (Meinshausen & Buhlmann, 2006;
Friedman et al., 2008; Yuan, 2010; Cai et al., 2011) fo-
cus on recovering the graph or the entries of a matrix, so
they do not constrain the solutions to be positive semi-
definite. Being positive semidefinite is a necessary condi-
tion for the learned matrix to be a valid (inverse) covariance
(Yates & Goodman, 2004). Most of the sampling methods
for multivariate Gaussian distribution require performing
the Cholesky factorization of the given covariance (Barr &
Slezak, 1972; Law & Kelton, 1991). If a matrix is not pos-
itive semi-definite, the factorization cannot be conducted,
which prohibits the corresponding sampling that is required
to perform a prediction task. Here we provide a method to
guarantee the positive semi-definite property.

To summarize, our contributions, 1) to our knowledge, we
are the first to study estimating inverse covariance under
the existence of noise in the features. 2) We are the first to
deal with a major concern in the previous works of using
linear programming methods such that their solutions do
not guarantee positive semi-definiteness, and thus prevent
further sampling from the distribution. 3) We show that in
Gaussian regression (i.e. GCRF), our generative approach
performs better than discriminative approach under noisy
condition.

2. Preliminaries
We now provide the background of our method. In Subsec-
tion 2.1, we give the notation used in the paper. Since our
method is based on linear regression to estimate the inverse
covariance, we describe a related work (Yuan, 2010) along
this line in Subsection 2.2. Then we exploit the estimated
covariance to perform classification and time series predic-
tion. The corresponding models we use are linear discrim-
inant analysis (LDA) for classification and GCRF for pre-
diction, which will be introduced respectively in Subsec-
tion 2.3 and 2.4. Both models involve estimating inverse
covariance.

2.1. Notation

In the following, we denote x−i as the vector after remov-
ing the ith entry of x. Similarly, Σ−i,−j is the submatrix
after removing the ith row and jth column of Σ. Σi,−j is
a vector that represents the ith row of Σ with its jth entry
removed. Σ−i,j is a vector that represents the jth column
of Σ with its ith entry removed.

2.2. Estimating inverse covariance via linear
programming

We begin with stating two basic formula (Yates & Good-
man, 2004). The first is about conditional distribution: if a
random vector x ∈ Rd follows a multivariate Gaussian dis-
tribution N(µ,Σ), then the conditional distribution of xi

given the remaining variables x−i still follows multivariate
Gaussian distribution:

xi|x−i ∼ N(µi+Σi,−iΣ
−1
−i,−i(x−i − µ−i),

Σi,i − Σi,−iΣ
−1
−i,−iΣ−i,i).

(1)

The second is inverse block formula of symmetric matrix
which connects the covariance with its inverse counterpart.
Denote Φ = Σ−1. By the inverse block formula of sym-
metric matrices for the first variable x1, we have:(

Σ1,1 Σ1,−1

Σ−1,1 Σ−1,−1

)−1

=(
(Σ1,1 − Σ1,−1Σ

−1
−1,−1Σ−1,1)

−1 −Σ−1
−1,−1Σ−1,1Φ1,1

−Σ−1
−1,−1Σ−1,1Φ1,1 −

)
,

(2)
where Φ1,1 = (Σ1,1 − Σ1,−1Σ

−1
−1,−1Σ−1,1)

−1. We can
generalize the case for each variable: the ith column of Φ
can be written as

Φi,i = (Σi,i − Σi,−iΣ
−1
−i,−iΣ−i,i)

−1

Φ−i,i = −Σ−1
−i,−iΣ−i,iΦi,i,

(3)

Yuan (2010) points out that (1) can be viewed as an equiv-
alent regression problem:

xi = ci + wT
(i)x−i + εi, (4)

where scalar ci = µi−Σi,−iΣ
−1
−i,−iµ−i, vector wi =Σi,−i

Σ−1
−i,−i in Rd−1, and εi ∼N(0,Σi,i −Σi,−i Σ

−1
−i,−i Σ−i,i).

Combine (3) with (4), we get

Φi,i = (V ar(εi))
−1

Φ−i,i = −w(i)(V ar(εi))
−1,

(5)

Thus, the inverse covariance of Φ can be estimated by re-
gressing xi over x−i. Yuan (2010) suggests using Dantzig
selector (Cands & Tao, 2005) to estimate the regression co-
efficients. Once the estimation of w(i) is obtained, V ar(εi)
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can be estimated using the average squared error of residu-
als over samples:

V̂ ar(εi) =
1

m
‖xi − xT

−iw(i)‖22 =

Si,i − 2wT
(i)S−i,i + wT

(i)S−i,−iw(i),
(6)

where S represents the sample covariance.

The estimator of Φ obtained above may not be symmetric.
Denote the obtained estimator as Φ̃. Yuan (2010) adjusts Φ̃
by seeking a symmetric matrix as an approximation.

minimize
Φ is symmetric

‖Φ− Φ̃‖1,∞. (7)

Thus, estimating inverse covariance via linear program-
ming provides a counterpart to l1 MLE based approach:

minimize
Φ

= −log|Φ|+ tr(SΦ) + λ‖Φ‖1 (8)

where ‖.‖1 is the element-wise l1 norm, and λ is the regu-
larization parameter that controls the sparsity.

2.3. Gaussian conditional random field

GCRF models the conditional probability of a set of ran-
dom variables y ∈ Rp given another set of random vari-
ables x ∈ Rd, and assumes the variables follow multivari-
ate Gaussian distribution,

(
x
y

)
∼ N

((
0d

0p

)
,Σ

)
, (9)

where Σ =

(
Σxx Σxy

ΣT
xy Σyy

)
=

(
Φxx Φxy

ΦT
xy Φyy

)−1

.

By the conditional distribution of multivariate Gaussian
variables, we have

y|x ∼ N(−Φ−1
yy Φ

T
xyx,Φ

−1
yy ). (10)

Note that we have assumed variables y and x are zero mean
and can be normalized in practice. We can rewrite (10)
further to its exponential form,

P (y|x) = 1

z(x)
exp(−1

2
yTΦyyy − xTΦxyy), (11)

where

z(x) = c|Φyy|−1/2exp(
1

2
xTΦxyΦ

−1
yy Φ

T
xyx) (12)

is the partition function. Let m be the number of samples,
X ∈ Rm×d be the input data matrix, and Y ∈ Rm×p be
the output data matrix, the negative log-likelihood is

f(Φyy,Φxy) = −log|Φxy|+tr(SyyΦyy + 2SyxΦxy

+Φ−1
yy Φ

T
xySxxΦxy),

(13)

where Syy ∈ Rp×p is the sample covariance of output vari-
ables, Sxx ∈ Rd×d is the sample covariance of input vari-
ables, and Syx ∈ Rp×d is sample covariance between out-
put and input variables. Typically, l1 regularization is used
to enforce the sparsity of the model parameters, Φyy and
Φxy. Thus, the objective of GCRF becomes

minimize
Φyy,Φxy

f(Φyy,Φxy) + λ(‖Φyy‖1 + ‖Φxy‖1). (14)

2.4. Linear discriminant analysis

Consider classifying the binary class k = {1,−1}. Denote
x ∈ Rd as the feature of a sample. Let πk be a prior proba-
bility of class k. LDA assumes the features conditioned on
the class follow multivariate Gaussian distribution (Hastie
et al., 2009; Murphy, 2012),

fk(x) =
1

(2π)d/2|Φk|−1/2
exp(−1

2
(x− µk)

TΦk(x− µk)).

(15)
Assume both class have equal inverse covariance, Φk =
Φ. By maximizing a posterior, the label is assigned by the
class that has the maximum linear discriminant score:

δ(k) = xT Φ̂µ̂k − 1

2
µ̂T
k Φ̂µ̂k + logπ̂k, (16)

where π̂k is the fraction of class k in the training set, µ̂k is
the mean of features in class k.

3. Our method
3.1. Inverse covariance estimation by robust regression

Following the analysis in Subsection 2.2, we can now con-
sider estimating the inverse covariance under noisy mea-
surements. To estimate a column of the matrix, our model
solves the following objective:

minimize
w(i)∈Rd−1

{maximize
∆∈U

‖Xi − (X−i +∆)w(i)‖2}, (17)

where ∆ ∈ Rm×(d−1) is the measurement errors, and U
is the uncertainty set, or the set of admissible disturbances
of the data matrix X−i ∈ Rm×(d−1). For example, if the
first column of inverse covariance is estimated, which cor-
responds to the covariance of the first variable with the oth-
ers, the observed vector of the first variable, say X1 ∈ Rm,
is regressed over X−i ∈ Rm×(d−1). Once w(i) is obtained,
the column is formed according to (5). Such min-max ob-
jective is common in robust optimization literature (Ben-
Tal et al., 2009; Xu et al., 2008; 2009) , which minimize
the worst case losses in perturbation set.

We now explain the perturbation set. We assume the ran-
dom variables can be divided into groups, and within each
group the error pattern is similar. Across groups the error
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bound can be significantly different. Note that each group
of variables maintains a matrix to represent its error pattern.
To model the measurement error, we propose to optimize
subject to the following perturbation set:

‖∆g‖2 ≤ cg (18)

where g is the group index and ∆g of which the ith column
is ∆i (which represents the measurement errors for the ith
variable over samples) if the ith variable belongs to group
g, or 0 otherwise. For example, suppose group g = 1, con-
sists of variables R1 and R2, then the first and the second
column of ∆g is ∆1 and ∆2, while the other columns are
all zeros. The bound cg in (18) has to be specified first. In
contrast to assuming the distribution of the noise, specify-
ing the perturbation bound is a more natural way. Since the
range of measurement errors of an instrument is usually re-
ported in the manual. cg can be computed easily based on
the information. We can place the variables readings from
the sensors with similar measurement errors in a group, and
here we make a reasonable assumption that a variable be-
longs only to one group.

The estimation is obtained by solving (17) subjected to the
uncertainty set (18). To solve this, we leverage the work
of Yang & Xu (2013). They provide a unified method that
solves

minimize
w

{maximize
∆∈U

‖y − (X +∆)w‖2}, (19)

under a general uncertainty set:

U ={W1∆
(1) + · · ·+Wt∆

(t)|
∀g ∈ Gi, ‖∆(i)

g ‖ ≤ cg}.
(20)

where ∆(t) is the tth type of perturbation set, matrix Wt ∈
Rm×m is fixed or specified according to the relation over
samples, Gi is the set of groups under perturbation set i,
and cg provides the bound of the disturbances for gth group
of Gi.

Proposition 1:(Yang & Xu, 2013) Suppose that t = 1,
W1 = I , G1 = {g1, . . . , gk} and gi∩gj = ∅ for any i 6= j,
then the robust regression problem (19-20) is equivalent to:

minimize
w

‖y −Xw‖2 +
k∑
i

cgi‖wgi‖2, (21)

which is the non-overlapped group lasso (Yuan & Lin,
2006) and there exists efficient method to solve it (Roth
& Fischer, 2008).

In our case, the perturbation (18) satisfies the conditions
in Proposition 1. Thus, the robust optimization (17-18) is
equivalent to

minimize
w(i)

‖Xi −X−iw(i)‖2 +
k∑
i

cgi‖wgi‖2. (22)

After obtaining w(i) and using (5) to form the estimation of
the column, (7) or (25) is used to symmetrize the matrix.
The above analysis suggests that estimating the inverse co-
variance under noisy condition can be obtained by conduct-
ing group lasso for each column. One major advantage is
that the estimation of each column is independent of other
columns, which enables further parallelization. Though we
consider non-overlapped structure here, the method can be
generalized to overlapped structure, that is, the equivalent
regression becomes overlapped group lasso (Jacob et al.,
2009).

3.2. A generative counterpart of Gaussian conditional
random field

Recall that the model of GCRF consists of two inverse co-
variance Φyy and Φyx; the former represents inverse co-
variance within output variables y ∈ Rp and the latter rep-
resents inverse covariance between output and input vari-
ables x ∈ Rd. We can view training as the process of
estimating the inverse covariance matrices that consists of

input and output variables, Φ =

(
Φxx Φxy

ΦT
xy Φyy

)
. Thus,

the method proposed in the previous subsection can be ex-
ploited.

Objective (23) is solved when estimating the inverse co-
variance of an output variable yi with the other variables,
including the other output variables and all the input vari-
ables. Denote the data matrix Z ∈ Rm×(d+p−1) with each
row representing a sample (or instance) of the random vari-
ables [x1, . . . , xd, y1, . . . , yi−1, yi+1, yp].

minimize
w∈Rd+p−1

‖yi − Zw‖2 +
k∑
i

cgi‖wgi‖2, (23)

where yi ∈ Rm represents the samples of ith output vari-
able. Similarly, when estimating the covariance of an input
variable xi with other variables, the following objective is
solved:

minimize
w∈Rd+p−1

‖xi − Zw‖2 +
k∑
i

cgi‖wgi‖2, (24)

where matrix Z ∈ Rm×(d+p−1) becomes the instances
of [x1, . . . , xi−1, xi+1, . . . , xd, y1, . . . , yp]. Then, to make
the estimated inverse covariance symmetric, Φ̂ can be set
by

Φ̂i,j = Φ̂j,i =

Φ̂i,jI(|Φ̂i,j | < |Φ̂j,i|) + Φ̂j,iI(|Φ̂j,i| < |Φ̂i,j |).
(25)

However, the procedure does not guarantee that the in-
verse covariance is positive semi-definite. Note that all the
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Algorithm 1 Adjusting the inverse covariance that guaran-
tees positive semi-definiteness

Input: Φtmp an estimated symmetric inverse covariance
by regression (may not be positive semi-definite), α is
initialized ∈ (0, 1], and β ∈ (0, 1).
D = Φtmp − I
repeat

Compute the Cholesky factorization of I + αD.
if I + αD is not positive definite then
α = βα

end if
until I + αD is positive definite

previous approaches of estimation by regression share the
same concern (Meinshausen & Buhlmann, 2006; Friedman
et al., 2008; Yuan, 2010; Cai et al., 2011). Being positive
semidefinite is a condition that the learned matrix is a valid
(inverse) covariance (Yates & Goodman, 2004). The con-
cern is critical, since when performing forecast, the pre-
dicted value is sampled according to (10). Here, we pro-
vide a way to adjust the learned covariance to become pos-
itive semi-definite, so that sampling from the learned dis-
tribution is admissible.

Our method is described in Algorithm 1, which is inspired
by the work of (Hsieh et al., 2011). Hsieh et al. propose an
efficient optimization for l1 maximum likelihood estima-
tion of inverse covariance. The optimization alternatively
finds the descent direction and chooses a step size. The ini-
tial estimated matrix is set to a positive definite matrix (for
example, an identity matrix). At every step, step size is cal-
culated such that the estimated matrix is positive definite.
Here, denote Φtmp as the estimated symmetric matrix after
conducting series of robust regression. Let D be the ma-
trix of an identity matrix subtracted from Φtmp. Algorithm
1 finds an α such that the final estimated matrix I + αD is
positive (semi-)definite. Experiments show that choosing
the identity matrix as the pivot is sufficient to achieve good
performance in prediction and classification.

Proposition 2: Algorithm 1 guarantees the final estimate
to be positive definite.
Proof: Since I � 0 and Φtmp − I is symmetric, the
proposition is an immediate consequence of the following
Lemma.
Lemma (Hsieh et al., 2011): For any X � 0 and a
symmetric D, there exists an α′ > 0 such that for all
α ≤ α′: X + αD � 0

3.3. Comparison to related works

Loh and Wainwright (2012) consider high dimensional re-
gression under noisy measurements, then Chen and Cara-

manis (2013) further extend their work. Our work differs
from theirs as their works require the assumption of the
noise (e.g. sub-Gaussian distribution) and the knowledge
of its sufficient statistics, while ours does not. In our work,
only the perturbation bound is required which is a less strict
constraint and conceivably more general. Another differ-
ence is that they focus on successful recovery of true pa-
rameter, whereas ours concerns the practical application in
prediction and classification.

Mazumder and Hastie (2012) and Hsieh (2012) propose
to threshold the sample covariance before running the l1
penalized likelihood approach. They show that the con-
nected components of the threshold sample covariance by
a regularization parameter is equal to the connected com-
ponents of the learned estimator after solving the optimiza-
tion problem with that regularization parameter. The re-
sult is that the original problem can be decomposed into
several smaller problems, reducing the computational cost.
Yet, when the number of variables in the original problem
gets large, scalability issue arises since the number of en-
tries in the subproblem still scales quadratically with the
number of variables. Moreover, thresholding may result in
unequally sized connected components, while the compu-
tation bottleneck would still be on the largest components.
In contrast, the size of each regression in our model grows
linearly with the number of variables.

4. Experiment
To show the merits of our work, the robust inverse co-
variance estimation is compared to several baselines in
time series forecast and data classification. We use grid
search to tune the regularization parameters. For our
method, denote c as a vector whose entries are perturba-
tion bound cg, the regularization vector is searched by c
times [10−8, 10−7, . . . , 102] over the grid.

4.1. Prediction

To predict time series, the input features contain previous
three historic values, so the size of input variables of GCRF
is three times the number of time series being modeled.
After estimating the inverse covariance, predicting the time
series is performed by sampling according to (10).

We conduct the experiments on three datasets.
1) Stock: The data are downloaded from Yahoo Finance,
which contains daily stock prices. Companies among
S&P 100 that have moderate variance (σ ≤ 15) in year
2012 over the time are selected, which results in a set of 60
companies. The last 30 trading days are reserved for test-
ing; the second to last 30 days are for validation; and the
remaining data are for training.
2) Temperature (medium variable size): The data
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are downloaded from National Oceanic and Atmospheric
Administration (NOAA) 1, which contains daily air
temperature. We choose the grid (20◦N, 50◦N) and
(230◦E, 290◦E) with moderate variance (σ ≤ 15), which
results in 73 time series tracked. As the result, the size of
inverse covariance in our generative model is (73 × 4)2 ≈
85, 000 variables.
3) Temperature (large variable size): The temperature
data in between (30◦N, 70◦N) with moderate variance
(σ ≤ 15) are chosen, which results in 401 time series and
about 2.5 millions entries in the estimated matrix. The test
and validation sets are the last 30 days and the second to last
30 days of the year respectively; and the remaining days are
for training.

To simulate noisy measurements, we consider two types
of perturbation in the time series: uniform and Gaussian
perturbation. To specify the noise level, the variance of
each time series over time is first calculated. Furthermore,
for the two smaller datasets, every random 10 variables
are grouped together, assuming they have the same noise
level. For the large dataset, every random 20 variables are
grouped together. For uniform perturbation, the range of
uniform distribution is randomly chosen between ±(0.1, 1)
times the average variance in each group. For Gaussian
perturbation, the standard deviation of the noise is set ran-
domly to k times the average variance in each group, where
k is a random value between (0.1, 1.1). After specifying the
noise level and distribution, noise is sampled from the dis-
tribution and added to the time series in each group.

We compare our method with l1 maximizing condition
likelihood approach (Wytock & Kolter, 2013), denoted
WK13. Since, to our knowledge, we are the first to consider
estimating inverse covariance under perturbation, there is
no prior work yet, we use the work of (Wytock & Kolter,
2013) as baseline. For each type of noise, we replicate
each dataset 5 times, and the number inside the parenthesis
in the tables is standard deviation. For clean data, we use
lasso for estimating each column of inverse covariance and
adjust the estimation with Algorithm 1 to obtain the final
positive semi-definite matrix. We choose root mean square
error (RMSE) as the measure for prediction.

Tables 1 to 3 show the final results. Without noisy mea-
surements, l1 conditional likelihood model performs better
than our generative counterpart in stock and temperature
(medium variable size) datasets. This is reasonable, since
a discriminative approach usually outperforms the genera-
tive counterpart in prediction given limited amount of data.
Under noise, our generative approach through robust re-
gression performs significantly better than its discrimina-
tive counterpart. It may be due to that current l1 condi-
tional likelihood approach (Sohn & Kim, 2012; Yuan &

1File name: air.sig995.2012.nc

Table 1. Forecasting results (RMSE) on clean data (no noise is
added).

Data WK13 Ours

stock 2.6314 2.6828
temp. (medium variable size) 2.3917 2.7966
temp. (large variable size) 2.4119 1.9832

Table 2. Forecasting results (RMSE) under uniform perturbation.

Data WK13 Ours

stock 3.6296 3.1300
(0.0876) (0.0613)

temp. (medium variable size) 3.6697 3.0286
(0.3561) (0.0447)

temp. (large variable size) 4.7019 2.1671
(0.6669) (0.0220)

Table 3. Forecasting results (RMSE) under Gaussian perturba-
tion.

Data WK13 Ours

stock 5.7316 3.1751
(0.1611) (0.0888)

temp. (medium variable size) 6.2661 3.2863
(0.4859) (0.2468)

temp. (large variable size) 8.0439 2.2704
(0.8086) (0.0472)

Zhang, 2012; Wytock & Kolter, 2013) does not model the
noise in the features. Yet, we see that the conditional likeli-
hood approach degrades much more in Gaussian perturba-
tion than in uniform perturbation. It seems that the condi-
tional likelihood approach mistakenly models the noise as
variables of interest through the input sample covariance. A
challenge for maximizing conditional likelihood approach
under noisy environment is to explicitly model the com-
ponents of the signal and noise in the sample covariance,
which inevitably leads to the assumption of certain dis-
tribution of noise and consequently lead to a less-general
model. It is not a concern in our approach, because robust
optimization does not assume the distribution of measure-
ment error. For example, we only assume the perturbation
bounds, and therefore suggest a more natural way to esti-
mate the covariance matrix under general noisy condition.

4.2. Training time comparison

We also compare the training time of our approach with the
l1 discriminative likelihood approach of Wytock and Kolter
(2013). Our experiment is run on a machine with dual core
2.66 GHz (INTEL E5500) and 32GB memory. We assume
that there could exist at least k numbers of cores, where k is
larger than the number of variables to be learned, thus we
report the average time required to estimate one column of



Robust Inverse Covariance Estimation under Noisy Measurements

Table 4. Training time in seconds.
Data WK13 Our Our

regress. Algor.1
stock (clean) 34.99 0.30 2.44
stock (uniform) 5.26 5.66 2.27
stock (gaussian) 7.67 5.93 2.43
medium size
temp. (clean) 308.57 0.47 3.72
temp. (uniform) 19.30 6.03 3.91
temp. (gaussian) 17.12 6.20 3.92
large size
temp. (clean) ≈8.2×103 8.94 446.83
temp. (uniform) ≈7.5×104 13.23 293.88
temp. (gaussian) ≈1.5×105 13.35 275.58

the matrix and the time to adjust the matrix to become pos-
itive semi-definite. The running time in seconds is reported
in Table 4. The advantage of estimation by regression is
shown with a large number of variables are modeled, as the
size of each regression grows linearly with number of vari-
ables; while the entries in the MLE based approach grows
quadratically.

4.3. Classification

We conduct the experiments using four datasets, all
are available on http://www.csie.ntu.edu.tw/

˜cjlin/libsvmtools/datasets/.
1) Heart: For predicting the presence of the heart disease
according to 13 attributes of potential patients. There are
270 samples in the dataset.
The following three datasets are about predicting whether
a person suffers cancer:
2) Breast-cancer: There are 10 attributes and 683 samples.
3) Duke breast-cancer: There are 7129 attributes and 44
samples.
4) Colon-cancer: There are 2000 attributes and 62 sam-
ples.
For the last two datasets, we perform two sample t-test to
select the first 100 significant attributes for feature reduc-
tion.

Same as forecasting, we consider uniform and Gaussian
perturbation. For heart and breast-cancer datasets, the
features are roughly divided into two equally sized groups.
For duke breast-cancer and colon-cancer datasets, ten
groups are formed with each consisting of ten features. For
uniform perturbation, the range of uniform distribution is
randomly chosen between ±(0.1, 2) times the average vari-
ance in each group. For Gaussian perturbation, the standard
deviation of the noise is set randomly to k times the average
variance in each group, where k is a random value between
(0.1, 1). After specifying the noise level and distribution,
noise is sampled from the distribution and added to the time

Table 5. Classification results (MCC, F−measure, ACC) on clean
data (no noise is added) over 5 random split.

Data QUIC Yuan

heart (MCC) 0.7070 0.7297
heart (F-mea) 0.8203 0.8409
heart (ACC) 0.8519 0.8630
breast. (MCC) 0.8944 0.9197
breast. (F-mea) 0.9327 0.9474
breast. (ACC) 0.9547 0.9635
duke. (MCC) 0.9633 0.9266
duke. (F-mea) 0.9788 0.9556
duke. (ACC) 0.9800 0.9600
colon. (MCC) 0.7767 0.7986
colon. (F-mea) 0.8570 0.8752
colon. (ACC) 0.8923 0.8923

Table 6. Classification results (MCC, F−measure, ACC) under
Uniform perturbation.

Data QUIC Yuan Ours

heart (MCC) 0.6618 0.6640 0.6964
heart (F-mea) 0.8043 0.8110 0.8315
heart (ACC) 0.8407 0.8333 0.8481
breast. (MCC) 0.8364 0.8023 0.8651
breast. (F-mea) 0.8854 0.8763 0.9172
breast. (ACC) 0.9255 0.9197 0.9445
duke. (MCC) 0.7841 0.6932 0.8532
duke. (F-mea) 0.8652 0.8392 0.9111
duke. (ACC) 0.8800 0.8400 0.9200
colon. (MCC) 0.7760 0.6626 0.7772
colon. (F-mea) 0.8267 0.7974 0.8518
colon. (ACC) 0.8462 0.8308 0.8923

Table 7. Classification results (MCC, F−measure, ACC) under
Gaussian perturbation.

Data QUIC Yuan Ours

heart (MCC) 0.6936 0.6641 0.7074
heart (F-mea) 0.8223 0.8070 0.8333
heart (ACC) 0.8481 0.8407 0.8556
breast. (MCC) 0.8488 0.8548 0.8743
breast. (F-mea) 0.8987 0.9018 0.9170
breast. (ACC) 0.9314 0.9343 0.9431
duke. (MCC) 0.8165 0.6608 0.6975
duke. (F-mea) 0.8929 0.8114 0.8256
duke. (ACC) 0.9000 0.8200 0.8400
colon. (MCC) 0.5904 0.6389 0.7444
colon. (F-mea) 0.7212 0.7644 0.8396
colon. (ACC) 0.8000 0.8308 0.8769

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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series in each group.

Once the inverse covariance is estimated, the testing data
are classified based on the corresponding linear discrimi-
nant score. We compare our method with 1) the work of
Hsieh (2011), which is a l1 MLE based approach, denoted
QUIC, and 2) the work of Yuan (2010), which is intro-
duced in Subsection 2.2. For each dataset, we random split
data 5 times that 80 percent of data are for cross-validation
and the remaining for testing. The noise is added on the
5 replicated data for each dataset. We report the average
results over the 5 test sets. Because there is imbalance be-
tween the positive and negative instances, choosing accu-
racy as the measure may not be adequate. We use classi-
fication accuracy (ACC) as well as F-measure and Math-
ews correlation coefficient (MCC) as the measures: MCC
= TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
. The experi-

ment results are shown on Tables 5 to 7.

Table 5 shows the classification results before noise is
added. The effectiveness of our robust estimation can be
seen when noise is added (Table 6 and 7). Our method is
comparable to or outperforms QUIC (Hsieh et al., 2011)
with only one exception in the duke cancer data. Since
both ours and the work of Yuan (2010) estimate inverse
covariance by regression, better performance demonstrates
the effectiveness of performing robust regression.

5. Conclusion
This work introduces a new research direction to estimate
the inverse covariance under perturbation using regression-
based techniques, which is very different from most of the
existing works of efficiently solving the common l1 penal-
ized likelihood objective. By converting the problem into
linear-programming based problem, we are able to exploit
the robust optimization techniques to handle this problem;
each column of the matrix is estimated by the equivalent
group lasso. To guarantee the positive semi-definite prop-
erty of the learned matrix, we further provided an algo-
rithm to adjust the matrix through choosing the step size
as in a coordinate descent manner. We showed the promis-
ing empirical results of our approach in forecasting and
classification. An immediate future work will be to deal
with missing values. Since the estimation has been con-
verted to several regression problems, the proposed frame-
work allows us to leverage existing works of regression
that concern missing data. Furthermore, a unified solu-
tion that simultaneously deals with noisy and missing data
is possible along this direction. We also want to study
the statistical properties such as recovering the graph or
the true inverse covariance given the existence of perturba-
tion. The codes to reproduce the experiments are available
on the first author’s page https://sites.google.

com/site/wangjim123.
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