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Abstract
We study the problem of aggregating the con-
tributions of multiple contributors in a crowd-
sourcing setting. The data involved is in a form
not typically considered in most crowdsourcing
tasks, in that the data is structured and has a
temporal dimension. In particular, we study the
visual tracking problem in which the unknown
data to be estimated is in the form of a sequence
of bounding boxes representing the trajectory
of the target object being tracked. We propose
a factorial hidden Markov model (FHMM) for
ensemble-based tracking by learning jointly the
unknown trajectory of the target and the relia-
bility of each tracker in the ensemble. For ef-
ficient online inference of the FHMM, we de-
vise a conditional particle filter algorithm by ex-
ploiting the structure of the joint posterior dis-
tribution of the hidden variables. Using the
largest open benchmark for visual tracking, we
empirically compare two ensemble methods con-
structed from five state-of-the-art trackers with
the individual trackers. The promising experi-
mental results provide empirical evidence for our
ensemble approach to “get the best of all worlds”.

1. Introduction
Visual tracking is a fundamental problem in video semantic
analysis. Although it is not a new research problem in com-
puter vision, the challenging requirements of many new ap-
plications such as terrorist detection, self-driving cars and
wearable computers require that some objects of interest
possibly with fast and abrupt motion in uncontrolled envi-
ronments be tracked as they move around in a video. This
has led to a resurgence of interest in visual tracking within
the machine learning and computer vision communities. In
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this paper, we consider the most common setting, called
single object tracking problem, in which only one object
of interest is tracked at a time given its location in the first
frame of the video.

Many visual tracking methods have been proposed over the
last decade. Although significant progress has been made,
even state-of-the-art trackers today are still far from perfect
and no single method is always the best under all situa-
tions. This is due to each tracker’s model bias, correspond-
ing to the assumptions made about the object being tracked
and the environment, which is valid in some situations but
invalid in others. Consequently, different trackers exhibit
different advantages. For example, local patch based meth-
ods (Adam et al., 2006; Jia et al., 2012) are more robust
against occlusion and deformation, while whole template
based methods (Ross et al., 2008; Bao et al., 2012; Wang
et al., 2013a;b) can track rigid objects better. Also, trackers
based on the generative approach (Ross et al., 2008; Bao
et al., 2012; Wang et al., 2013a) are generally more accu-
rate when the objects do not vary too much, while those
based on the discriminative approach (Grabner et al., 2006;
Babenko et al., 2011; Hare et al., 2011; Wang & Yeung,
2013) making explicit use of negative samples from the
background perform better when the background is clut-
tered or contains distractors. Although some recent meth-
ods adopt a hybrid approach (Zhong et al., 2012; Kwon &
Lee, 2013), they still cannot give satisfactory results at all
times. Furthermore, most trackers are sensitive to the pa-
rameter setting but it is practically impossible to tune the
parameters separately for each video. As a result, devel-
oping a tracker that is stable enough for general use in a
wide range of application scenarios remains an open and
challenging research problem.

The approach we adopt in this paper has been inspired
by some recent machine learning methods developed for
the crowdsourcing setting, e.g., (Dekel & Shamir, 2009;
Raykar et al., 2010; Bachrach et al., 2012). It takes ad-
vantage of the wisdom of the crowd by dispatching a prob-
lem to multiple imperfect contributors and then aggregat-
ing the solutions from them to give a combined solution
of higher quality than any individual solution. For our vi-
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sual tracking problem, each tracker plays the role of an
imperfect contributor which solves the tracking problem
to obtain its tracking result independently. We refer to
our approach as ensemble-based tracking (EBT) due to its
similarity with ensemble methods which combine multi-
ple models. We also note that there exist trackers which
use ensemble-based classification for tracking, e.g., (Avi-
dan, 2007; Bai et al., 2013). Despite the similarities, it is
worth to note some significant differences between EBT
and previous work in crowdsourcing and ensemble-based
classification for tracking. These two aspects will be elab-
orated separately below.

There exist two crucial differences between EBT and pre-
vious work in crowdsourcing. Although different ma-
chine learning issues have been studied in the crowdsourc-
ing setting (e.g., active learning (Yan et al., 2011), spam-
ming (Raykar & Yu, 2012), task assignment (Ho et al.,
2013), and multitask learning (Mo et al., 2013)), the learn-
ing tasks are limited to classification and regression for-
mulated in relatively simple ways. On the other hand, vi-
sual tracking is more of a structured prediction problem in
which the tracking result is in a form of structured data with
attributes including the location, scale and aspect ratio of
the object being tracked. It has been demonstrated by (Hare
et al., 2011) that exploiting the structured data properties
can improve the tracking performance significantly. More-
over, the tracking problem has a temporal dimension which
is not present in the classification and regression tasks stud-
ied by the previous work.

As for previous work on applying ensemble-based classi-
fication for tracking, those methods (Grabner et al., 2006;
Avidan, 2007; Babenko et al., 2011; Bai et al., 2013) are
mostly discriminative trackers which treat tracking as a bi-
nary classification or multiple-instance learning problem.
There is only one tracker which is a binary classifier real-
ized by an ensemble method, such as AdaBoost, to com-
bine the classification results of multiple weak classifiers.
Unlike these methods, EBT is not a single method but an
approach or framework for combining multiple trackers,
each of which may be based on a generative, discrimina-
tive or hybrid approach. It is this very nature of EBT that
we intend to exploit to “get the best of all worlds” with-
out being restricted to just a single type of model bias that
underlies only one tracker.

The contributions of this paper may be summarized by the
following three points:

1. Inspired by the factorial hidden Markov model
(FHMM) (Ghahramani & Jordan, 1997) which gener-
alizes ordinary HMM to a distributed state representa-
tion, we propose a state-space model for aggregating
the structured time series data contributed by multiple
trackers in a crowdsourcing setting.

2. Because of the structured data in the EBT model, no
simple analytical form exists for the posterior distribu-
tion. We devise an efficient conditional particle filter
algorithm for online inference of the hidden variables
which are potentially of high dimensionality.

3. We empirically compare some state-of-the-art trackers
with a realization of our EBT approach on a bench-
mark (Wu et al., 2013) which is currently the largest
open benchmark for visual tracking. The EBT ap-
proach leads to performance improvement that beats
any single tracker by a considerable margin.

2. Background
We first review the Bayesian model and a sequential infer-
ence algorithm for the visual tracking problem.

2.1. Bayesian Model for Visual Tracking

In what follows, let If denote the observed measurement
in video frame f (i.e., the raw pixels or extracted features)
and Bf the hidden state of the target object (i.e., the bound-
ing box). For visual tracking, we usually characterize a
bounding box by six affine parameters: horizontal trans-
lation, vertical translation, scale, aspect ratio, rotation and
skewness.1 The goal of visual tracking is to estimate the
following posterior distribution recursively:

p(Bf | I1:f ) ∝ p(If | Bf )·∫
p(Bf | Bf−1) p(Bf−1 | I1:f−1) dBf−1,

(1)
where the observation likelihood p(If | Bf ) defines the
probability density function of observing the measurement
If given the hidden state Bf , and the term p(Bf | Bf−1)
models the transition probability between the unknown
states in consecutive frames reflecting the fact that the two
states are not too far away. The posterior mode is usually
used as the tracking result for frame f .

2.2. The Particle Filter

The particle filter is a sequential Monte Carlo algorithm
for online Bayesian inference. It approximates the poste-
rior distribution of frame f by a set of weighted particles{
(wf(i),B

f
(i))
}N
i=1

. Its advantage over the commonly used
Kalman filter is that it is not limited to the Gaussian dis-
tribution, not even to any parametric distribution. We re-
view below a simplified but popular version of particle filter
called the bootstrap filter. The bootstrap filter first approx-

1Some previous work used only the first two parameters while
we use the first four here. As in the benchmark, we set the last
two parameters (rotation and skewness) to zero.
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imates p(Bf | I1:f ) as:

p(Bf | I1:f ) ≈ c p(If | Bf )

N∑
i=1

wf−1
(i) p(Bf | Bf−1

(i) ),

(2)
where c is a constant that does not depend on Bf . We first
draw N samples Bf

(i) in frame f from the following pro-
posal distribution:

Bf
(i) ∼

N∑
i=1

wf−1
(i) p(Bf | Bf−1

(i) ). (3)

We then set their corresponding weights as

wf(i) = p(If | Bf
(i)). (4)

The particle Bf
(i) with the largest weightwf(i) is then chosen

as the location of the target for frame f . This procedure is
repeated for all frames in the video.

3. Model Formulation
In this section, we define an FHMM for our EBT approach.
In addition to estimating the hidden state sequence which
corresponds to the ground-truth trajectory of the target ob-
ject, we also want to estimate the reliability of each tracker
in the ensemble for reasons that will become clearer later.

Suppose the video has F frames and there are T trackers in
total. In frame f , let yf denote the unknown bounding box
of the object and zft and rft denote the output bounding box
and reliability of the tth tracker. Note that our method only
interacts with the output of each individual tracker but does
not involve the input video If directly. For notational con-
venience in the sequel, we put the vectors zft for all trackers
into a matrix Zf and the variables rft for all trackers into a
vector rf . The joint probability of the FHMM is given by
F∏
f=2

T∏
t=1

p(zft | yf , r
f
t )p(y

f | yf−1)p(rft | r
f−1
t )p(rft | a).

(5)
In the first frame, y1 is given by the annotation and hence
known. We also initialize each r1t to 1. The first term in
the above expression is the observation likelihood for each
tracker. The next two terms model the continuity of the lo-
cation of the object and the continuity of the reliability of
each tracker along the temporal dimension. The last term
gives a frame-independent and tracker-independent prior of
the reliability, where a is a hyperparameter which controls
the degree of regularization. Fig. 1 depicts the graphical
model of the FHMM with the plate notation. We will elab-
orate each term of the joint probability below.

Observation Likelihood: As discussed above, a notable
difference between our model and previous work in crowd-
sourcing is that our model has to deal with structured time

Figure 1. Graphical model with the plate notation representing the
FHMM for EBT.

(a) (b)

Figure 2. Illustration of the importance of using both performance
metrics. The ground-truth bounding box is colored in blue and
the predicted one is in red. (a) Although both cases have the same
central-pixel error, the predicted bounding boxes have very dif-
ferent scales and hence their overlap rates are also very different.
(b) The two cases have the same overlap rate but different central-
pixel errors. The left one likely covers more of the salient region
than the right one.

series data for representing the object trajectory in the form
of a sequence of bounding boxes. Thus the observation
likelihood has to be designed carefully. We formulate it in
terms of two factors, pc(z

f
t | yf , r

f
t ) and po(z

f
t | yf , r

f
t ),

which correspond to two common performance metrics for
visual tracking, namely, the normalized central-pixel er-
ror metric D(·, ·) and the overlap rate metric O(·, ·), re-
spectively. In each frame, D(·, ·) measures the Euclidean
distance between the center of the ground-truth bounding
box and that of the predicted bounding box, with the hor-
izontal and vertical differences normalized by the width
and height, respectively, of the predicted bounding box in
the previous frame. The normalization step makes the re-
sult more reasonable when the bounding box is far from a
square. O(·, ·) is the ratio of the area of intersection of the
two bounding boxes to the area of their union. Fig. 2 shows
some examples to illustrate the necessity for using both fac-
tors to define the observation likelihood. Moreover, when
the two bounding boxes do not overlap (i.e., the overlap
rate is equal to zero), we need to count on the central-pixel
error metric to estimate the chance of recovery.

Mathematically, we have

p(zft | yf , r
f
t ) = pc(z

f
t | yf , r

f
t ) po(z

f
t | yf , r

f
t ), (6)
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where

pc(z
f
t | yf , r

f
t ) ∼ N (αD(zft ,yf ) | 0, r

f
t )

po(z
f
t | yf , r

f
t ) ∼ TrunExp(1−O(zft ,yf ) | r

f
t ),

(7)

where α is a parameter which balances the two metrics. We
use the Gaussian distribution N (µ, σ2), with mean µ and
variance σ2, to define the factor corresponding to the nor-
malized central-pixel error. Since the overlap rate is in the
range [0, 1], we use the truncated exponential distribution
in [0, 1] to define the factor corresponding to the overlap
rate. Concretely, the probability density function (pdf) is
defined as:

TrunExp(x | λ) =

{
λ
Z exp (−λx) x ∈ [0, 1]

0 otherwise,
(8)

where Z = 1 − exp(−λ) is a normalization constant. We
note that the pdf decreases monotonically in [0, 1] and is 0
elsewhere.

Transition Probability Distributions: For the state tran-
sition probability distribution p(yf | yf−1), we simply use
a zero-mean Gaussian distribution independently for each
dimension yfd :

p(yfd | y
f−1
d ) ∼ N (yfd | y

f−1
d , σ2

d). (9)

For the reliability transition probability distribution p(rft |
rf−1
t ), our choice of the distribution form needs to take into

consideration that the reliability must be nonnegative. We
use a Gamma distribution to model it:

p(rft | r
f−1
t ) ∼ G

(
rft | k,

rf−1
t

k

)
, (10)

where k is a model parameter. The choice is deliberate
since E[rft ] = rf−1

t .

Reliability Prior: The purpose of this prior is to prevent
the algorithm from assigning a very high weight to one par-
ticular tracker and hence overfitting the tracker.2 To ac-
complish this, we simply use a time-invariant exponential
distribution to penalize high reliability:

p(rft | a) ∼ Exp(rft | a). (11)

4. Model Inference
Due to the nature of the visual tracking problem, we are in-
terested in a sequential inference algorithm for our model.
We resort to a conditional particle filter algorithm due to

2Nevertheless, this may not be ideal if most of the trackers fail
and some happen to give very similar results.

its flexibility as well as its ability to deal with the possibly
high dimensionality of the hidden variables.

We are interested in the posterior distribution of the un-
known ground truth yf given the full history of the obser-
vations Z1:f , i.e., p(yf | Z1:f ). We expand it recursively
as follows:

p(yf | Z1:f )

=

∫
p(yf , rf | Z1:f ) drf

∝
∫
p(Zf | yf , rf ) p(yf , rf | Z1:f−1) drf

=

∫
p(Zf | yf , rf )

∫ ∫
p(yf−1, rf−1 | Z1:f−1)·

p(yf | yf−1)p(rf | rf−1)p(rf | a) drf−1dyf−1drf .
(12)

Since the analytical form of the posterior is intractable, we
approximate the distribution p(yf−1, rf−1 | Z1:f−1) by
a set of weighted particles according to the particle filter
approach. However, a direct particle filter approach does
not work well since the dimensionality of the hidden vari-
ables increases with the number of trackers and hence the
number of particles needed has to increase exponentially
in order to give satisfactory result. Fortunately, the prob-
lem is well structured so that the joint distribution can be
decomposed as follows:

p(yf−1, rf−1 | Z1:f−1)

= p(yf−1 | Z1:f−1)

T∏
t=1

p(rf−1
t | yf−1, z1:f−1

t ).
(13)

This observation is illuminating since it allows us to
approximate the distribution by a set of conditional
weighted particles

{(
wf−1

(n) ,y
f−1
(n) , π

f−1
t,(m,n), r

f−1
t,(m,n)

)}
for

t = 1, . . . , T , m = 1, . . . ,M , n = 1, . . . , N , where M,N
denote the numbers of particles for rf−1

t and yf−1, respec-
tively. That is, the particles for reliability are conditional on
the particles for the unknown ground-truth bounding box.
Formally, we have:

p(yf−1, rf−1 | Z1:f−1)

≈
N∑

n=1

wf−1
(n) δ(y

f−1 − yf−1
(n) )

T∏
t=1

p(rf−1
t | yf−1

(n) , z
1:f−1
t )

≈
N∑

n=1

wf−1
(n)

T∏
t=1

M∑
m=1

πf−1
t,(m,n)δ

(
yf−1 − yf−1

(n)

)
δ
(
rf−1
t − rf−1

t,(m,n)

)
,

(14)
where δ(·) is the Dirac delta function. Substituting Eqn. 14
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Algorithm 1 Conditional Particle Filter Algorithm
Initialize the particle set{(
w0

(n),y
0
(n), π

0
t,(m,n), r

0
t,(m,n)

)}
for each frame f do

for i = 1, 2, . . . , N do
Select one particle n according to wf−1

(n)

Sample new particle yf(n) ∼ p(y
f
(n) | y

f−1
(n) )

for t = 1, 2, . . . , T do
for j = 1, 2, . . . ,M do

Select one particle (t,m) according to πf−1
t,(m,n)

Sample new particle rft,(m,n) ∼ p(rft,(m,n) |
rf−1
t,(m,n))

Evaluate new weight πft,(m,n) using Eqn. 16
end for

end for
Set the new weight wfn =

∏T
t=1

∑M
i=1 π

f
t,(m,n)

Normalization: wfn = wfn/
∑N
i=1 w

f
(i)

Normalization: πft,(m,n) = πft,(m,n)/
∑M
i=1 π

f
t,(i,n)

Check if any tracker has failed (refer to Sec. 5.1)
end for

end for

into Eqn. 12 yields:

p(yf | Z1:f )

∝
∫
p(Zf | yf , rf )

∫ ∫
p(yf−1, rf−1 | Z1:f−1)·

p(yf | yf−1)p(rf | rf−1)p(rf | a) drf−1dyf−1drf

≈
∫
p(Zf | yf , rf )

N∑
n=1

wf−1
(n)

T∏
t=1

M∑
m=1

πf−1
t,(m,n)p(y

f | yf−1
(n) )·

p(rft | r
f−1
t,(m,n))p(r

f
t | a)dr

f

=

∫ N∑
n=1

wf−1
(n) p(y

f | yf−1
(n) )·

T∏
t=1

M∑
m=1

πf−1
t,(m,n)p(r

f
t | r

f−1
t,(m,n))p(z

f
t | y

f , rft )p(r
f
t | a) dr

f .

(15)
The above formula implies an efficient particle filter al-
gorithm for inferring the posterior. For each particle, the
weight is set as:

πft,(m,n) = p(zft | y
f
(n), r

f
t,(m,n))p(r

f
t,(m,n) | a). (16)

We summarize our proposed conditional particle filter al-
gorithm for EBT in Alg. 1.

5. Implementation Details
In this section, we provide some implementation details of
the proposed algorithm, its time complexity, and the param-

eter setting used in the experiments which will be reported
in the next section.

5.1. Failure Detection

If the predicted location of a tracker stays far from the true
object location for an extended period of time, it would help
to exclude the result of this tracker from the ensemble. Not
only can this lead to speedup, but, more importantly, the
failed tracker may adversely impair the performance of the
ensemble. The question then is how to detect such failure
effectively. This is where the reliability variable rft comes
into play. Specifically, we monitor the expectation of the
marginalized posterior of rft . When it falls below a thresh-
old θ for p successive frames, we will mark it as a failed
tracker.

5.2. Self-Correction

Unlike in typical crowdsourcing tasks, the nature of visual
tracking makes it quite unlikely for a failed tracker to re-
cover by itself. In view of this characteristic, we intro-
duce a novel feature into our EBT approach. Whenever a
failed tracker is detected, it will be sent the current result of
the ensemble to initiate a restart, or self-correction, in the
tracker. Doing so allows us to fully utilize all the trackers
in the ensemble. However, to support this feature, two-way
communication is needed between the individual trackers
and the ensemble algorithm. This poses some technical
challenges when the trackers are implemented in different
programming languages. We have developed a web ser-
vice to provide a generic interface through which different
trackers possibly implemented in different languages and
running on different operating systems can communicate
easily with the ensemble algorithm. This convenient plat-
form allows us to incorporate essentially any tracker into
the ensemble. For the sake of referencing, we refer to this
variant of our algorithm with self-correction as SC-EBT.

5.3. Time Complexity

The time complexity of the proposed algorithm is
O(MNFT ), which is linear with respect to the number of
particles used. This allows us to make a tradeoff between
quality and speed, in that increasing the number of particles
in the particle filter typically improves the approximation
quality at the expense of computation time.

5.4. Parameter Setting

We set M = 50, N = 400 for the particle filter, k =
0.1, α = 2, a = 0.1 for the model. For failure detection,
we set p = 10 and θ = 0.8T and 0.9T in EBT and SC-EBT,
respectively. For the Gaussian transition probability distri-
butions for horizontal translation, vertical translation, scale
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and aspect ratio, their standard deviations are 4, 4, 0.01,
and 0.001, respectively. Unlike some practices in the vi-
sual tracking literature which tune the parameters for each
video sequence to get the best result, here we fix the val-
ues of all these parameters for all the 51 video sequences
tested. Using this parameter setting, our EBT and SC-EBT
algorithms run at about 1fps (frame per second) if includ-
ing the running time of the individual trackers, and about
5fps if excluded.

6. Experiments
To facilitate objective comparison, we use a recently re-
leased benchmark (Wu et al., 2013) in our experiments. It
is currently the largest open benchmark for visual track-
ing, which comprises 51 video sequences covering 11 chal-
lenging aspects of visual tracking. To choose the trackers
for inclusion in the ensemble, we mainly take two criteria
into consideration. First, we tend to choose the best per-
formers which perform well in different categories so that
they can complement each other. Second, since the run-
ning speed of the proposed algorithms is determined by the
slowest tracker, we only consider trackers which can run
at 5fps or above. As a result, five trackers are included in
the ensemble: one local patch based method (ASLA) (Jia
et al., 2012), one based on structured output kernel SVM
(Struck) (Hare et al., 2011), one based on deep learning
(DLT) (Wang & Yeung, 2013), one based on correlation
filter (CSK) (Joao et al., 2012), and one based on robust
template learning (LSST) (Wang et al., 2013a). We also
include a simple baseline ensemble method which reports
the mean of the bounding boxes reported by the individ-
ual trackers. For fair comparison with the results reported
in (Wu et al., 2013), we fix all the parameters of the track-
ers included. The implementation of EBT and SC-EBT can
be found on the project page: http://winsty.net/
ebt.html.

6.1. Quantitative Results

For quantitative comparison, we use two performance mea-
sures analogous to the area under curve (AUC) measure for
the receiver operating characteristic (ROC) curve. Specif-
ically, for a given overlap threshold in [0, 1], a tracking
method is considered successful in a frame if its overlap
rate exceeds the threshold. The success rate measures the
percentage of successful frames over an entire video. By
varying the threshold gradually from 0 to 1, it gives a plot
of the success rate against the overlap threshold for each
tracking method. A similar performance measure is de-
fined for the central-pixel error. Both measures give very
similar results. Note that when a tracker fails, its result
may become quite unstable. Thus, for making meaningful
comparison, we threshold the horizontal axis to [0, 25] in-
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Figure 3. ROC curves based on the overlap rate and central-pixel
error metrics for all the test sequences.

stead of [0, 50] in the original benchmark. So the results of
central-pixel error cannot be compared directly to the ones
in (Wu et al., 2013) directly. Due to space constraints, the
results for each video category are left to the supplemental
material.

Fig. 3 shows the results in ROC curves based on these two
metrics. Not surprisingly, both EBT and SC-EBT outper-
form all the individual trackers with AUC equal to 0.538
and 0.532, respectively, under the OR metric. Even when
compared with SCM (Zhong et al., 2012), the best tracker
which achieves an AUC of 0.499 as reported in (Wu et al.,
2013), our ensemble methods are still significantly better.
For the CPE metric, the advantages are even more sig-
nificant. SC-EBT outperforms EBT mainly for low- to
medium-ranged overlap rates. Although the ensemble al-
gorithm cannot get the most accurate results for some diffi-
cult cases, the self-correction scheme is effective in main-
taining the results in a reasonable range.

We notice that our ensemble methods are inferior to some
trackers mainly under the situation when the tracked object
moves fast. This issue is related to the motion models used
by the individual trackers. Under fast motion, most trackers
cannot correctly generate a candidate set that contains the
target object, with the exception of Struck. Since four of
the five trackers fail at the very beginning, it is impossible
for the ensemble to get correct result. We note that SC-
EBT performs significantly better than EBT, verifying the
effectiveness of the self-correction mechanism. With self-
correction incorporated, the problem of fast motion can be
partially alleviated because it makes a sudden jump from
some incorrect tracking result to a correct one possible.

We also report in Tab. 1 and Tab. 2 the average success rates
at several thresholds for different methods. Under all set-
tings, SC-EBT ranks first while EBT ranks second. Their
advantages are especially significant for medium-ranged
thresholds which are often used in practice. We further
compare our ensemble methods with each of the individ-
ual trackers by counting the number of video sequences in
which our methods win, draw, or lose. Fig. 4 shows the

http://winsty.net/ebt.html
http://winsty.net/ebt.html
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p@0.3 p@0.5 p@0.7
SC-EBT 0.7381 0.6416 0.4819
EBT 0.7151 0.6376 0.4767
ASLA 0.6396 0.5893 0.4545
Struck 0.6890 0.5806 0.3740
DLT 0.6122 0.5181 0.3591
CSK 0.5781 0.4426 0.2815
LSST 0.4832 0.4324 0.3349
Baseline 0.5615 0.4681 0.3144

Table 1. Success rates at different thresholds based on the overlap
rate metric for different tracking methods.

p@5 p@10 p@15
SC-EBT 0.4333 0.5915 0.6728
EBT 0.4258 0.5782 0.6520
ASLA 0.4027 0.5278 0.5847
Struck 0.3426 0.5172 0.6171
DLT 0.3499 0.4762 0.5400
CSK 0.2610 0.4123 0.4989
LSST 0.3503 0.4541 0.5008
Baseline 0.2953 0.4165 0.4921

Table 2. Success rates at different thresholds based on the central-
pixel error metric for different tracking methods.

results. To make the comparison stable and meaningful,
the comparison is said to draw if the difference is less than
0.01. We believe the comparison is substantial enough to
demonstrate the effectiveness of our ensemble methods.

6.2. Qualitative Results

Besides quantitative comparison, let us also try to gain a
deeper understanding of the EBT approach by looking at
some test sequences in which our methods succeed or fail.

The first row of Fig. 5 shows an easy example that both
EBT and SC-EBT can estimate the ground-truth object lo-
cation accurately. LSST and CSK fail when the walking
person is occluded by a pedestrian in frame 42. Because
they are the minorities among the five trackers, both EBT
and SC-EBT can detect their failure and lower their relia-
bility accordingly. Consequently, the aggregated result is
accurate in tracking the target.

The second row shows a failure case. In the beginning, all
five trackers can track the target correctly and hence they
are all assigned high weights. Later, three of them drift
away to the same cluttered background. As a result, the
ensemble algorithms assign high weights to this incorrect
background and hence lead to failure of the ensemble.

In the third row, we demonstrate a case in which SC-EBT
can correctly track the object to the end but EBT fails. Be-
fore frame 300, the results of EBT and SC-EBT agree with
each other although EBT has already eliminated the failed
trackers LSST and Struck. When it is near frame 315, DLT
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Figure 4. Comparison of SC-EBT and EBT with other trackers
based on two evaluation metrics in terms of the number of se-
quences in which our methods win, draw, or lose.

and ASLA have high reliability but they both give incorrect
votes. The only correct tracker is CSK. Thus the tracking
result drifts. For SC-EBT, however, the results of LSST and
Struck are corrected so that the ensemble can withstand the
incorrect results of DLT and ASLA. As a result, SC-EBT
can track the target accurately to the end.

In the last row, we show an example in which the self-
correction mechanism actually impairs the performance.
We note that this is a rare case among all the sequences
tested though. Over a large portion of the video, all the
trackers actually agree well to produce stable results. The
difference between EBT and SC-EBT appears in about
frame 400 when the lady moves fast and hence makes most
of the trackers fail. However, EBT can survive because it
has eliminated two failed trackers, DLT and CSK, before
the fast motion and has assigned a high weight to Struck
which performs well. Coincidentally, EBT can track the
lady correctly even though four trackers actually drift to
the same place in the background.

7. Discussion
Before closing, let us investigate the relationship between
this work and two recent methods.

Briefly speaking, (Zhong et al., 2010) applies a crowd-
sourcing algorithm called GLAD (Whitehill et al., 2009),
originally proposed for image annotation, to the visual
tracking problem. Their method differs from ours in at
least two important aspects. First, it still treats the ensemble
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Figure 5. Results of some test sequences in the visual tracking benchmark. Details can be found in Sec. 6.2.

learning problem as a binary classification problem. As dis-
cussed earlier, ignoring the structure of the bounding box
data can impair the results. Second, it totally ignores the
spatial smoothness of the unknown ground truth and uses a
heuristic to update the reliability of each tracker. These two
issues are exactly what this work intends to address under
a principled framework.

The recent work by (Kwon & Lee, 2013) shares the same
motivation as ours in that it also integrates several basic
and simple trackers. It decomposes the complicated track-
ing problem into four basic ingredients: appearance model,
motion model, state representation, and observation type.
For each ingredient, several candidates are available to
choose from. They propose an interactive Markov chain
Monte Carlo method to infer the relative importance of
each candidate and then simply combine the candidates to-
gether. Despite its simplicity, it yields significant improve-
ment over other simpler trackers in sophisticated environ-
ments. Nevertheless, the method has some obvious draw-
backs. First, the candidates for each ingredient are quite
simple and similar and hence do not provide sufficient di-
versity to form a strong ensemble. Second, its ensemble
is still limited to the model level but not the output level.
To the contrary, our EBT approach allows essentially any
tracker to be added to the ensemble with minimal effort.

8. Conclusion and Future Work
We have proposed a framework for aggregating crowd-
sourced time series data in a form of structured data and
have applied it to the visual tracking problem by combining
the tracking results of multiple trackers. To realize this ap-

proach, we propose a novel FHMM as a state-space model
to account for the continuity of both the location of the tar-
get and the reliability of each tracker. For model inference,
we devise an efficient conditional particle filter algorithm
for online estimation of the hidden variables which are po-
tentially of high dimensionality. The curse of dimension-
ality is alleviated by exploiting the structure of the joint
posterior distribution of the hidden variables. We are very
excited by the promising results of our ensemble methods
when they are compared with some state-of-the-art trackers
on the largest open benchmark (Wu et al., 2013) to date.

Although our ensemble methods can achieve remarkable
improvement over the individual trackers, they can still fail
in some challenging situations which make human inter-
vention inevitable. How to determine the minimal set of
frames to seek help from human annotators is an interest-
ing research problem. It is related to active learning but is
more complicated than many well-studied active learning
tasks in the machine learning community. Although some
preliminary work (Vondrick & Ramanan, 2011; Vondrick
et al., 2013) has been pursued along this line for video an-
notation, their problem setting is very different from ours.
We will pursue research in this direction as our future work.
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