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Abstract

Transfer learning algorithms are used when one
has sufficient training data for one supervised
learning task (the source task) but only very
limited training data for a second task (the tar-
get task) that is similar but not identical to the
first. These algorithms use varying assumptions
about the similarity between the tasks to carry
information from the source to the target task.
Common assumptions are that only certain spe-
cific marginal or conditional distributions have
changed while all else remains the same. Al-
ternatively, if one has only the target task, but
also has the ability to choose a limited amount
of additional training data to collect, then ac-
tive learning algorithms are used to make choices
which will most improve performance on the tar-
get task. These algorithms may be combined into
active transfer learning, but previous efforts have
had to apply the two methods in sequence or use
restrictive transfer assumptions.

We propose two transfer learning algorithms that
allow changes in all marginal and conditional
distributions but assume the changes are smooth
in order to achieve transfer between the tasks.
We then propose an active learning algorithm for
the second method that yields a combined ac-
tive transfer learning algorithm. We demonstrate
the algorithms on synthetic functions and a real-
world task on estimating the yield of vineyards
from images of the grapes.
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1. Introduction

In a classical transfer learning setting, we have sufficient
fully labeled data from the source domain (also denoted
as the training domain), (X", Y'*"), where the data points,
X, are fully observed and all corresponding labels, Y*",
are also known. We are given data points, X te  from
the target domain (also denoted as the test domain), but
few or none of the corresponding labels, Y?*¢, are given.
The source domain and the target domain are related but
not identical, thus the joint distributions, P(X", Y*") and
P(Xte Y?), are different across the two domains. Most
statistical models learned from the source domain do not
directly apply to the target domain. However, it may still
be possible to avoid the cost of collecting an entire new la-
beled training data set. The goal of transfer learning is to
reduce the amount of new labeled data needed in the target
domain. It learns and transfers a model based on the labeled
data from the source domain and the unlabeled data from
the target domain. Some real-world applications of trans-
fer learning include adapting a classification model that is
trained on some products to help learn classification models
for some other products (Pan & Yang, 2009), and learning a
model on the medical data for one disease and transferring
it to another disease.

We are motivated by an autonomous agriculture application
where we want to manage the growth of grapes in a vine-
yard (Nuske et al., 2012). A robot can easily take images
of the crop throughout the growing season. At the end of
the season the yield will be known for every vine because
the product is weighed after harvest. This data can be used
to learn a model that predicts yield from images. How-
ever, decisions about selling the produce and nurturing the
growth must be made mid-season. Acquiring training la-
bels at that time is very expensive because it requires a hu-
man to go out and manually estimate yield. Ideally, a model
learned from previous years and/or on other grape varieties
can be used with a transfer learning algorithm to minimize
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this manual yield estimation. Furthermore, we would like
a simultaneously applied active learning algorithm to tell
us which vines to assess manually. Finally, there are two
different objectives of interest. A robot that needs to de-
cide which vines to water needs an accurate estimate of the
current yield of each vine. However, a farmer that wants to
know how big his crop will be this fall so he can pre-sell an
appropriate amount of it only needs an estimate of the sum
of the vine yields. We call these problems active learning
and active surveying respectively and they lead to different
selection criteria.

In this paper, we focus our attention on real-valued re-
gression problems. We propose two transfer algorithms
that allow both P(X) and P(Y|X) to change across the
source and target tasks. We assume only that the change
is smooth as a function of X. The first approach builds
on the kernel mean matching (KMM) idea (Huang et al.,
2007; Gretton et al., 2007) to match the conditional distri-
butions, P(Y|X), between the tasks. The second approach
uses a Gaussian Process to model the source task, the target
task, and the offset between. The assumption here is that al-
though the offset may be a nonlinear function over the input
domain, there is some smoothness in that offset over the in-
put domain. If that is not true, we suspect there is little hope
for transferring between domains at all. The GP-based ap-
proach naturally lends itself to the active learning setting
where we can sequentially choose query points from the
target dataset. Its final predictive covariance, which com-
bines the uncertainty in the transfer function and the uncer-
tainty in the target label prediction, can be plugged into var-
ious GP based active query selection criteria. Specifically,
we consider (1) active learning which tries to reduce total
predictive variance (Ji & Han, 2012); and (2) active survey-
ing which tries to predict ), Y;*® (Garnett et al., 2012).

We evaluate our methods on synthetic data and real-world
grape image data. The experimental results show that
our transfer learning algorithms significantly outperform
covariate-shift methods with few labeled target data points,
and our combined active transfer learning algorithm trans-
fers knowledge from the source data and makes target la-
beling requests that achieve better prediction performance
on the target data than alternative methods.

2. Related Work

Traditional methods for transfer learning, including
Markov logic networks (Mihalkova et al., 2007), parameter
learning (Do & Ng, 2005; Raina et al., 2006), Bayesian
Network structure learning (Niculescu-Mizil & Caruana,
2007) consider models where specific parts of the model
can be carried over between tasks. Some transfer learn-
ing work has focused on the problem of covariate shift
(Shimodaira, 2000; Huang et al., 2007; Gretton et al.,

2007). They consider the case where the distributions
on X are different across domains, i.e., P(X'") differs
from P(X*), while making the assumption that the con-
ditional distributions P(Y'"|X'") and P(Y'¢|X') are
the same. Following these assumptions they propose the
kernel mean matching method to minimize ||u(P;.) —
E,p, (2)[B(x)¢(x)]|| over a re-weighting vector 3 on
training data points such that distributions on X are
matched with each other. They then incorporate the learned
weights # into the training procedure, e.g., training an
SVM with re-weighted source data points, to obtain a
model that generalizes well on the target data. The ad-
vantage of using kernel mean matching is to avoid density
estimation, which is difficult in high dimensions. It has
been proved (Song et al., 2009) that even if we use the em-
pirical version of mean embeddings we can still achieve a
fast convergence rate of O(m~'/2), where m is the sample
size. The algorithms we propose in this paper will allow
more than just the marginal on X to shift.

Some recent research (Zhang et al., 2013) has focused on
modeling target shift (different P(Y")) and conditional shift
(different P(X|Y")). They assume that X depends causally
on Y, thus they can re-weight P(Y") (assuming support of
P(Y'*®) C support of P(Y'"), i.e., the training set is richer
than the test set) to match the distributions P(Y"). They ap-
ply a location-scale transformation on X to match the dis-
tributions on P(X|Y). More specifically, they transform
XU to X"e¥ by X% = X © W + B, then by mini-
mizing the MMD ||u[P¥¢”] — u[Pi]|| they try to find the
optimal transformation. However, they do not assume they
can obtain additional labels, Y'*¢, from the target domain,
and thus make no use of the labels Y*¢, even if some are
available.

There also have been a few papers dealing with differences
in P(Y|X). Jiang & Zhai. (2007) designed specific meth-
ods (change of representation, adaptation through prior,
and instance pruning) to solve the label adaptation problem.
Liao et al. (2005) relaxed the requirement that the training
and testing examples be drawn from the same source distri-
bution in the context of logistic regression. They also pro-
posed an active learning approach using the Fisher infor-
mation matrix, which is a lower bound of the exact covari-
ance matrix. Sun et al. (2011) weighted the samples from
the source domain to handle the domain adaptation. These
settings are relatively restricted while we consider a more
general case that there is a smooth transformation from the
source domain to the target domain, hence all source data
will be used with the advantage that the part of source data
which do not help prediction in the target domain will au-
tomatically be corrected via an offset model.

The idea of combining transfer learning and active learn-
ing has also been studied recently. Shi et al. (2008) and
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Rai et al. (2010) perform transfer and active learning in
multiple stages. The first work uses the source data with-
out any domain adaptation. The second work performs
domain adaptation at the beginning without further refine-
ment. Saha et al. (2011) and Chattopadhyay et al. (2013)
consider active learning under covariate shift and still as-
sume the conditional distributions P(Y'|X) are the same
across the source and the target domain.

A research area we draw from is active learning with Gaus-
sian Processes, for which many selection criteria have been
proposed, such as choosing the test point with the highest
variance (or entropy). We can also utilize mutual informa-
tion (Guestrin et al., 2005), which the same authors fur-
ther improve by considering both parameter (kernel width)
uncertainty reduction (exploration) and model uncertainty
reduction under current parameter setting (exploitation)
(Krause & Guestrin, 2007). Another popular criterion is
minimizing the total variance conditioned on the point to
be selected (Seo et al., 2000; Ji & Han, 2012), which can
be done using the trace of the covariance matrix, Tr{ail At
where A is the set of labeled data points and the candidate
query points. Active surveying (Garnett et al., 2012; Ma
et al., 2013), uses an estimation objective that is the sum of
all the labels in the test set. The corresponding myopic ac-
tive selection criteria is minimizing the sum of all elements
in the covariance matrix conditioned on the selected point,
]_TO'Z‘ 4 1. We adopt these last two selection criteria for our
active transfer algorithms.

3. Approach
3.1. Problem Formulation

Assume we are given a set of n labeled training data points,
(X' Y''"), from the source domain where each X!" € R
and each Y;'" € R%. Assume we are also given a set of
m test data points, X ¢ from the target domain. Some of
these will have corresponding labels, Y*¢~. When neces-
sary we will separately denote the subset of X*¢ that has
labels as X*eL and the subset that does not as X*eV

For static transfer learning, the goal is to learn a predictive
model using all the given data that minimizes the squared
prediction error on the test data, X7 | (V;*¢ — Y;/¢)2 where
Yi and Y; are the predicted and true labels for the ith test
data point. We will evaluate the transfer learning algo-
rithms by including a subset of labeled test data chosen
uniformly at random.

For active transfer learning the performance metric is the
same. The difference is that the active learning algorithm
chooses the test points for labeling rather than being given
a randomly chosen set.

The surveying metric is to minimize the error on the sum

of the predictions: (X7, V’¢ — X7 Y!€)2. Again, this
is evaluated using a randomly chosen set of test labels for
static transfer surveying or a set chosen by the algorithm
for active transfer surveying.

To illustrate the problem, we show a toy example in Fig-
ure 1. The left figure shows data in the source domain,
drawn from a sine function. The right figure shows data in
the target domain, drawn from the same sin function adding
a positive offset 1. The middle figure shows the offset. The
goal is, given the data in the left figure, and a few data
points to query, to recover the function in the right figure in
the least number of queries.

Source Data Offset Function Target Data & Function
2 2 2
1 1 1
o . % 0 0
* * *
% %
_1 ol LW _1 1
-5 0 5 -5 0 5 -5 0 5
X X X

Figure 1. Toy example showing the transfer/active learning prob-
lem

3.2. Transfer Learning
3.2.1. DISTRIBUTION MATCHING APPROACH

First we propose a distribution matching approach for
transfer learning. The basic idea is, we want to

(1) Match the conditional distributions P(Y " |X"")
and P(Y*¢|X'), where Y"¢* is under location-scale
transform of Y!": Y% = Y © w(X'") + b(X'"). If
the conditional distributions are matched with each other,
and P(X'") = P(X') (which can be achieved by var-
ious methods dealing with covariate shift, hence it is not
the focus of this paper), then a model learned from the
source data will generalize well on the target data because
the joint distribution is also matched with each other, i.e.,
P(Xtr, Ytr) — P()(te7 Yte)'

(2) The transform function is smooth, i.e., w and b
should be smooth w.r.t X.

To achieve the first goal, similar to the kernel mean match-
ing idea, we can directly minimize the discrepancy of the
conditional embedding of the two distributions (K in the
following equations stands for the Gaussian kernel, and
K xy represents the kernel between matrix X and Y') with
a regularization term:

min L + L4, where

w,

L = H,LL[PYneleM‘] — /,L[PYtelXte]H%v (1)

Lreg = Mreg(/[w = 1|* + [b][)

L can be further simplified by
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Algorithm 1 Conditional Distribution Matching
1: Input: Xtr’ Ytr’ {XteL’ YteL} U XteU
2: Initializew =1,b =0
3: repeat
4:  Predict YU using {Xxtr ynewy g {Xtel ytely,
where Y% is transformed using current w, b
Optimize the objective function in Equation 1
until w, b converge
7: Output: Prediction Y*¢V

AN

L=[lp(Y™ ) (K xerxer + M) "o (X7)—
YY) (K xexte + M) o1 (X7
=C + Te{d(X") (L™ + XI) 'K (L™ + M) 1o (X))}
—2Te{ (X" (L' + M) KO(L* + M) ¢ (X))}
=C+ Te{(L" + XI) ' K(L" + XI)"'L'}
—2Te{(L" + XI) 'K (L" + A\I) "' Kxte xtr },

where K = Kynewynew s K¢ = Kynewyte, Ltr =
Kxurxir, L' = Kxue xte. \is the regularization parame-
ter to ensure the kernel matrix is invertible.

To make the transformation smooth w.r.t. X, we parame-
terized w, b in this way (Zhang et al., 2013): w = Rg,b =
Rh, where R = L' (L' +AI)~!. We use scaled conjugate
gradient to minimize the objective function. The derivation
of the required derivatives is given in the supplementary
materials.

When matching the conditional distributions, if we only
use Xt Y*el in the empirical version of the condi-
tional operator p[Py-te| xte], it will be unstable due to the
small size of the observed labeled test points, especially
in the early stage of active learning. However, using
both X*& Ytel and X'V, Y*U would require knowing
the values Y*¢U, which are not obtained before query-
ing. We replace YU with the prediction YU based
on { X', ynew} U {XteL YteL} where Y"* are under
transformation using current w, b, while { X**% Y*¢L'} are
the labeled test data selected up to the present. After ob-
taining YU we minimize the objective function Eq 1. We
iterate over the two steps until convergence. The algorithm
is described as in Algorithm 1.

3.2.2. OFFSET APPROACH

In the second proposed method, we use a Gaussian Process
to model the source task, the target task, and the offset be-
tween, described as follows (K in the following equations
stands for the Gaussian kernel, and ) is the regularization
parameter to ensure the kernel matrix is invertible):

(1) We build a GP from the source domain and predict on
Xtel' then compute the offset Z between the prediction

and the true labels YteL: ZteL — yteL _ yteL [ follows:
P(ZAteL|Xtr, Ytr’ XteL’ YteL) ~ N(Nsv 25)7 where

Us = YteL — KXteLXtT(KXtrXtT + )\I)—lytr, ES =
Kxter xter — Kxter xor (KXh»Xn» + )\I)_l

(2) We transform Y!" to Y% by Ynew = YU 4
7 where Z!" is the predicted mean of the offset
on X' using the GP built from {XtEL,ZteL}, ie.,
P(Zt|Ztel Xt Xtel) ~ N (g, X), where

Ho = KXtrXteL(Kth:LXteL + )\I)—theL, Yo =
Kxtrxtr — Kxtrxter (KXtcLXtcL + /\I)_

(3) Train a model on { X" Ynewlu{XteL Yl use the
model to make predictions on X V.

Kxf,rxf,eL .

1KXtcLXtr.

3.3. Active Learning

We consider two active learning goals and apply a myopic
selection criteria to each:

(1) Active learning which tries to reduce the total predic-
tive variance (Ji & Han, 2012). An optimal myopic se-
lection is achieved by choosing the point which minimizes
the trace of the predictive covariance matrix conditioned on
that selection: Tr{o? ,}.

(2) Active surveying which tries to predict ), Y;**. An
optimal myopic selection is achieved by choosing the point
which minimizes the sum over all elements of the covari-
ance matrix conditioned on that selection (Garnett et al.,
2012), which is also denoted X-optimality in (Ma et al.,
2013): lTai‘Al.

Note that the predictive covariances for a Gaussian pro-
cess are computed without using the observed labels. This
means that conditioning on hypothetical point selections
can be done quickly without needing to marginalize out the
unknown label. All that is needed to create an integrated
active transfer algorithm using the offset approach from the
previous section is to determine the corresponding predic-
tive covariance matrices so the active selection criteria can
be applied. We now derive these.

3.3.1. UNCERTAINTY FOR TRANSFORMING THE
TRAINING LABELS

Given P(ZteL\X“",Y”,XteL,YteL) ~  N(ps,2s),
P(Ztr|Ztl Xt XLy~ N(pg,Xo), to model the
uncertainty for transforming the labels Y*", we need to
integrate over ztel je.,

P(Zt’r|Xt'r Yt7" ‘X'teL7 YteL)

h}»\N\

P Ztr ZteL|Xtr Ytr XteL YteL)d(ZteL)

Stel
P Zt7 ZteL Xt7 XfeL)

ZteL|Xtr Ytr XteL YteL)d(ZAteL).
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Denote K1 = Kyxerxter (Kxter xter + M)7L, we can
derive that P(Z'| X', Y XteL ytel) ~ N(uy,%1),
where 1y = X35 K (K S5 Ky 4+ B0 7IS
=20+ K1 DK

3.3.2. UNCERTAINTY FOR TARGET LABEL PREDICTION

The prediction on X*¢V is based on the Gaussian Process
built from the merged data { X", Ynew} U {Xtel ytely,
hence it also follows a Gaussian distribution:
P(Y/teU |XtEU, )(1‘,7“7 Ynew, )(1‘,eL7 YteL) ~
where

= Kxwvx(Kxx +A)7Y = [Q) Qo] [Ymew Yer] T,
Y= KXteUXteU — KXWUX(KXX + )\I)ilexteU.
Here X,Y represent the merged data, i.e., X = X try
Xtel 'y = ynew yytel Q) is the matrix consisting of
the first n columns of K y+cv x (K xx + A )™, where n is
the number of training data points. {2 consists of the re-
maining [ columns, where [ is the size of labeled test points.

N, %),

3.3.3. THE COMBINED UNCERTAINTY FOR FINAL
PREDICTION

Due to the uncertainty for the transformed labels Y ¢", to
model the uncertainty for the final prediction again we need
to integrate over Y% | i.e.:

P(YAvteULtheU7 Athr7 §/4£r7 XtEL, YteL)

/ P(YtEU, Ynew|XteU’ Xt'r’ Ytr’ XtEL, YteL)dYnew
:/ P(YteU ‘XteU Xtr ynew XteL YteL)

Y’Vlﬂw
P(Ynew ‘X“‘, Yt'r, )(ieL7 YteL)dYnew

1.5 e - Orte
=C exp{— (V' =) 'SV — )}

ynew

1 new Lr — new Lr new
exp{—5 (Y™ — Y — ) TR Y — YT — ) b Y

=C’ exp{f%(Y* — Y)Y — Y)Y

ynew

1 new — new new
exp{— (Y™ — ) S (Y — ) Y,

where Y, = YU — Q,ytel,

After some derivation we can get
P(Y/teU|XteU Xtr ytr xteL YteL) ~
where

po = YoX 710 (Q BT + ST TS (g + Y,
Yo =S4+ W45 =8+ Q1(Z0 + K1 Z.K])Q .

N(szzz),

Hence we get u(YeV) =
QY el 3o n =0 (Q ST O + 27 IS T (4 Y.

For more detailed derivation please refer to the supplemen-
tary materials.

4. Experiments
4.1. Synthetic Dataset
4.1.1. DATA DESCRIPTION

We generate two synthetic datasets. The first one has a con-
stant shift between the labels Y™ and Y'*¢. The second one
has a shift in both the data points X ‘", X*¢ and their labels
Y and Yte.

(1) Synthetic Dataset 1 (using matlab notation):

Source: X! = [-3:0.2:-1 -0.5:0.5:0 3:0.2:5]; Y¥" =
sin(X*"); Target: X' =[-5:0.35:5]; V¢ = sin(X %) + 1.
(2) Synthetic Dataset 2 (using matlab notation):

Source: X' = [-5:0.2:-1 -0.5:0.5:0.5 1:0.2:5]; Y =
sin(X'"); Target: X' =[-5:0.35:5]; V¢ = sin(X*® +1).
Ilustrations for the two datasets are shown as in Figure 2.

+ source domain
°o ] * © o o target domain

Xo
Xo

Figure 2. Tllustration of two synthetic datasets

4.1.2. TRANSFER LEARNING ON SYNTHETIC DATASET

We compare the following methods:

(1) distribution approach, described in section 3.2.1.

(2) offset approach, described in section 3.2.2.

(3) use only test x. GP Prediction using only labeled test
points (i.e. no transfer learning).

(4) use both x. GP Prediction using both training points
and labeled test points, without any transfer learning.

(5) KMM for covariate shift (Huang et al., 2007).

(6) Target/Conditional shift, proposed by (Zhang et al.,
201 3), code is from http://people.tuebingen.mpg.de/
kzhang/Code-TarS.zip.

The evaluation metric is the mean squared error of pre-
dictions on the unlabeled test points with different num-
bers of observed test points with labels, and averaged over
10 experiments. Parameters (kernel width, regularization
term, etc.) are set using cross validation. In the test do-
main initially there is not much data for tuning parame-
ters using cross validation, we assume the same smooth-
ness constraint (same kernel width and \) as in the source
domain. The selection of which test points to label is done
uniformly at random. Results for Synthetic Datasets 1 and
2 are shown in Figures 3 and 4, respectively. From the re-
sults we can see that for observed test points with labels
fewer than 10, our proposed methods can greatly reduce
the prediction error by transferring the model learned from
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the source domain. With more points the errors tend to con-
verge to using only X ¢! Y*¢l because the number of la-
beled points in the test domain is large enough for learning
a good model by itself. KMM and Target/Conditional shift
methods do not utilize the possible label information Y *¢%,
hence the error is much larger compared to other methods
which use a few Y©’s,

3
[l distribution approach
2.5 [@offset approach
[CJuse only test x
[use both x
2 — KMM

- - - Target/Conditional Shift

i%ﬂJJﬂg

Number of observed test points with labels

Mean Squared Error
&

-

Figure 3. MSE for transfer learning on synthetic dataset 1

[l distribution approach

e I [@offset approach
0.45 [Juse only test x
T [Juse both x
0.4 — KMM
- 1‘ '} - - - Target/Conditional Shift
© 0.35 {_
iy
B 03
L
3 0.25
9]
&
S 0.2
=
0.15
0.1
0.05
0 Pt

6 10 15 20 2
Number of observed test points with labels

Figure 4. MSE for transfer learning on synthetic dataset 2

4.1.3. ACTIVE LEARNING/SURVEYING ON SYNTHETIC
DATASET

We consider two active learning goals: (1) Active Learning
to reduce the total predictive variance (shortened to Active
Learning, or AL in the following description) and (2) Ac-
tive Surveying (AS). We compare the following uncertainty
measures for each goal:

(1) combined. AL/AS using the combined covariance ma-
trix (X9 in section 3.3).

(2) source. AL/AS using the covariance matrix

based only on the source domain, i.e., Kxtevxtev —
KXteUXtr(KXtrXtT + )\I)ilKXM‘XteU.

(3) target. AL/AS wusing the covariance matrix
based only on the target domain, i.e., Kxtev ytev —
Kxtev xter (KXtcLXtcL + )\I)_lKXtcLXth .

(4) both. AL/AS using the covariance matrix based
on both source and target domain, i.e., Kytev xytev —
K yiev ¢ (K¢ ¢ +A) " K ¢ e, where X = XU XL,
(5) random. Points selected uniformly at random.

variance combined variance only source

R R

variance only target variance both source and target
s
@% 2000
1sf® 4 ﬁ@ 151 %%, Egéﬂﬁia
® | oa = ®
] © "aga”y e
y ° 2

05
o, o° o
* o 000 & ", S0
* * v =
* *

Figure 5. The comparison of different covariance matrices. Red
stars show the data from the source domain, and blue circles show
the data from the target domain. The black bars show the error
bar/uncertainty (diagonal elements of the covariance matrix) on
the prediction of unlabeled test points. The two labeled test points
are shown in filled blue circles (z1 = —4.3, x2 = 3.05).

To better illustrate how the combined covariance matrix
compares to other covariance matrices, we show a com-
parison by plotting the diagonal elements of each covari-
ance matrix, as the uncertainty for prediction on the unla-
beled points (with two points labeled) in the test domain,
as shown in Figure 5. Based on what covariance matrix is
used for active learning, the most likely selection for the
unlabled test points are: (a) source: points far away from
the source data; (b) target: points far away from the la-
beled test points; (c) both: points far away from both the
source data and the labeled test points; (d) combined: the
uncertainty of unlabeled test points will be approximately
ranked as (from highest to lowest), (1) points far away from
both the source data and the labeled test points, (2) points
far away from the labeled test points but close to the source
data, and points far away from the source data but close to
the labeled test points, (3) points close to both the source
data and the labeled test points.

We consider the mean squared error (for Active Learning)
and absolute error (for Active Surveying) with respect to
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Figure 6. MSE for Active Learning on Synthetic Dataset 1
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Figure 7. Absolute Error for Active Surveying on Synthetic
Dataset 1
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Figure 8. MSE for Active Learning on Synthetic Dataset 2

different number of observed test points with labels (in the
order being selected by the corresponding active selection
criteria). We averaged the results over 29 experiments, each
one initiated with a test point chosen uniformly at random.

10
——combined
of - ——source
——target
both
——random

absolute error
L9

5 10 15 20 25 30
Number of observed test points with labels

Figure 9. Absolute Error for Active Surveying on Synthetic
Dataset 2

On Synthetic Dataset 1, Active Learning results are shown
in Figure 6, and Active Surveying Results are shown in Fig-
ure 7. On Synthetic Dataset 2, Active Learning results are
shown in Figure 8, and Active Surveying Results are shown
in Figure 9. From the results we can see that, on Synthetic
Dataset 1, for both Active Learning and Active Surveying
our proposed combined covariance matrix (35 in section
3.3) clearly outperforms all other baselines. On Synthetic
Dataset 2, our gain of using combined covariance matrix
is smaller because Y'*¢ differs from Y'" at almost every
location of X. Hence choosing a point corresponding to a
larger transfer learning gain becomes very similar to choos-
ing the point uniformly, which is the selection strategy of
using covariance matrix merely based on the target domain.

4.2. Real-world Dataset

4.2.1. TRANSFER LEARNING ON REAL-WORLD
DATASET

We have two datasets with grape images taken from vine-
yards and the number of grapes on them as labels, one is
riesling (128 labeled images), another is traminette (96 la-
beled images), as shown in Figure 10. The goal is to trans-
fer the model learned from one kind of grape dataset to
another kind of grape dataset. The total number of grapes
for these two datasets are 19, 253 and 30, 360, respectively.

We extract raw-pixel features from the images, and use
Random Kitchen Sinks (Rahimi & Recht, 2007) to get the
coefficients as feature vectors (Oliva et al., 2014). We use
Gaussian Process for prediction. On the traminette dataset
we have achieved R-squared correlation 0.754 (95% for
training and 5% for test). People have been using specifi-
cally designed image processing methods to detect grapes
and achieved R-squared correlation 0.73 (Nuske et al.,
2012). Grape-detection method takes lots of manual la-
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Figure 10. A part of one image from each grape dataset
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Figure 11. RMSE for transfer learning on the real grape data

beling work and cannot be directly applied across different
kinds of grapes (due to difference in size and color). Our
proposed approach for transfer learning, however, can be
directly used for different kinds of grapes or even different
kinds of crops.

We compare to the same baselines for both transfer learning
and active learning goals as in the synthetic experiments.
For transfer learning the results are shown in Figure 11, av-
eraged over 10 experiments. We can see with labeled test
points fewer than 25, our proposed approaches (both dis-
tribution matching approach and the offset approach) can
reduce the error by transferring the model learned from
the source domain. The Active Learning result is shown
in Figure 12, and the Active Surveying result is shown in
Figure 13. From the results we can see that our proposed
method can well achieve both goals.

5. Conclusion and Discussions

In this paper, we propose two transfer learning algorithms
that allow changes in all marginal and conditional distribu-
tions with the additional assumption that the changes are
smooth as a function of X. The first approach is based
on conditional distribution matching, and the second is
based on modeling the source/target task and the offset be-

1800 "
—— combined
_ 1600[ | source |
2 1400 —e—target ]
L ¥ —+— both
B 1200¢ : —=—random
S 1000f & 1
(%)
< 800f |
(3]
()
= 6001 1
S 400! ]
£ 400
200t b
0 L L L L
0 5 10 15 20 25

Number of observed test points with labels

Figure 12. RMSE for Active Learning on the real data
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Figure 13. Absolute error for Active Surveying on the real data

tween using Gaussian Processes. We then propose an ac-
tive learning method which yields a combined active trans-
fer algorithm. Results on both synthetic datasets and a
real-world dataset demonstrate the effectiveness of our pro-
posed methods.

About the convergence guarantee, for the distribution
matching approach, one deficiency of using the Gaussian
kernel is it results in a non-convex optimization objective.
This problem could potentially be resolved by using a lin-
ear kernel. However, using a linear kernel would make the
results less general. For the offset approach, the labels we
get are biased by our selection scheme. However, just like
most other Bayesian sequential learning methods, the offset
approach empirically often converges to a good estimate as
we get more labels.
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