Fast Multi-Stage Submodular Maximization: Extended version

Kai Wei
Rishabh Iyer
Jeff Bilmes

University of Washington, Seattle, WA 98195, USA
Abstract

Motivated by extremely large-scale machine
learning problems, we introduce a new multi-
stage algorithmic framework for submodular
maximization (called MULTGREED), where at
each stage we apply an approximate greedy proce-
dure to maximize surrogate submodular functions.
The surrogates serve as proxies for a target sub-
modular function but require less memory and are
easy to evaluate. We theoretically analyze the per-
formance guarantee of the multi-stage framework
and give examples on how to design instances of
MULTGREED for a broad range of natural sub-
modular functions. We show that MULTGREED
performs very closely to the standard greedy
algorithm given appropriate surrogate functions
and argue how our framework can easily be
integrated with distributive algorithms for further
optimization. We complement our theory by
empirically evaluating on several real-world prob-
lems, including data subset selection on millions
of speech samples where MULTGREED yields
at least a thousand times speedup and superior
results over the state-of-the-art selection methods.

1 Introduction

Data sets are large and are getting larger. This, on the one
hand, is useful as “there is no data like more data.” On
the other hand, it presents challenges since the information
in vast quantities of data may be difficult to ascertain
simply due to the computational difficulties created by
vastness itself. An important goal in machine learning and
information retrieval, therefore, is to develop methods that
can efficiently extract and summarize relevant and useful
information in large data sets.

One recent class of methods gaining some prominence in
machine learning is based on submodular functions for com-
binatorial selection. Traditionally studied in mathematics,

Proceedings of the 31°% International Conference on Machine
Learning, Beijing, China, 2014. JIMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

KAIWEI@U.WASHINGTON.EDU
RKIYER @U.WASHINGTON.EDU
BILMES @ U.WASHINGTON.EDU

economics, and operations research, submodular functions
naturally occur in many real world machine learning
applications. A submodular function (Fujishige, 2005) is
a discrete set function f : 2¥ — R that returns a real value
for any subset S C V, and satisfies f(A) + f(B) > f(AN
B)+ f(AU B),VA, B C V. Equivalently, f satisfies the
diminishing returns property, f(j]|5) > f(j|T),VS C T,
where f(j|S) £ f(j US) — f(S) is the gain of adding
element j a set S. A submodular function f is monotone
non-decreasing if f(j]S) > 0,Vj € V\ 5,5 CV, and f
is normalized if f(0) = 0.

Submodular functions naturally measure the amount of
information that lies within a given set A C V, what is
actually meant by “information” depends very much on
the particular function. For example, given a collection
of random variables X1, Xo, ..., X,, where n = |V, the
entropy function f(A) = H(UzecaX,) is submodular.
The rank of a subset A of columns of a matrix is also
submodular and can be seen as representing information
as the dimensionality of the vector space spanned by the
vectors indexed by A. There are other submodular functions
that could represent “information” in some form (Fujishige,
2005; Kempe et al., 2003; Krause et al., 2008; Lin and
Bilmes, 2011). Given a large collection of items V' whose
information content is f(V) where f is submodular, a
natural and common optimization problem is :
Sgr‘r/{?gﬁgf(s)- (1)
Problem (1) asks for the most informative subset of items of
size £ or less. This problem has already found great utility in
a number of areas in machine learning, including document
summarization (Lin and Bilmes, 2011), speech data subset
selection (Wei et al., 2013), feature subset selection (Krause
and Guestrin, 2005a; Liu et al., 2013), social influence
(Kempe et al., 2003), and sensor placement (Krause et al.,
2008). Though the problems are NP-hard, a well-known re-
sult by Nemhauser et al. (Nemhauser et al., 1978) shows that
Problem 1 can be solved near-optimally by a simple greedy
algorithm with a worst case approximation factor of 1 —1/e.
Moreover, (Feige, 1998) shows that this is tight unless P=NP.
In this paper, we shall refer to the solution of the greedy
algorithm, though approximate, as the optimum solution
for simplicity. The greedy algorithm starts with the empty

Fast Multi-Stage Submodular Maximization

set Sp = (. In each iteration i, it identifies the element s;
that maximizes the marginal gain f(s;|S;—1) (i.e., s; €
argmax.cy g, , f(€|lSi—1)) with ties broken arbitrarily
and updates as S; < S;_1U{s;}. Submodularity can be fur-
ther exploited to accelerate (Minoux, 1978) this greedy algo-
rithm — a procedure often called the “accelerated” or “lazy”
greedy algorithm (LAZYGREED) (Leskovec et al., 2007).

In many cases, the very advanced machine learning algo-
rithms that we need to use to process large data sources are
too computationally costly for the amount of data that exists.
For example, when the data source is very large (e.g., n in
the billions or trillions), even LAZYGREED becomes unten-
able. Moreover, even smaller sized n can be prohibitive,
particularly when evaluating the function f itself is expen-
sive. For example, in document summarization (Lin and
Bilmes, 2011) and speech data subset selection (Wei et al.,
2013) certain submodular functions (which we call graph-
based), are often defined via a pair-wise similarity graph,
having a time and memory complexity of O(n?). This
is infeasible even for medium-scale values of n. Another
application is the feature selection (Krause and Guestrin,
2005a; Iyer and Bilmes, 2012; Liu et al., 2013), where a
common objective is to maximize the mutual information
between a given set of random variables X 4 and a class C
(i.e I(X 4;C)). The mutual information depends on com-
puting the entropy H (X 4) which can be expensive (or even
exponential cost) to evaluate. Similarly, the recent promis-
ing work on determinantal point processes (DPPs) (Kulesza
and Taskar, 2012), where one wants to maximize the sub-
modular function f(A) = log det(S4) for a given matrix S,
becomes problematic since computing log-determinant can
require an O(n?) computation which is impractical already
on medium-sized data sets.

We therefore ask the question: are there other approaches
that can address Problems (1) and that are scalable to very
large data sets, and that still offer theoretical guarantees?

Related Work: Parallel computing approaches are of
course a natural pursuit for solving large-scale algorithmic
challenges, and some instances of distributed algorithms
for submodular optimization have already been investigated.
For example, (Chierichetti et al., 2010) propose a distributed
algorithm to solve Problem | with the set cover function as
the objective, and with an approximation factor of 1—1/e—e.
Similarly, (Kumar et al., 2013) propose a distributed algo-
rithm to solve Problem 1 with any submodular objective
and with an approximation factor of 1/2 — e. Motivated by
the difficulty of rendering the entire data set centrally for
function evaluation, (Mirzasoleiman et al., 2013) propose a
two-stage algorithmic framework to solve Problem | with
an approximation factor of O(W)’ where ¢ and m
are the cardinality constraint and the number of distributed
partitions, respectively. The performance guarantee can
be improved to be close to optimum if the data set is mas-
sive and satisfies certain geometric assumptions. All these
algorithms can be implemented in a Map-Reduce style.

Our Contributions: In this work, we propose a multi-
stage framework (MULTGREED) that directly addresses
the time and memory complexity issues of running LAZY-
GREED in three ways: (a) reducing the number of function
evaluations required for the algorithm, (b) decreasing
the complexity of function evaluations by using simpler
surrogate (proxy) functions, (c) reducing the ground set
size. Though quite different in spirit from the distributive
framework, our approach could easily be performed in
concert with existing distributed algorithms. For instance,
we can apply MULTGREED instead of LAZYGREED for
solving each sub-problem in (Mirzasoleiman et al., 2013).
Conversely, their distributed procedure could also be used
to solve the sub-problem in each stage of MULTGREED.
The theoretical analysis for both frameworks could easily
be combined with each other, and they could be integrated
to provide still more efficient large-scale algorithmic
frameworks for these problems. Hence, our approach is
complementary to the existing distributive architectures,
although in the present paper we will concentrate on our
novel multi-stage uni-processor approach.

QOutline Section 2 gives an overview of our framework.
In Section 3, we theoretically analyze its performance while
Section 4 offers several choices of surrogate functions for
certain practical and useful classes of submodular functions.
In Section 5, we focus on the design of MULTGREED on
a broad range of submodular functions, and instantiate
our general framework for several submodular functions,
thereby providing recipes for many real-world problems.
In Section 6, we empirically demonstrate the performance
of MULTGREED, where we apply MULTGREED to a
large-scale speech data subset selection problem and show
that it yields superior results over the state-of-the-art
selection methods.

2 Multi-Stage Algorithmic Framework

Often in applications, there is a desirable in quality but pro-
hibitive in computational complexity submodular function
that we shall refer to as the target function f. We assume
a ground set size of n = |V/|, a cardinality constraint of ¢,
and that the optimal solution to Problem (1) is SOFT.

For completeness, we first describe how LAZYGREED ac-
celerates the naive greedy implementation. The key insight
is that the marginal gain of any element v € V is non-
increasing during the greedy algorithm (a consequence of
the submodularity of f). Instead of recomputing f(v|S;_1)
for each v, the accelerated greedy algorithm maintains a list
of upper bounds p(v) on each item’s current marginal gain.
They are initialized as p(v) < f(v) for each v € V, and
sorted in decreasing order (implemented as a priority queue).
In iteration ¢, the algorithm pops the element v off the top of
the priority queue and updates the bound p(v) < f(v|S;).
v is selected if p(v) > p(u), where w is at the current top of
the priority queue, since submodularity in such case guaran-
tees that v provides the maximal marginal gain. Otherwise,

Fast Multi-Stage Submodular Maximization

we appropriately place the updated p(v) back in the priority
queue and repeat.

To this end, we consider three schemes to further accelerate
LAZYGREED: (a) reduce the number of function evaluations
(Approximate greedy), (b) reduce the complexity of function
evaluations (using simpler proxy functions), (c) reduce the
ground set size (Pruning). This ultimately leads to our multi-
stage greedy framework MULTGREED.

Approximate greedy: In this part, we introduce a mecha-
nism called APPROXGREED, to reduce the number of func-
tion evaluations in LAZYGREED. We give a theoretical
analysis for APPROXGREED in Section 3 — the current
section defines and then offers intuition for the method. The
key idea of APPROXGREED is that it does not insist on
finding the item that attains exactly the maximum marginal
gain in each iteration, but instead, looks for an item whose
marginal gain is close to this maximum. APPROXGREED
only modifies LAZYGREED by weakening the selection
criteria in each iteration. More formally, if an item v is se-
lected by LAZYGREED, the optimality of its marginal gain
is guaranteed if the exact condition p(v) > p(u) (u is the
current top of the priority queue) is met. APPROXGREED
relaxes this to an approximate condition p(v) > Bp(u),
where 0 < § < 1. Since a potentially large number of
items’ marginal gains need to be reevaluated until the exact
condition is met, using the approximate condition could ef-
fectively reduce the number of function evaluations at a loss
of the original guarantee. The parameter 3 controls the level
of sub-optimality: the smaller {3 is, the number of function
evaluations reduces as does the performance guarantee. In
other words, APPROXGREED, as an approximate scheme to
LAZYGREED, has its performance guarantee carried over
from that of LAZYGREED, with an additional level of ap-
proximation governed by the value [(the formal guarantee
of (1 — e~#) is given in Lemma 2). We would like to point
out the resemblance of APPROXGREED to the recently pro-
posed fast greedy algorithm for Problem 1 (Badanidiyuru
and Vondrak, 2014). Similar to APPROXGREED, they seek
to identify an item whose marginal gain is within a fraction
[of the maximum marginal gain in each iteration and yield
the an approximation factor of (1 — e~#). Unlike their algo-
rithm, APPROXGREED builds on top of the LAZYGREED,
hence, further exploits the submodularity. Though quite
similar in spirit, APPROXGREED might run significantly
faster, in practice, than their algorithm, while yielding the
same performance guarantee.

APPROXGREED is only a minor modification of an existing
LAZYGREED implementation and thus does not extend to
other algorithms for Problem 1.

APPROXGREED can be further generalized by setting
the value of S individually for each iteration, i.e., a se-
quence {B;}_, = {Bi1,...,B¢}. Intuitively, we would
design {f;};_; to be non-decreasing, i.e., the allowed
sub-optimality decreases as the algorithm proceeds. The
reason for this is that a less accurate selection at the be-

gin has a chance of being corrected by more accurate se-
lection in later iterations. One possible schedule would
be 8; = ¢+ 155(i — 1), where ¢ < 1 determines the
initial sub-optimality degree of the algorithm. Then, j;
grows linearly in ¢ from c to 1, and the choice of ¢ deter-
mines the trade-off between the running time reduction and
performance guarantee loss. Given f, ¢, and {Bi}le,
we shall instantiate the approximate greedy procedure as
S € APPROXGREED(f, (, {B:}¢_,).

Multi-stage framework: APPROXGREED yields
effective reduction on the number of function evalu-
ations in LAZYGREED, however, the complexity of
each function evaluation could still be so high that the
greedy procedure is rendered impractical. To address
this issue, we propose an approach, MULTGREED, that
utilizes classes of simple surrogate functions which
could be applied to a broad range of submodular
functions. The idea is to optimize a series of surrogate
(proxy) functions instead of optimizing the target function f.

Algorithm 1 MULTGREED: A Multi-Stage Greedy Alg.

Input f, £, J, {fi}7—1, {£;} =1, {8}z,

C+0,L+0;

forj=1...Jdo
Define F;(S) £ f;(S|C) forall S C V
S € APPROXGREED(Fj,¢;,{f; 5;511)
L=L+¢, C+~CUS

Output C

Given a sequence {3;}_,, a set of cardinality constraints
{l1,...,£;} such that E}le ¢; ={and {; > 0,Vj,and a
corresponding set of J surrogate (proxy) submodular func-
tions { f;} 5.’:1, we define our framework MULTGREED as
shown in Algorithm 1. The series of the surrogate functions
should be designed in increasing order of complexity, and
at the last stage of MULTGREED, f; can even be the target
function f. The algorithm should typically start with a
computationally simple surrogate submodular function f;
(which could even be modular). Since the surrogate func-
tions f;’s are designed to be computationally cheaper than
the target function f, and since APPROXGREED is applied
instead of LAZYGREED in each stage, we are guaranteed
to achieve an overall reduction in computation. In prac-
tice (see Section 5 and 6), we often observe an instance of
MULTGREED with J = 2 suffices to yield good enough
performance and complexity reduction as well, though our
results are much more general.

Pruning: In addition to the above two schemes, it is also
desirable to prune out items of the ground set that will never
be chosen anyway, especially for large-scale data set. This
is commonly done for submodular minimization (Fujishige,
2005; Iyer et al., 2013b). Arbitrary pruning procedures,
however, can significantly weaken the theoretical guarantee
for Problem 1. We introduce here a simple new method that
can prune away items without a corresponding performance
loss. Consider the sequence of items {u, ..., u,} ordered

Fast Multi-Stage Submodular Maximization

non-increasingly in terms of their gain conditioned on all
other items, i.e., f(u1|V \u1) > -+ > f(un|V \ uy). For
an instance of Problem 1 with cardinality constraint ¢, we
have the following Lemma:

Lemma 1. LAZYGREED applied on the reduced ground
set V.={j € VIf(j5) > f(ue|V\us)} is equivalent to that
applied on the ground set V.

The proofs for all the results in this paper are deferred to
Appendix. This procedure can easily be implemented in
parallel, since f(j) and f(j|V \ j) can be computed inde-
pendently for all j € V. The pruning procedure is optional
and is applicable only when the complexity of evaluating
f(u]V \ u) is no greater than that of f(u). This is the case,
for example, in our graph-based submodular functions. It is
not true, however, for the entropy-based functions, nor the
log-determinant style functions. Otherwise, the complexity
of the pruning procedure could potentially even dominate
that of LAZYGREED, rendering it useless. MULTGREED
may optionally start with this ground set pruning step, but it
does not influence our analysis.

Our analysis of Algorithm 1 is given in Section 3, while
in Section 4, we illustrate examples on how to design
surrogate functions. In Section 5, we shall instantiate our
framework and provide recipes for choosing the parameters
of MULTGREED for several submodular functions which
occur as models in real world applications.

3 Analysis

In this section, we formally analyze the methods presented
in Section 2. We first define several crucial constructs that
will facilitate this analysis.

Greedy ratio: We define a new construct we call the
greedy ratio that will quantify the performance of a given
instance of MULTGREED, which is characterized by the
parameters: {f;}7_1, {£;}7—,, {Bi}i—;. Guidelines on
how to design the parameters of the multi-stage framework
for several natural instances of useful submodular functions
are given in Sections 4 and 5, but for now assume they are
given. Let s, ..., s¢ be the sequence of items selected by
the instance of MULTGREED. Let S; = {s1,...,s;}, bea
set element of the chain S; C Sy C --- C Sy, with Sy = 0.

Define the individual greedy ratio o; fori = 1,..., /¢ as:

max,cy f(ulSi—1)

f(silSi-1)

Each «; captures the ratio of the marginal gain of the
greedily selected element to the marginal gain of the el-
ement s; selected by MULTGREED. Therefore, o, is
a function of both the target function f but also, indi-
rectly via ordered list (s1, $2,...,$;), all of the remain-
ing parameters {f;}X |, {¢:}E,, {B:}¢_,. Also, since
maxyey f(u|S;i—1) > f(s:]Si—1), we have that o; >
1,Vi. Moreover, since under APPROXGREED we have

2

oy =

f(si|Siz1) > Bif(u]Si—1) for all w € V \ S;_1, it fol-
lows that «; < 1/8; for each i.

The list {a; }_, collectively measures the quality of the
multi-stage framework. We therefore define the greedy ratio
« to be an aggregation of the individual greedy ratios. While
there are many ways of aggregating, the harmonic mean,
as we will show, provides the tightest characterization. We
thus define the greedy ratio « as:

V4
= 3
S @

The greedy ratio, as we shall see, will provide a tight ap-
proximation guarantee. Ideally, we would like to have each
individual greedy ratio ai; = 1 for all 4, and thus a greedy
ratio of o = 1. In particular, our strategy for choosing sur-
rogate functions and other parameters is to induce a greedy
ratio that is as small as possible.

Curvature: Another important construct we shall need
is the curvature. Given a submodular function f, we define
k7(S) as the curvature of f with respect to a set S as
follows: :
_f(v]S\v)

kp(S)=1 iy o) 4)
k7(S) lies in the range of [0,1], and is monotonically
non-decreasing in S. It measures the distance of f from
modularity and ¢ = 0 if and only if f is modular (or addi-
tive, i.e., f(S) = D _,cg f(4)). The total curvature (Conforti
and Cornuejols, 1984) Ky is then k¢(V). A number of
approximation guarantees for submodular optimization are
improved when using curvature (Conforti and Cornuejols,
1984; Iyer et al., 2013a; Iyer and Bilmes, 2013).

We now provide our main result:

Theorem 1. Given a target submodular function f with
total curvature kg, an instance of MULTGREED with
greedy ratio « is guaranteed to obtain a set Sy s.t.

f(Sf) i _ _i Ly i _e—%
Flsom = w7 0 2 0
> (1)

Conversely, for any value of « > 1 and k¢ € [0, 1], there

exists a submodular [with the total curvature ry, on

which an instance of MULTGREED with the greedy ratio
. — 1 1 \ek

« achieves an approximation factor e (1 — (1=)™)

Theorem | states that MULTGREED’s guarantee is quanti-
fied tightly by the greedy ratio o. Moreover, the bound is,
indirectly via o, dependent on all the parameters { f;} 2 |,
{0YE |, {B:}_, of MULTGREED. Theorem | generalizes
bound %(1 — e~ "f) (Conforti and Cornuejols, 1984) when

o = 1. By accounting for curvature, the bound -1 (1—e~"7)
s

itself generalizes the well-known result of 1 —1/e for LAZY-
GREED on Problem 1. Also, as an immediate corollary of

Fast Multi-Stage Submodular Maximization

Theorem 1, we obtain the theoretical guarantee for APPROX-
GREED in terms {f3; }{_,.

Lemma 2. Given a submodular function f with total cur-
vature r r, APPROXGREED(f, £, {3}¢_,) is guaranteed to
obtain a set Sy: (here 3 =1/ Ele Bi)

f(Se) 1 B ’s 1 —r;B
WZEO*O*?)E')ZE(I*B _ﬁ)
> (1_6_B)a

If the {B;}¢_, are setas 3; = c+ 7% with0 < ¢ < 1
(c.f. Section 2), we have B > % > % Hence, this choice
endows APPROXGREED with a solution having a factor no
worse than 1 — e~ /2 ~ 0.39.

The performance loss in MULTGREED comes from two
sources, namely the approximate greedy procedure and the
surrogate functions. To simplify our analysis, we henceforth
utilize only the exact greedy algorithm, (Vi,3; = 1). It
should be clear, however, that our results will immediately
generalize to the approximate greedy case as well.

The greedy ratio « is the harmonic mean of the values
{a;}¢_, that themselves can be partitioned into J blocks
based on the J stages of MULTGREED. For j = 1...J,

deﬁne Lj = Z;,=1 éj/, and let Ij = {Lj—l —+ 1, Lj—l —+
2,...,L;} be the set of ¢; indices for the jM block. Each
stage j provides a bound on the greedy ratio since a <
0> e ;1 /. As a particularly simple example, if the tar-
get function f itself were to be utilized as the surrogate in the
4™ stage for £ ; items, then each corresponding greedy ratio
has value a; = 1 leading to the bound o < ¢/¢;. Therefore,
from the perspective of this upper bound, one is afforded the
opportunity to design each stage semi-independently. On
the other hand, to achieve a given desired «, it is not pos-
sible to design the stages entirely independently since the
individual greedy ratios interact within the harmonic mean.

Generalization to knapsack constraint: Besides its flex-
ibility in giving theoretical analysis of MULTGREED, the
greedy ratio can work in a broader scenario. Consider a
more general formulation of Problem 1 as:

w25y 1O ®
where ¢(S) =) g c(v) with ¢(v) > 0 being the cost of
v € V and B is the budget constraint. Note many problems
in machine learning applications, including sensor place-
ment (Leskovec et al., 2007), document summarization (Lin
and Bilmes, 2011), social networks (Singer, 2012) and train-
ing data subset selection (Wei et al., 2013), are formulated
in this form. LAZYGREED for the cardinality constraint
can be slightly modified to an algorithm, which we call
knapsack greedy algorithm, to solve Problem 5 with factor
1(1 = e~1) (Krause and Guestrin, 2005b). Another variant
of the greedy algorithm (Sviridenko, 2004) that achieves
tight approximation factor (1 — e~1) is not considered here,

since its naive implementation requires O(n®) oracle access.
The knapsack greedy algorithm differs from LAZY GREED
in two aspects: (a) it, in each iteration, greedily selects
the element that maximizes the marginal gain normalized
by its cost, i.e., finding s; € argmax,cy\ g, , %
(b) it compares the final solution of the greedy algorithm
with the maximum singleton value with cost under the bud-
get constraint B, i.e., max.cv,c(e)<p f(e), and outputs the
maximum of the two. The multi-stage framework designed
to solve Problem 1 can be adapted to incorporate the above
two modifications and applied to Problem 5. Assume an
instance of the multi-stage procedure stops at iteration IV,
we denote the chain of items selected as {s1, ..., sy}, with

Si = {s1,...,8; fori = 1,...,N. We generalize the
definition of the individual greedy ratio as:
ul|S;_

- MmaXyeVv\S;_1 L cl(u) = 6

& = f(si]Si—1) ©)

c(si)

fort =1,..., N. And define the knapsack greedy ratio as

== N
N c(sy)
SHNED

where B’ = vazl c(s;). Tt is worth pointing out the previ-
ously defined greedy ratio is a special case of the knapsack
greedy ratio, where ¢(v) = 1 forv € V.

Theorem 2. Given a target submodular function f, an in-
stance of MULTGREED with knapsack greedy ratio « is
guaranteed to obtain a set S s.t.

(1— e =) (SO @®)

DN | =

f(8) =
where SOFT € argmaxgcy,q(s)<p f (9)-

Theorem 2 generalizes the approximation factor %(1 —e 1)
(Krause and Guestrin, 2005b) where the knapsack greedy
ratio is 1.

Generalization to submodular set cover problem:
Closely related to Problem 5, the submodular set cover
problem (Wolsey, 1982) is formulated as:

fo)2 T oy LS) ®

where f is a monotone submodular function and the same
as before, c(S) = > cgc(v) with ¢(v) > 0 being the
cost of item v. The same knapsack greedy algorithm solves
Problem 9 with log factor approximation guarantee (Wolsey,
1982). Therefore, the same multi-stage greedy framework
that solves Problem 5 can be carried over to solve Problem
9. Given the observation that Problem 5 and 9 are duals of
each other in that solution for one problem can be efficiently
transformed to a solution for the other with bi-criterion
approximation guarantee (Iyer and Bilmes, 2013), we obtain
the following result.

Fast Multi-Stage Submodular Maximization

Theorem 3. An instance of MULTGREED that solves Prob-
lem 5 with the knapsack greedy ratio o returns a solution
that can be transformed to a solution S for Problem 9 such
that

1
(]' —€ «)f(V)7

e(S) < ¢(S) and f(S) > (10)

DN | =

where SOFT € argmaxgcy, r(s)> f(v) ¢(9)

The solution only satisfies approximate feasibility to Prob-
lem 9. Theorem 3 shows that an instance of the multi-
stage knapsack greedy algorithm provides constant factor bi-
criterion approximation guarantee, although Problem 9 does
not admit any constant-factor approximation algorithms
(Feige, 1998).

4 Surrogate Functions

In this section, we investigate the interplay between the
greedy ratio and several choices of surrogate functions for
classes of submodular functions which appear often in prac-
tice. Since providing bounds on the performance of each
stage individually implies an upper bound on the greedy
ratio, we shall restrict ourselves to the analysis of the surro-
gate function at a given stage j, and the final performance
guarantee is easily obtained by combining the guarantees
for the different stages.

Uniform Submodular Mixtures: We first consider a
class of submodular functions that can be represented as

b

teT

(1)

where |7] > 1, and f; is monotone submodular V¢ € T.
We name this class uniform submodular mixtures as they
are similar to the submodular mixtures previously defined
in the context of learning (Lin and Bilmes, 2012). They
are also similar to the decomposable submodular functions
of (Stobbe and Krause, 2010) but without the requirement
that f;(.S) be a non-decreasing concave function composed
with a non-negative modular function. A number of natural
submodular functions belong to this class.

The complexity of evaluating f is determined both by | 7|
and the complexity of evaluating individual f;’s. Given such
an f, a natural class of random surrogates takes the form

> (S

€T’

fsub (12)

IT’\

where 7' C T, and 7" is generated by sampling individual
elements from 7 with probability p. As p decreases, so
does the complexity of evaluating fSUP but at the cost of
a worse approximation to f. Applying a random function
/59D derived in this way to MULTGREED, and assuming
|f:(S)| < B,Vt € T,S CV,we obtain:

Lemma 3. Using the surrogate uniform mixture fsub for
stage j in MULTGREED gives individual greedy ratios of

1)
1§a2§i,VZ€Ij,

(13)

_np(gH2e?

with probability 1 — 6, where 6 = (1 —5n‘e” o187) and
g = maXuEV\Sz—1 f(U‘S[_l) > 0.

Fixing §, a smaller value of probability p yields a higher
value of €, weakening the bound on each «;. Fixing both
d and e, increases in the ground set size n = |V/| could

yield a choice of surrogate function f sub having a smaller
sampling probability p and thus that is easier to evaluate.
More importantly, fixing § and p, € can be made arbitrarily
close to 0 for n sufficiently large, a result that is of great
interest for very large-scale problems. We shall use this
result to provide bounds for several instances of submodular
functions in Section 5

Modular Upper bounds: We next focus on a class of sur-
rogate functions applicable to general submodular functions.
Given a submodular function f, its simple modular upper
bound is given as
Fmod(s) =3~ f(s)

seS

(14)

For some submodular functions such as entropy (including
Gaussian entropy and the log det functions used for DPPs)

or mutual information, evaluating fM°4(S) is very easy,
while evaluating f(S) might sometimes even require com-
putation exponential in |.S|. Though extremely simple, this
class nevertheless can act as an efficient class of surrogate
functions especially useful when the target function is not

very curved. MO is not only easy to optimize exactly, but
it has previously been considered as a surrogate for various
other forms of submodular optimization curvaturesubmod-
ular, rkiyersemiframework2013, rishabh2013-submodular-
constraints, rkiyersubmodBregman2012. The curvature x ¢,
by definition, measures how close f is to being modular. If

a modular surrogate function med, for general submodular
function f, is applied within MULTGREED, we can thus
bound the individual greedy ratio via the curvature:

Lemma 4. Using the modular upper bound as a surrogate
function, it holds that

1<, < V’iEIj

1—rg(Si-1)’

Unsurprisingly, we see that the less curved the target func-
tion f is, the tighter bound on ;’s, and the better fMmod
performs as a surrogate. In particular, if f is modular, i.e.,
k¢ = 0, then, all individual greedy ratio a;’s are tightly
bounded as 1. Lemma 4 also implies that the bound of
the individual greedy ratio weakens as 7 increases, since

Fast Multi-Stage Submodular Maximization

T=r(s,) increases with ¢. Therefore, this modular proxy,

if applied, is best done in the first (or at most early) stages
of MULTGREED.

Graph based Submodular functions: We focus next on
a class of submodular functions based on an underlying
weighted graph and hence called graph-based. Many sub-
modular functions used in machine learning applications
belong to this class (Kolmogorov and Zabih, 2004; Wei
et al., 2013; Liu et al., 2013; Lin and Bilmes, 2011). These
functions require O(n?) time to compute and store, which
is not feasible for large n.

To form surrogates for the class of graph-based submodular
functions, a natural choice is to utilize spanning subgraphs
of the original graph. One choice is the k-nearest neighbor
graph (k-NNG), defined as the spanning subgraph formed
with each vertex v € V connected only to its £ most simi-
lar neighbors (under the similarity score given by the edge
weights). k-NNG has found great utilities in many machine
learning applications (Shah et al., 2011; Boiman et al., 2008).

We write fk'NNG as the surrogate function defined on a
k-NNG for a graph-based submodular function f. The spar-
sity of the k-NNG depends on the value of k. The denser the
graph (higher k), the costlier both the function evaluations
and the memory complexity becomes. In Section 5, sur-

prisingly we will show that f k'NNG, even for k as sparse
as O(logn), can be good enough for certain graph-based
functions.

5 Instantiations with Real World
Submodular functions

Given the previously defined machinery to analyze MULT-
GREED, we now focus on a broad range of submodular func-
tions that appear as models in real world applications, and
provide guidelines on how to design the surrogate functions
as well as how to choose the size constraints. We investigate
the following special cases: 1) the facility location function,
2) saturated coverage function, 3) feature based function, 4)
the set cover function. We focus on analyzing the theoretical
guarantees for these functions here and demonstrate the per-
formance of some of these empirically in the next section.

Facility location function: Given a weighted graph G =
(V, E), with w,, , the edge weight (i.e., similarity score)
between vertices u and v for u, v € V, the (uncapacitated)
facility location function is defined as

ffac = Z Igggwu,v- (15)
veV

Define w as k-NNG counterpart of w, i.e., w; ; = w; ; if j is
among the k nearest neighbor of ¢, and w; ; = 0, otherwise.
To establish that f}(a' CNNG, even with very sparse k, is a
good approximation of fg,., we rely on a key observation:
max;ecg w; j = MaX;cg W;,; holds if the set S contains at
least one item that is among the k£ nearest neighbor of .

Thus, showing that fflg CNNG(S) = [fac(S) is equivalent
as showing that the set S contains at least one item that
is among the k nearest neighbor of item ¢ for any ¢ € V.
Let’s denote w; = {w; 1,...,w; »} as the vector containing
the weights on all edges out of the vertex <. To this end,
we assume that the ranking of any item 5 € V among
the vector w; for any ¢ € V is uniformly distributed over
{1,2,...,n} and that the ranking of j in one weight vector
w; is independent of its ranking in another.

Lemma 5. For the facility location function, we have:
FRNNG(9) = fre(9),YS C Vst S| > m, (16)

with probability at least (1 — 0), and the sparsity of the
k-NNG being at least

0
n

k=n[l— ()" (17)

Assuming that m,n are in the same order and that 6 is

a constant, we have lim,, ., n[l — (%)Ti] = O(logn).

The Lemma implies that with high probability, fll’(a_ EING

and fg, . share the same function value for any sets of size
greater than some threshold m, where the £-NNG can be as
sparse as k = O(logn). Note that the result does not extend
to general graph-based submodular functions. However, the
class of facility location functions, for various applications,
suffice to provide superior performance (Wei et al., 2013;
Lin and Bilmes, 2009; Liu et al., 2013).

By Lemma 5, fg’ CNNG alone provides a good approxi-

mation for fg,.. It thus suffices, in this case, to apply a
single-stage greedy algorithm (MULTGREED with J = 1)

using fflfa' CNNG as the surrogate. As a concrete example,

consider an instance of the procedure with 6 = 0.05,
n = 105, k = 0.009n, and ¢/ = 0.1n. Then, Lemma 5
implies that with probability 95%, fE-NNG($) = fp. (S)
holds for any |S| > 0.00186n, giving an individual greedy
ratio of o; = 1 for 0.00186n < ¢ < 0.1n. The greedy
ratio o, defined as the harmonic mean of {«;}¢_,, is then
bounded as o < 1.02, which guarantees a solution in this
instance close to optimum, thanks to Theorem 1.

Saturated coverage function: Successfully applied in doc-
ument summarization (Lin and Bilmes, 2011), the saturated
coverage function is another subclass of graph-based sub-
modular functions, defined as

fsat(9) = Y- min{> wow, € wiu}, (18)

veV uesS ueV

where 0 < £ < 1 is a hyperparameter that determines the
saturation ratio. The class of uniform submodular mixtures
includes fga¢. In this case, we can construct a two-stage
oreedy algorithm, where the modular upper bound fmed

and a sampling based function f sub (with sampling proba-
bility p) are used as the two surrogates.

Fast Multi-Stage Submodular Maximization

Lemma 6. Given the saturated coverage function, an in-
stance of MULTGREED with the size constraints {1 =

ng — —
Lmj and l; = max{0,{ — {1} (where v =

maxu,v wu.'u

min(y,v)e B(G) Wu,v
itively weighted) yields a solution with the individual greedy
ratios

, assuming all extent graph edges are pos-

a; =1, fori=1,...,0
And with probability 1 — 6,
1 :
1<a; < T,forl:ﬁl—i—l...,f
—€

_nP(9£)252
where 6 = (1 — 5nte™ " 6482

max,ev\g, , f(u[Se—1) > 0.

) and g¢* =

A main intuition of this result, is that fga¢ is modular up to

set of size £1. Hence it makes sense to use f mod £ these
cases. Similarly for the second stage, it is reasonable to use
#5Ub with an appropriate p.

Feature based submodular function: Successfully ap-
plied in the speech data subset selection problem (Wei et al.,
2014a;b), the feature based submodular function has the
following form:

frea =2 9(cu(S)), (19)

ueF

where ¢ is concave in the form g(z) = z* for 0 < a < 1,
F is a set of “features”, and ¢, (S) = > cgcu(s) is a
non-negative modular score for feature u € F in set S,
with ¢, (v) measuring the degree to which item u possesses
feature u. Maximizing this objective naturally encourages
diversity and coverage of the features within the chosen set
of items. Again, ffea is a member of the class of uniform
submodular mixtures. The curvature of fg,, is governed by
the curvature of the concave function g and thus is deter-
mined by a. We can construct a two-stage procedure similar
to that for fgur, where we optimize over fM0d apd fsub
with a suitable choice of the sampling probability p.

Lemma 7. Given the feature based submodular function,
an instance of MULTGREED with the size constraints being
Uy and U5, yields a solution with the individual greedy ratio
bounded as:

1<a; <0G, fori=1,...,0

And with probability 1 — 9,
1 .
1<o; < 17,f0r1251+1...,£
—€

_np(g2e?
where 6 = (1 — b5nfe” ~ o182

max,ev\s,_, f(u[Se—1) > 0.

) and g¢* =

The lemma implies that with an appropriate choice of the

sampling probability p for f SUb, the performance loss in the
second stage could be negligible. However, there is some
performance loss introduced by the first stage, depending on
a and ¢;. The choices for /1 and ¢5 determine the tradeoff
between loss of the performance guarantee and the compu-
tational reduction: larger ¢; is chosen when computation is
critical or when g is less curved (larger values of a), while
larger /5 is chosen when algorithmic performance is the
priority or g is more curved (smaller values of a).

Set cover function: Another important class of submod-
ular functions is the set cover function. Given a set of
sets {A1,..., Ay}, the universe U = U,y A, and the
weights w : U — R, the set cover function is defined as:

fSC(S) = w(UvESA'U)a (20)

where w(A) = ., w(u) for A C U with w(u) being
the weight of item u € U. fgc is again a uniform submodu-
lar mixture since it can be equivalently written as

fse(8) = min{cy(S), 1}w(u), (21)

uelU

where ¢, (.S) denotes the number of times that item u € U
is covered by the set of sets {4, : v € S}. Thanks to
Lemma 3, a single-stage procedure where we optimize over
the sampling based surrogate f Sub with appropriate sam-
pling probability p, suffices to provide a good performance
guarantee along with a computational reduction.

Lemma 8. Given a set cover function fsc, such an instance
of MULTGREED with the size constraints being {1 = {
yields a solution with the individual greedy ratio bounded
as the following:

With probability 1 — 6,
1 .
1< < —— fori=1... ¢
1—e€

_np(gz)ze2
where & = (1 — bnfe” ™ e1m2

max,ev\s,_, f(u[Se—1) > 0.

and ¢¢ =

6 Experiments

We empirically test the performance of MULTGREED for
three of the submodular functions considered above. We
address the following questions: 1) how well does MULT-
GREED perform compared to LAZYGREED, 2) how much
relative time reduction can be achieved, 3) how well does
the greedy ratio perform as a quality measure, 4) how well
does the framework scale to massive data sets. We run ex-
periments on two scenarios: 1) simulations with medium
sized data, 2) real world speech data selection on millions
of ground elements.

Simulations: All simulations are performed on the same
data with size |V| = 20, 000, formed by randomly sampling

Fast Multi-Stage Submodular Maximization

Feature-based
Function

09%
0995 0994
o IJ
097 09% 09%
5 10 20 5 10 20 B 10 20

300 10

8
200

60 6

40 4
100

20 2

0 o 0

5 10 20 s 10 20
4
ol 3
%13

3 114

F12 i 2

$11

© 110 1
09 1.08

08 1.06 0

5 10 20 5 10 20

Cardinality Constraint (percentage of
ground set size)

Facility location Saturate Coverage

]

1000 0998

E

Valuation ratio:
Multi-stage / LazyGreed

Speedup:
LazyGreed / Multi-stage

Cardinality Constraint (percentage of
ground set size)

Cardinality Constraint (percentage
of ground set size)

mk=300 Wk=200 Wk=100 k=50 ™p=15% Mp=1% ®p=0.5% Mp=0.25% m0% W25% W50% MW75%

Figure 1. A comparison of the function values (top row), the run-
ning time (middle row), the greedy ratio (bottom row) between lazy
greedy and our multi-stage approach, under different choices of the
surrogate function for fg,. (left column), fsa¢ (middle column),
and ffe, (right column).

[[5% [10% [20% | all |

Averaged Random 38.2 | 35.1 | 344
Histogram-Entropy 37.6 | 342 | fail | 31.0
Multi-stage Submodular | 37.3 | 34.1 | 32.7

Table 1. Word error rates under averaged random, histogram-
entropy, and the multi-stage submodular chosen subsets at various
sized percentages (lower the better). Histogram-entropy result for
the 20% condition is not available due to its objective’s saturation
after 10%.

bl

from a large speech recognition training corpus (the “Fisher’
corpus). Each sample pair has a similarity score, and
the graph-based submodular functions fg,. and fga¢ are
instantiated using the corresponding similarity matrix. A
set of features F sized |F| ~ 75000 is derived from the
same data to instantiate ffs,. In all runs of MULTGREED,
we set {3; }¢_, using the schedule 3; = c+ @4){& with
¢ = 0.5. Performance of MULTGREED and LAZYGREED
is measured by the function valuations and the wall-clock
running time. The optional stage of pruning is performed
only for fga,, but not for ff,. fsat, since both f¢,. and fgat
are very curved functions, for which the pruning procedure
cannot effectively remove items.

For f,., use one stage with surrogates fk'NNG with
k € {50,100, 200,300}. MULTGREED gives about a 20-
80 times speedup over LAZYGREED with at least 99.8%
of the standard greedy solution (first column of Fig. 1).
For fqat, the saturation ratio ¢ is set as 0.25. Two stages

using surrogate functions fM°d and fSUb are applied,
under size constraints ¢; = Lﬁj = 0.05n, and

0y = £ — {1. We test f5UP with various sampling prob-

abilities: p € {0.25%,0.5%, 1%, 1.5%}. The results (2nd
column of Fig. 1) show a speedup of up to 250 with at least
99.25% the quality of LAZYGREED. Next, for ffea’ we
set g to be the square root function. Two stages of surro-
cates fMOd and FSUP are applied. f5UP is defined on a
randomly selected feature subset of size 37,500. We test
with different combinations of size constraints ¢; and /o
by setting ¢; € {0,0.25¢,0.5¢,0.75(} with {5 = £ — ¢;.
This gives about a 2-8 times speedup with at least 99.3% of
LAZYGREED quality (right column of Fig 1). Empirically,
the greedy ratio is very tight since it is always close to 1.
For most cases, it is a good indicator of the performance for
function valuations, since lower values of o always lead to
higher performance of MULTGREED. For f,. and fgat, the
speedup reported does not include the potentially significant
additional complexity reduction on graph-construction. Es-
pecially for fg,., efficient algorithms exist for fast (approxi-
mate) construction of the k-NNG (Beygelzimer et al., 2006).

Speech Data Subset Selection: We next test the per-
formance of MULTGREED on a very large-scale problem,
where running even LAZYGREED is infeasible. We ad-
dress the problem of speech data subset selection (King
et al., 2005; Lin and Bilmes, 2009; Wei et al., 2013): given
a massive (speech) data set for training automatic speech
recognition (ASR) systems, we wish to select a representa-
tive subset that fits a given budget (measured in total time)
and train a system only on the subset. The intended benefit
is to significantly shorten ASR system development time,
which is then only done on the representative subset of the
data. Problem 5 addresses this where the objective is the
facility location function ff,., and the pair-wise similar-
ity between speech samples is computed by kernels (Wei
et al., 2013). We subselect 1300 hours of conversational En-
glish telephone data from the “Switchboard”, “Switchboard
Cellular”, and “Fisher” corpora, which, in total, comprises
1,322,108 segments of speech (i.e., |[V| =n = 1,322,018).
The estimated running time of LAZYGREED with fg,. on
such large data is at least a week. Rendering the full O(n?)
similarity matrix is even more impractical due to memory re-
quirements. We here test MULTGREED using ffl‘;' CNNG with
the sparsity of k-NNG set as k = 1,000. MULTGREED,
then, runs in only a few minutes, yielding a speedup of
more than a thousand over LAZYGREED! We measure the
performance of the selection by the word error rate (WER)
of the ASR system trained on the corresponding selected
subset of the data. We test on different budget constraints
(5%, 10% and 20% of the whole speech data). We compare
our selection against two baseline selection methods: (1)
averaged random method, where we randomly sample the
data set at appropriate sizes, train different ASR systems
for each set, and average their WER; (2) a non-submodular
“histogram-entropy” based method, described in (Wu et al.,
2007). Table 1 illustrates that our framework yields consis-
tently superior results to these baselines.

Fast Multi-Stage Submodular Maximization

7 Discussion

Certain other domains may be applicable to the analy-
sis introduced in this paper. In the case of feature se-
lection, for example, one may wish to optimize the mu-
tual information function f,,; = I(Xs;C) which either
is not submodular, or can become submodular by assum-
ing that the random variables Xy, are independent given
C' (Krause and Guestrin, 2005a). In either case, how-
ever, the complexity of evaluating fi,); can be daunting,
leading to previous work suggesting a tractable surrogate
Tmi(S) = > pes I(Xy; C) = A vaues I(X,; X,,), where
A is a hyperparameter (Peng et al., 2005). Under certain
assumptions, this surrogate is in fact equivalent to the origi-
nal (Balagani and Phoha, 2010). Unnoticed by these authors,
however, this function is submodular and non-monotone.
We plan in the future to extend our framework to addition-
ally handle such functions.

We would also like to extend these ideas to other submodular
optimization scenarios, like submodular minimization (Fu-
jishige and Isotani, 2011; Iyer et al., 2013a;b), and the
class of optimization problems involving submodular con-
straints (Iyer and Bilmes, 2013) (which includes the submod-
ular set cover, the submodular cost submodular set cover,
and the submodular cost submodular knapsack). While
many of the algorithms for these problems use proxy func-
tions as surrogates, they often choose generic functions as
proxies to obtain theoretical guarantees. It will be interesting
to see if an intelligent design of surrogate functions, could
yield better theoretical guarantees for real world problems.
Acknowledgments: We thank Shengjie Wang and Wenruo
Bai for discussions. This work is partially supported by the
Intelligence Advanced Research Projects Activity (IARPA)
under agreement number FA8650-12-2-7263, the National
Science Foundation under Grant No. IIS-1162606, and by a
Google, a Microsoft, and an Intel research award.

References

A. Badanidiyuru and J. Vondrdk. Fast algorithms for maximizing
submodular functions. In SODA, 2014.

K. S. Balagani and V. V. Phoha. On the feature selection crite-
rion based on an approximation of multidimensional mutual
information. PAMI, IEEE Transactions, 2010.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for
nearest neighbor. In ICML, 2006.

O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-
neighbor based image classification. In CVPR, 2008.

F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in Map-
Reduce. In WWW, 2010.

M. Conforti and G. Cornuejols. Submodular set functions, ma-
troids and the greedy algorithm: tight worst-case bounds and
some generalizations of the Rado-Edmonds theorem. Discrete
Applied Mathematics, 1984.

U. Feige. A threshold of In n for approximating set cover. JACM,
1998.

S. Fujishige. Submodular functions and optimization, volume 58.
Elsevier Science, 2005.

S. Fujishige and S. Isotani. A submodular function minimization
algorithm based on the minimum-norm base. Pacific Journal of
Optimization, 7:3-17, 2011.

R.Iyer and J. Bilmes. Algorithms for approximate minimization of
the difference between submodular functions, with applications.
In UAI 2012.

R. Iyer and J. Bilmes. Submodular optimization with submodular
cover and submodular knapsack constraints. In NIPS, 2013.

R. Iyer, S. Jegelka, and J. Bilmes. Curvature and Optimal Al-
gorithms for Learning and Minimizing Submodular Functions.
NIPS, 2013a.

R. Iyer, S. Jegelka, and J. Bilmes. Fast semidifferential based
submodular function optimization. In /CML, 2013b.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In KDD, 2003.

S. King, C. Bartels, and J. Bilmes. SVitchboard 1: Small vocab-
ulary tasks from switchboard 1. In European Conf. on Speech
Communication and Technology (Eurospeech), Lisbon, Portu-
gal, September 2005.

V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? IEEE TPAMI, 26(2):147-159, 2004.

A. Krause and C. Guestrin. Near-optimal nonmyopic value of
information in graphical models. In UAZ, 2005a.

A. Krause and C. Guestrin. A note on the budgeted
maximization of submodular functions, 2005b. URL
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.130.3314.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and
empirical studies. JMLR, 9:235-284, 2008.

A. Kulesza and B. Taskar. Determinantal point processes for ma-
chine learning. Foundations and Trends in Machine Learning,
5(2-3):123-286, 2012.

R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast greedy
algorithms in mapreduce and streaming. In SPAA, 2013.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance. Cost-effective outbreak detection in networks.
In SIGKDD, 2007.

H. Lin and J. Bilmes. How to select a good training-data subset
for transcription: Submodular active selection for sequences. In
Interspeech, 2009.

H. Lin and J. Bilmes. A class of submodular functions for docu-
ment summarization. In ACL, 2011.

H. Lin and J. Bilmes. Learning mixtures of submodular shells with
application to document summarization. In UAZ, 2012.

Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes. Submodular
feature selection for high-dimensional acoustic score spaces. In
ICASSP, 2013.

M. Minoux. Accelerated greedy algorithms for maximizing sub-
modular set functions. Optimization Techniques, 1978.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.3314
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.3314

Fast Multi-Stage Submodular Maximization

B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Dis-
tributed submodular maximization: Identifying representative
elements in massive data. In NIPS, 2013.

G. Nemhauser and L. Wolsey. Best algorithms for approximating
the maximum of a submodular set function. Mathematics of
Operations Research, 3(3):177-188, 1978.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approxi-
mations for maximizing submodular set functions—i. Mathe-
matical Programming, (1), 1978.

H. Peng, F. Long, and C. Ding. Feature selection based on mutual
information criteria of max-dependency, max-relevance, and
min-redundancy. PAMI, IEEE Transactions, 2005.

R. Shah, R. Iyer, and S. Chaudhuri. Object mining for large video
data. Proc. BMVC, 22(10):761-767, 2011.

Y. Singer. How to win friends and influence people, truthfully:
influence maximization mechanisms for social networks. In
WSDM. ACM, 2012.

P. Stobbe and A. Krause. Efficient minimization of decomposable
submodular functions. In NIPS, 2010.

M. Sviridenko. A note on maximizing a submodular set function
subject to a knapsack constraint. Operations Research Letters,
32(1):41-43, 2004.

K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Using document
summarization techniques for speech data subset selection. In
NAACL/HLT, 2013.

K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and J. Bilmes. Submod-
ular subset selection for large-scale speech training data. In
ICASSP, 2014a.

K. Wei, Y. Liu, K. Kirchhoff, and J. Bilmes. Unsupervised sub-
modular subset selection for speech data. In ICASSP, 2014b.

L. A. Wolsey. An analysis of the greedy algorithm for the sub-
modular set covering problem. Combinatorica, 2(4):385-393,
1982.

Y. Wu, R. Zhang, and A. Rudnicky. Data selection for speech
recognition. In ASRU, 2007.

Appendix
Proof of Lemma 1

Proof. Let s1,..., s, be the sequence of items selected by
an instance of the LAZYGREED. We denote that S; =
{s1,...,8;},such that S; C Sy C --- C S;. Consider the
sequence of items {uy, ..., u,} ordered non-increasingly
in terms of their gain conditioned on all other items, i.e.,
flwlV\wu1) > -+ > f(up|V \ up). Without loss of
generality, we assume that Sy # {u1,...,us}, otherwise,
the Lemma follows trivially. Next, we show the following:

F(s4lSiz1) > flug|lV \wy),Vi=1,...,L. (22)

‘We consider two cases:

(D u; ¢ S;—q

Consider the following:

F(si]Si-1) = max f(v]S;-1)

> f(uilSi-1)
> fluilV \ u;)

(2) u; € Si—1

Since S;_1 is of size i — 1 and contains an item wu;, S;_1
cannot include all items in the set {uq,...,u;—1}. There-
fore, there exists an index ¢ < i — 1 such that u; ¢ S;_1.
We have the following:

f(silSi—1) = I&a‘;(f(v\siq)

> fug]Si—1)
> flug|V \ ut)
> fwi|V\ uy)

Foritems j € V'\ V, the singleton gain can be bounded as
the following:

) < fue|V \we) < f(se]Se-1)

The singleton gain of the items in the removed data set is
strictly less than smallest the marginal gain of the selected
item by the greedy algorithm, hence, it is guaranteed that
the greedy selection does not pick items from V' \ V, hence
the pruning procedure does not affect the performance of
the standard greedy procedure. O

Proof of Theorem 1

Proof. We employ similar proof techniques from (Conforti
and Cornuejols, 1984), where they show the curvature de-
pendent bound for Problem 1. We generalize their results
by introducing the greedy ratio in the bound.

To prove the theorem, we need the following two Lemmas.

Lemma 9.
n
1 1
[[a-—)<a-=)n (23)
i=1 i Th
where x; > 1,Yv = 1,...,n, and Xy, is harmonic mean of
x;’s, e, Tp = =w——T

L
i=1 z;

Proof. Consider the fact that geometric mean of any non-
negative vector lower bounds arithmetic mean of the same
vector, namely,

n

(II=0"" < L"Zl = 24)
i=1

Fast Multi-Stage Submodular Maximization

where z; > 0, Vi.
Letz; =1— zi where x; > 1, we have

(H(l _ i))l/n < M (25)

xX; n

Then,
_ 1
H(l _ i) < (w)n (26)

Rearrange the term in the R.H.S,

no(1-— L no1
Zz_l(zl) —1_ Zz_l x5 (27)
n n
1
=1- - (28)
n 1
i=1 x;
1
=1-—= (29)
Zp
O
Lemma 10. Fort=20,...,¢—1,
Yoo ST AR Y flslSTHH

i:s; EStNSOPT 115, €S\ ST

a1 (0= 18T N SOPT)) f(s041]5") > F(SOFT),
where St = {s1,...,s;}, {is the size constraint, Ky is the

total curvature of f, and «; is the individual greedy ratio
for iteration i.

Proof. By submodularity and definition of the greedy ratio,
we have the following inequality:

FSPTUSH) < F(SH+ D f(ulSh) (30)
u€ SOPT\ St

SICOREEDY

u€SOPT\ St

g1 f(se41]5")

3D

= f(8") + 18U\ 8" |a 1 f(s14115")
(32)

By the definition of curvature, we have
f(SOPT U St (33)
=fSN+ D> f(lSTTTuST) 34
1:5; €S\ SOPT

> fSN + (1 —ks) >

1:5; €S\ SOPT

f(si]S™h (35)

Combining inequalities 32 and 35, we can get the following
bound:

FSON) +(L=rp) Y
i:5, €S\ SOPT
< f(SY) + 1SN\ S arg1 f(se41]S°)

FsilS™™)

Then,
FSPN+ A —rp) >
izs; €S\ SOPT

<Y fslST + (€= 8T N ST N f 141|957

s; €St

FlsilS™)

O

Consider the family F 4 . of all instances of Problem 1. For
notation simplicity we write 7 = F 4 .. Given a problem
instance, we assume that the multi-stage greedy algorithm
MULTGREED returns a subset S* and |S* N SOFT| = m.
ForO0<m </ letl <i1 <ig <,...,< iy, <{bea
sequence of integers such that S* = {s;,s2,...,s,} has the
elements s;,,...,s;, incommon with the optimal solution
SOPT Note that when m = 0, the set of common elertpents
f(8)

is empty. By Lemma 10, it’s easy to verify that F(S0PTy >

B(i1,...,im), where B(i1,...,4n) is the solution to the
following optimization problem:
min 1%p (36)
Pl;--5P2
subject to pi >0,i=1,...¢ (37)

Note the matrix A(iy,...,%,,) is defined the same as the
matrix used in the proof of Lemma 5.1 in (Conforti and
Cornuejols, 1984), except that we have all the diagonal
entries of the matrix scaled by «; for each i. Since the
matrix A(iq,...,%y,) is full rank, the polyhedron given
by A(i1,...,im)p > 1 has only one vertex, and solving
A(i1, ..., 1m)p = 1 yields the vertex p* > 0. Note that the
optimum of an LP can always be obtained at a vertex,the
only feasible vertex p* is guaranteed to be among the opti-
mum. Therefore p* is also the solution to the linear program.

. . ¢

Hence, B(i1,...,%m) = Y ;1 P;-

Next,we are going to show that B(iy,...,i,) > B(0).
We start with the case where mm = 1, and assume that

S4N SOPT = {s,},1 < p < £. We denote the solution
to the problem B(p) as p’, and the solution to B(f)) as p.
Solving for p and p’ yields the following:

JENE SRV RY | (RS
Pr (£ —1ay Loy, i Loy
-1 i—1
, 1 1.5 K K
d=—t - Ja-- [T a
(£ -1y Eap)jzl(Lo j:p:l((£ —1a;

fori=p+1,....¢

Fast Multi-Stage Submodular Maximization

To show that B(p) > B ((Z)) it suffices to show that p; < p}
for any ¢, equlvalently - < 1. Consider the following for

i=p,..., L
K 7—1 K
pi 5—11_EH 1 -7
b (39)
/ 1 _ K
W et (=)
18 Lo
<——+] £ (40)
— 1 K
Cl-g,ont-ma
(-5 -1
< - 41)
(1_“_1))2_2
<1 (42)

. . . J
The first inequality follows since —fe—
T—1Da

non-increasing with «, hence, its maximum is attained when
a = 1. The last inequality follows from the fact that (1 —
%)1_1’ where k € [0, 1], is monotonically non-increasing
when = > 1. We have shown that p; < p} for any ¢, hence,
B(0) < B(p). We are going to show that B(i1, ..., %;,) >
B(0) by induction. It’s already proved that it holds when
m = 1. Suppose B(i1,...,i;) > B(0) holds, we wish

is monotonically

to show the following: B(i1,...,%q,%q+1) > B(i1,...,14)
for any ig41 ¢ {i1,..., z%} We denote the solution to
problem B(i1,...,1q) as p”<, and the solution to problem
B(i1,...,i4+1) as pPa+1. 1t’s easy to see that p?q“ = p?q,
fori =1,...,%41. Letr =ig4q, thenfori =r+1,...,74,
we have the following:
By, 1 (1 i—1
Pi (g H ~ U=y Q)ag
Bor: 1
pi " mena LT s) intab} e (rsyron
(43)
11— 1
< 4 q 1 ‘= 11(Z;L])1—1—7' (44)
{—q 1—— L= ==
(1 /nq)i 1— 1
< Y v (45)
(1 m)é q—2
<1 (46)
Therefore, we have pf“ < pf““ for all ¢, thus
B(ilv" '7iq) < B(Zlv '7iq+1)'

Then, we have the following:

£(89

Frgorm) 2 Bl i)
B(0)
1 ¢ K
—a-Tla-)
> (1-eh)

where « is the harmonic mean of «;’s.

To show that the approximation factor is tight. We only show
for the case where x = 1. Results could be generalized for
any value of k.

We use the similar tight instance construction as in
(Nemhauser and Wolsey, 1978), where they show a class of
instances of the greedy algorithm that achieves the approxi-
mate factor (1—(1—%)). In this case, we are going to show
an instance of MULTGREED that achieves the approximate
factor (1 — (1 — 2£)%), where o is the greedy ratio of this
instance of MULTGREED. To this end, let’s define a family
of submodular functions that provide worst-case examples
over all possible @ > 1 and ¢. The («, £)th subfamily is
specified by function g . Notice that g is a set function on
a ground set V' of cardinality n. For notation simplicity, we
drop the dependency on 7 in the set function g, although
there is a different function for each n. We will show how
to construct a submodular function for a combination of
n, a, £, on which MULTGREED achieves the approximation
factor (1 — (1 — 2,)).

Consider ground set V' = {1,2,...,n} that contains two
types of elements special and plain. The subset M, with
|M| = ¢, is the set of special elements and V' \ M is the
set of plain elements. Value of g’,(5),S C V, depends
only on |S|,|S N M|, and £. For this reason, we write
gL(S) = gh(1S N M1,IS]) = g4(i,), where i — |5 1
M| and j = |S|,i = 0,...,min(j,¢),5 = 0,...,n. Let
g',(i, j) for general £, o, i, j be defined as following:

1 ..
9a(0,) == (1= —)),0<j<n @D
o o L—gb(0,5 —i
96(i:3) = 94 (0,5 — i) + z%, (48)
forl<i</{i<j<mn; (49)

The fact that g*, is monotone submodular is proved by te-
dious enumeration of the definition of submodularity and
monotonicity case by case. We leave out the proof here and
defer readers to (Nemhauser and Wolsey, 1978) for detail.
Consider an instance of MULTGREED performed on gfy,
that only choose items from V' \ M. Then, the greedy ratio
would be:

) ¢ N .
Q; = max f(ulSi-1) _ 95(1,4) — g5,(0,i — 1) .

weV f(s4]Si—1) g5(0,4) — g5(0,i —1)
(50)

Hence, the harmonic mean of «;’s is equal to . Output
subset of MULTGREED is a subset of V'\ M with cardinality
¢, thus has function value g (0, ¢) = ¢(1—(1—2,)%), while
optimal subset that maximizes submodular function f under
cardinality constraint ¢ should be M and has function value
g' (M) = g-(¢,¢) = £. Approximation factor becomes

0.0 _
ston = 1= (1= 59"

the greedy ratio « is tight. O

Therefore, the bound in terms of

Fast Multi-Stage Submodular Maximization

Proof of Theorem 2

Proof. Following the similar proof techniques from
(Nemhauser et al., 1978) along with the definition of the
knapsack greedy ratio in Eqn 6, we have the following:

f(SOPT) < ﬁf(SASL_l) + f(Si—1)7Vi =1....N

— c(si)
61V
Rearrange the inequality, we get the following:

c(si)

FSOPTy — f(S;) < (1 - B

)(f(SOT) = £(Si-1))

holds for i = 1, ..., N. Then, we can obtain the following:

c(si)

()

N
fsw) = (- T[0 -

i=1

By definition of the knapsack greedy ratio in Eqn 7 and
Lemma 9, we obtain the following:

F(Sn) = (1 (1~ ag'NWﬁ(SO"T)

(1 e~ H2) ()
(1—e %) f(SO°T)

>
>

Since S}y is not a feasible solution to Problem 5, but Sy _1
is. The knapsack greedy algorithm compares the solution
between S _1 and the maximum single value f(v*), where
v* € argmax,cy..(,)<p f(u), and outputs the maximum
of the two. Then, we can bound the output solution as
follows:

max{f(v*), f(Sn-1)} > s (f(v") + f(Sn-1))
(f(sn) + f(Sn-1))

>

>

=
»
z

=) f(5°T)

>

NI RN RN~ N =
—

—

|

®

|

Q

Proof of Theorem3

This Theorem immediately follows from Theorem 2 and
Theorem 3.1 of (Iyer and Bilmes, 2013).

Proof of Lemma 3

Proof. We employ methods that are similarly presented in
(Mirzasoleiman et al., 2013), where they show the theoreti-

cal guarantee of applying f Sub a5 a surrogate function for
the class of decomposable submodular functions. For nota-

tion simplicity, we write f sub 4 f . We denote the ground

set size to be |[V| = n. The expected size of the subset
T’ C T is np. We are going to show that f is close to the
target function f for all possible subset S of size |S| < ¢
with high probability, where / is the size constraint of the
selection. Given a fixed S C V, we can treat all f;(.S)’s as
independent random variables and, by assumption, they are
bounded as 0 < f;(S) < B.

By Chernoff bound, we can bound the probability Pr(|7”| <
%np) < e 7. By the Hoeffding inequality, we can

~ 77/52
bound the probability Pr(|f(S) — u| > €) < 2¢ 5% and

A n 62
Pr(|f(S) —p| > €) < 2e” 52, where 4 is the mean of the
random variable f;(S) for any 1.

By union bound, we have the following for € being small
2

such that 5 < 1.
£ ne2 npe? "
Pr(|f(S) — f(S)| < 2€) > 1 -2 5% —2¢” 57 — e F
n 62
>1—5e B2

There are in total n’ sets of size less or equal to £. By the
union bound again, we can have the following:

71p€2

Pr(|f(S) — f(S)] < 26,¥S C V,|S| <) > 1—5nfe” 52
(52)

Notice that this bound is meaningful only when 1 —

_npe? . . .
5nfe” 52 > 0, in other words, we can obtain meaningful
theoretical guarantee when the ground set size n is suffi-
ciently large.

Now, we can analyze the performance guarantee in terms of
the greedy ratio. Continuing from the results in the inequal-
ity 52, we have that

[FGIS\5) = FGIS\ J)I < 4e
for any j € V, and |S| < ¢, with probability (1 —

5nle” BT). Let the gain in the last iteration of the greedy
algorithm to be g, and assume that g > 0. Let ¢; be the
item that attains the maximum marginal gain by applying the
target function f and s; be the item selected by the surrogate

function f for iteration 7, then we have the following

o, = JWilSi1) - f(tilSi1) f(tiSi—1)
Y filSicn) T f(silSic1) —de T f(ti]Sio1) — 4e
flsiy 1 |

= f(ti]Sic1) — 8¢ 17572 T1-¢

8¢

where € = o To formalize the result in terms of the
G

greedy ratio, we can claim that with probability (1 —
np(gg)2e’?
5ne” " e4527), we can bound the greedy ratio in each

iteration as a; < ﬁ O

Fast Multi-Stage Submodular Maximization

Proof of Lemma 4

Proof. Let t; be the item with maximum marginal gain in
iteration i, i.e., t; € argmax, oy f(u|S;—1) By definition
of the greedy ratio, we have the following:

o — f(tiSi—1) < () £(si)
" f(silSic1) T f(silSic1) T f(silSic1)
1
STm G

The second inequality follows from that fact that s; is the
item greedily selected by the modular proxy f mod, there-
fore f(s;) = max,cy\g,_, f(u) > f(t;). The last inequal-
ity follows from the definition of the curvature. O

Proof of Lemma 5

Proof. Let 12_;2 be the ith row vector obtained from the k-
NNG approximation from the full graph. Then, 121_’,- is the
approximate vector for w; with only k largest values re-
tained. The key observation for the facility location function

is that fg,.(S) = fk NNG(S), if the set S contains items
that are among the top k values of the row vector w; for

all 4, since max;cg W;(j) = maxjcg wl(), if S contains
items that are among the top & values of ;.

For notation simplicity, we write f for f%(a' CNNG and f for
ffac- For any item ¢ € V, we have the probability of w; ;
not being among the top k elements of the row vector w; as
== k , given the uniform distribution assumption.

By the independence assumption, the probability, for which
a set S, of size m contain at least one item among the top
k elements for each row vector, can be then computed as

1= ().
Let the probability that S,,, covers among the top k elements
of all row vectors be 1 — . Then, we have the following:
n—=k
n

[1—(

Simplify the equation, we can get the following:

) =10

k=n[l—(1-(1-0)")"] (53)

~nl—(1—e)] (54)
0,1

mnfl = ()] (55)

The first approximation follows since (1 — 6)% ~ e, for
6 being close to 0. The second approximation follows from
thate n ~ 1 — ¢, with —% =~ 0. O

Proof of Lemma 6

Proof. The bound of the individual greedy ratio «;’s for
i =4{1+1,..., /¢ can be immediately derived from Lemma 3.

Therefore, it is left to show that o; = 1 fori = 1,..., /¢4,
which, by Lemma 4, is equivalently as to show that . ¢(.S) =
0 for < {;. For notation simplicity, we write fga¢ as
f. To show that kz(S) = 0, we can equivalently show that

f(8) =>_;eq (j) forany S of size |S| < L(l_gﬁj
Consider the following for any S C V such that |S| <

ng .
L(1—5)"H-§J'
2 jes Wi _ 2 jes Wi
Djev Wiy DjesWij T 2jev\s Wi
|S|pmax
o |S|pmax + (Tl - ‘Smein
_ S|y
ISy + (n—[S])
1
<
1 + 7}15 - n,lg
Ta—9~+e A—8&)~T¢E
=¢

Without loss of generality, we can assume that all w; ; > 0
for any ;7 € S and a given ¢, since the above holds as
well for " = {j € S|lw;; > 0,Vi}. Therefore, we have
that Y-, gw;j < &) ey wij for all i. From which, we

conclude that k¢(S) = 0, for any |S| < | O

T6e)

Proof of Lemma 7

Proof. The bound of the individual greedy ratio «;’s for
i =401+1,...,¢canbe immediately derived from Lemma 3.
Therefore, it is left to show that a; < O(i'™?) for

i = 1,...,¢;. For notation simplicity, we write ffo, as
J. Let pmin = miyer vevic, (v)>0 cu(v) and pmax =
maxyervev Cu(v). It suffices to show the following:

1
R ey o ey (e y e

where v = ’;“#. It is easy to verify that

1
1+ =1)y)e = (i =1)y)*

given ~ is a constant. Let ¢; denote the item with
maximum marginal gain in iteration ¢, i.e., t; €
argmax,cy\g, , f(u[Si—1), and s; denote the item se-

lected by using the modular proxy M4, Consider the
following:

=0(i'"")

o = AUilSi) o f(t) f(si)
Y f(silSicn) T f(silSic1) T f(silSica)
_ Zfe]_-[cf(si)}“
Ygerler(si) +ep(Sim)]* = [ep(Sim1)]®

< Zfe]-‘[cf(si)]a
B Zfe]—'[cf(si) + (7’ - 1)pmax]a -

[(Z - 1)pmax]u

Fast Multi-Stage Submodular Maximization

Let’s consider the following function:

Z?:l(xi)a

Mar,. o) = s 0= e —

(56)

where C is a constant. The function A is symmetric about
all its variables x1, ..., x,. Notice that the function k() is
not convex or concave in its variables. However, we still
want to maximize the function over the vector x within the
range [Pmin, Pmax| €lement-wisely. First, we easily see that
h evaluated at 1 = 25 = - - - = x,, ranges in (1, c0).

To maximize the function h, we can simply maximize the
function h over the subspace where z; = - -+ = x,,, since
the maximum of h can be achieved in the subspace z; =

-+ = x,. To maximize h, we can equivalently maximize

ﬁ fOI' HASS [pmin) pmax]
to verify that the maximum is attained at * = ppin. Moving

back to upper bounding the greedy ratio at the <th iteration,
we can get the following

the function , and it’s easy

. p?nin
i = [Pmin + (7 = 1) pmax]® — [(i — 1) pmax]®
1
[+ (=1 =@ — 1)y

Proof of Lemma 8

Proof. This Lemma immediately follows from Lemma 3.
O

	Introduction
	Multi-Stage Algorithmic Framework
	Analysis
	Surrogate Functions
	Instantiations with Real World Submodular functions
	Experiments
	Discussion

