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Abstract
Many learning situations involve learning the
conditional distribution ppy|xq when the training
instances are drawn from the training distribu-
tion ptrpxq, even though it will later be used to
predict for instances drawn from a different test
distribution ptepxq. Most current approaches fo-
cus on learning how to reweigh the training ex-
amples, to make them resemble the test distribu-
tion. However, reweighing does not always help,
because (we show that) the test error also de-
pends on the correctness of the underlying model
class. This paper analyses this situation by view-
ing the problem of learning under changing dis-
tributions as a game between a learner and an ad-
versary. We characterize when such reweighing
is needed, and also provide an algorithm, robust
covariate shift adjustment (RCSA), that provides
relevant weights. Our empirical studies, on UCI
datasets and a real-world cancer prognostic pre-
diction dataset, show that our analysis applies,
and that our RCSA works effectively.

1. Introduction
Traditional machine learning often explicitly or implicitly
assumes that the data used for training a model come from
the same distribution as that of the test data. However, this
assumption is violated in many real-world applications. For
example, biostatisticians often try to collect a large and di-
verse training set, perhaps for building prognostic predic-
tors for patients with different diseases. When clinicians
deploy these predictors, they do not know whether the lo-
cal test patient population will be even close to that training
population. Sometimes we can collect a small sample from
the target test population, but in most cases we have noth-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

ing more than weak prior knowledge about how the test
distribution may shift, such as anticipated changes in gen-
der ratio or age distribution. It is useful to build predictors
that are robust against such changes in test distributions.

In this work, we investigate the problem of distribu-
tion change under covariate shift assumption (Shimodaira,
2000), in which both training and test distributions share
the same conditional distribution ppy|xq, while their
marginal distributions, ptrpxq and ptepxq, are different. To
correct the shifted distribution, major efforts have been
dedicated to importance reweighing (Quionero-Candela
et al., 2009; Sugiyama & Kawanabe, 2012). However,
reweighing methods will not necessarily improve the per-
formance in test set, as prediction accuracy under covariate
shift is also dependent on model misspecification (White,
1981). Fig. 1 shows three examples of misspecified mod-
els, where we are considering the model class of straight
lines of the form y“ax`b, for xPr´1.5, 2.5s. In Fig. 1(a),
no straight line is a good fit for the cubic curve across
the whole interval, but Model 2 fits the curve reasonably
well in the small interval r´0.5, 0.5s. If training data is
spread all over r´1.5, 2.5s while test data concentrates on
r´0.5, 0.5s, improvement via reweighing could be signif-
icant. The situation in Fig. 1(b) is different: although the
true model is a curve and not a straight line, the best linear
fit is no more than ε away from the value of the true model.
In this case, no matter what test distributions we see in the
interval r´1.5, 2.5s, the regression loss of the best linear
model will never be more than ε from the Bayes optimal
loss. In Fig. 1(c), the true model is a straight line except at
x “ 0; perhaps this outlier is a cancer patient whose tumour
spontaneously disappeared on its own. Unless the test dis-
tribution concentrates most of its mass at x “ 0, the straight
line fit learned from the training data over the interval will
still be a very good predictor. Sometimes we can rule out
this type of covariate shift through prior knowledge. If such
outliers are extremely rare during training time, we would
not expect the test population to have many such patients.
Reweighing will not help much in cases 1(b) and 1(c).
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(a) Large misspecification.
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(b) Small misspecification.
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(c) Single point misspecification.

Figure 1. Three different scenarios of model misspecifications.

In this paper, we relate covariate shift to model misspecifi-
cation and investigate when reweighing can help a learner
deal with covariate shift. We introduce a game between a
learner and an adversary that performs robust learning. The
learner chooses a model θ from a set Θ to minimize the
loss, while the adversary chooses a reweighing function α
from a set A to create new test distributions to maximize the
loss. There are two major contributions in this paper: First,
we provide an improved understanding of the relation be-
tween covariate shift and model misspecification through
this game analysis. If the learner can find a θ that min-
imizes the loss against any possible α that the adversary
can play, then it is not necessary to perform reweighing
against covariate shift scenarios represented by A. Sec-
ond, we provide a systematic method for checking a model
class Θ against different covariate shift scenarios, such as
changing gender ratio and age distributions in the prognos-
tic predictor example, to help user decide whether impor-
tance reweighing would be beneficial.

For practical use, our method can be used to decide if the
model class is sufficient against shifts that are close to a test
sample; or robust against a known range of potential shifts
if test sample is unavailable. If the model class is insuffi-
cient, we can consider different ways to deal with covariate
shifts, such as reweighing using unlabelled test samples, or
exploring a different model class for the problem.

2. Related Work
Our work is inspired by Grünwald & Dawid (2004), who
interpret maximum entropy as a game between an adver-
sary and a learner on minimizing the worst case expected
log loss. Teo et al. (2008) and Globerson & Roweis (2006)
also consider an adversarial scenario under changing test
set conditions, but they are concerned with corruption or
deletion of features rather than covariate shift.

Many results on covariate shift correction involve density
ratio estimation. Shimodaira (2000) showed that, given co-
variate shift and model misspecification, reweighing each
instance with ptepxq{ptrpxq is asymptotically optimal for

log-likelihood estimation, where ptrpxq and ptepxq are as-
sumed to be known or estimated in advance. Sugiyama
& Müller (2005) extended this work by proposing an
(almost) unbiased estimator for L2 generalization error.
There are several works focusing on minimizing differ-
ent types of divergence between distributions in the liter-
ature (Kanamori et al., 2008; Sugiyama et al., 2008; Ya-
mada et al., 2011). Kernel mean matching (KMM) (Huang
et al., 2007) reweighs instances to match means in a
RKHS (Schölkopf & Smola, 2002). Our work and some
other approaches (Pan et al., 2009) adapt the idea of match-
ing means of the datasets to correct shifted distribution,
but we extend their approaches from a two-step optimiza-
tion to a game framework that jointly learns a model
and weights with covariate shift correction. Some other
approaches (Zadrozny, 2004; Bickel et al., 2007; 2009;
Storkey & Sugiyama, 2007) consider different generative
models for special cases of covariate shift mechanisms.

Besides these approaches, there are many other works fo-
cusing on the theoretical analysis of statistical learning
bounds for covariate shift. Ben-David et al. (2007) gave
a bound on L1 generalization error given the presence of
mismatched distributions. Analyses on other forms of error
were also introduced in the literature (Shimodaira, 2000;
Sugiyama & Müller, 2005; Cortes et al., 2010). However,
most of these analyses neglect the effect of model misspeci-
fication (White, 1981). Apart from Shimodaira (2000) who
pointed out a link between covariate shift and model mis-
specification with some quantitative evidence, and Huang
et al. (2007) who observed that simpler models tend to ben-
efit more from density ratio correction, few have addressed
the question of determining when reweighing helps versus
when it is not needed. In this paper, we show the relation-
ship between covariate shift and model misspecification.

3. Learning Under Uncertain Test
Distributions as a Game

Suppose we are given an i.i.d. (independent and identi-
cally distributed) training sample tpx1, y1q, ¨ ¨ ¨ , pxn, ynqu
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drawn from a joint distribution ptrpx, yq, and know that the
test distribution ptepx, yq is the same as ptrpx, yq. The most
common and well-established method to learn a prediction
function f : X ÞÑ Y is through solving the following em-
pirical risk minimization (ERM) problem:

min
θPΘ

1

n

ÿn

i“1
lpfθpxiq, yiq ` λ Ωpθq, (1)

where the prediction function fθp¨q is parametrized by a
vector θ, lp¨, ¨q is a loss function, Ωp¨q is a regularizer on θ
to control overfitting and λ P R is regularization parameter.

When there is covariate shift, the feature distribution ptepxq
is different from ptrpxq but the conditional distribution
ppy|xq representing the classification/regression rule re-
mains the same. In this scenario, one of the most com-
mon approach to correct for the effect of covariate shift is
to reweigh the training instances in the ERM problem to
reflect their true proportions on the test set:

min
θPΘ

1

n

ÿn

i“1
wpxiq lpfθpxiq, yiq ` λ Ωpθq, (2)

wherewpxiq is a reweighing function that approximates the
density ratio ptepxiq{ptrpxiq. There are different methods
for estimating the density ratio wpxq using unlabelled test
data (Quionero-Candela et al., 2009; Sugiyama & Kawan-
abe, 2012). This suggests viewing the learning problem
as a two-step estimation problem, where the density ratio
wpxq is estimated first before estimating θ.

Interestingly, in econometrics the phenomenon of covari-
ate shift has been used to detect model misspecification.
White (1981) considered the problem of detecting model
misspecification in non-linear least squares regression for
models yi“fθpxiq`εi, where εi is i.i.d. noise. He showed
that under certain assumptions, when there is no misspeci-
fication, the objective and solution θ‹ of the problem

min
θ

1

n

ÿn

i“1
pyi ´ fθpxiqq

2

converge to the same limits as the reweighed problem:

min
θ

ÿn

i“1
wipyi ´ fθpxiqq

2,

for any fixed set of non-negative weights wi such that
ř

i wi “ 1. He then derived several misspecification tests
based on asymptotic approximation of the difference of the
solutions. The key idea in his work is to detect model mis-
specification by creating his own covariate shift wi, so that
correct inference on the effects of different variables in re-
gression can be performed.

In this paper, we explore White’s main insight further by
modelling the reweighing functions wpxiq as an adversary
in a game against the learner. Instead of detecting model
misspecification, we want to tell whether density ratio cor-
rection is needed under a set of potential distribution shifts.

The rest of this section will introduce our game formula-
tion. Section 4 will then explain how it can be used to de-
tect whether density ratio correction is needed or not.

We tie the two problems of density ratio estimation and
learning a predictor together through the robust Bayes
framework (Grünwald & Dawid, 2004). The learner tries
to minimize the loss by selecting a model θ P Θ, while the
adversary tries to maximize the loss by selecting a reweigh-
ing function w P W . Formally, we model the learning
problem as a (regularized) minimax game:

min
θPΘ

max
wPW

1

n

ÿn

i“1
wpxiq lpfθpxiq, yiq ` λ Ωpθq. (3)

The learner can be seen as minimizing the worst case loss
over the set of test distributions W produced by the ad-
versary. The definition of the strategy set W used by the
adversary is important in our approach, as it determines
the extent to which any model misspecification can be ex-
ploited by the adversary to increase the loss. Depending on
the application scenario, it can be defined using our prior
knowledge on how the test distributions could change, or
based on unlabelled test data if they are available.

To refine this formulation, we assume the reweighing func-
tions wpxq are linearly parametrized:

wαpxq “
ÿk

j“1
αjkjpxq, (4)

where α contains the mixing coefficients and kjpxq are
non-negative basis functions. For example, each kjpxq
could be a non-negative kernel function, say, the Gaussian
kernel

Kpbj , xq “ exp
`

´||bj ´ x||
2{2σ2

˘

(5)

with basis bj , or it could be Ijpxq, the indicator function for
the jth disjoint group of the data, representing groups from
different genders, age ranges, or k-means clusters, etc. It
could be viewed as the conditional probability ppx|jq of
observing x given class j in a mixture model. As for α,
it is generally constrained to lie in some compact subspace
A of the non-negative quadrant of Euclidean space. This
linear formulation is flexible enough to capture many dif-
ferent types of uncertainties in the test distributions, and
yet simple enough to be solved efficiently as a convex op-
timization problem. Therefore, we consider uncertain test
distributions and optimize the following minimax game:

min
θPΘ

max
αPRk

1

n

ÿn

i“1
wαpxiq lpfθpxiq, yiq ` λ Ωpθq

s.t.
1

n

ÿn

i“1
wαpxiq “ 1, 0 ď αj ď B.

(6)

The sum-to-one normalization constraint ensures that
wαpxq behaves like a Radon-Nikodym derivative that prop-
erly reweighs the training distribution to a potential test dis-
tribution (Shimodaira, 2000; Sugiyama et al., 2008). The
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boundB P R on the parameters αj ensure that the reweigh-
ing function wαpxq is bounded, which naturally controls
the capacity of the adversary. In this formulation, the strat-
egy set1 An of the adversary is the intersection of a hyper-
cube and an affine subspace:

An “

"

α

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
wαpxiq “ 1, 0 ď αj ď B

*

, (7)

which is closed and convex. For the games defined above
between the learner and the adversary, a minimax solution
pθ˚,α˚q exists (Rockafellar, 1996, Corollary 37.3.2).

3.1. Solving the Training Problem

We first define the empirical adversarial loss as

LAnpθq “ max
αPAn

1

n

ÿn

i“1
wαpxiq lpfθpxiq, yiq. (8)

The training problem in Eq. (6) can be solved efficiently
for loss functions lpfθp¨q, ¨q that are convex in θ. Notice
Eq. (8) is a convex function in θ if lpfθp¨q, ¨q is convex in
θ, as we are taking the maximum over a set of convex func-
tions. A subgradient of LAnpθ

1q at a point θ1 is:

B

Bθ
LAnpθ

1q “
1

n

ÿn

i“1
wα1pxiq

B

Bθ
lpfθ1pxiq, yiq, (9)

where α1 is the solution of the problem with θ1 fixed:

α1 “ argmax
αPAn

1

n

ÿn

i“1
wαpxiq lpfθ1pxiq, yiq. (10)

Since the strategy set An is linearly constrained and the
objective is also linear, we can easily use linear program-
ming to solve for α1 in Eq. (10). Knowing how to compute
the subgradient, we can treat the robust training problem
as a convex ERM problem with the adversarial loss. The
optimization problem can be solved efficiently with sub-
gradient methods or bundle methods (Kiwiel, 1990).

3.2. Incorporating Unlabelled Test Data

If unlabelled test data txn`1, . . . , xn`mu are available, we
would require the reweighing functions wαpxq used by the
adversary to produce test distributions that are close to the
unlabelled data, especially when covariate shift occurs. In
this case we can further restrict the strategy set An of the
adversary via moment matching constraints (MMC):

min
θPΘ

max
αPRk

1

n

ÿn

i“1
wαpxiq lpfθpxiq, yiq ` λΩpθq

s.t.
1

n

ÿn

i“1
wαpxiq “ 1, 0 ď αj ď B

1

n

ÿn

i“1
wαpxiqφpxiq “

1

m

ÿn`m

i“n`1
φpxiq, (11)

1We use the subscript n to denote its dependence on the sam-
ple tx1, ¨ ¨ ¨ , xnu.

where φp¨q are feature functions similar to those used
in maximum entropy models (Berger et al., 1996). Let
Knα “ φ̄te represent the linear constraint of Eq. (11),
then the strategy set of the adversary becomes the closed
convex set:

AMMC
n “

"

α

ˇ

ˇ

ˇ

ˇ

1

n

ÿn

i“1
wαpxiq“1, 0ďαjďB,Knα“ φ̄te

*

.

In practice, it might not be feasible to satisfy all the moment
matching constraints. It is also unwise to enforce these as
hard constraints, as the small test sample might not be rep-
resentative of the true test distribution. We can incorporate
an L1 or L2 penalty on the constraint violations similar to
Altun & Smola (2006) while retaining convexity of the op-
timization problem. The details are not shown here due to
space constraints. We refer to Eq. (11) as robust covariate
shift adjustment (RCSA).

4. Relating Covariate Shift to Model
Misspecification

This section relates covariate shift to model misspecifica-
tion and describes a procedure for testing whether correct-
ing for covariate shift could be needed, assuming the test
distribution comes from the strategy set A of the adversary.
We will also state and discuss several theoretical results to
justify our test. Their proofs are in Appendix A. We start
with a definition:
Definition 1 (Pointwise Domination). A parameter θ‹ is
said to pointwisely dominate all θ1 P Θ over the loss func-
tion lp¨, ¨q if, for all x P X and for all θ1 P Θ,
ż

lpfθ‹pxq, yqppy|xqdy ď

ż

lpfθ1pxq, yqppy|xqdy. (12)

This condition means there is a single θ‹ that pointwisely
minimizes the loss l for any x P X . It is easy to see that
this pointwise domination condition is implied by the tra-
ditional definition of correctly specified model class when
lp¨, ¨q is the log loss, ´ log pθpy|xq. With log loss, the
pointwise domination condition then becomes:

´

ż

ppy|xq log pθ‹py|xqdy ď ´

ż

ppy|xq log pθ1py|xqdy.

This inequality always holds because pθ‹py|xq “ ppy|xq
minimizes the entropy on the left hand side. Therefore, a
correctly specified model always implies the existence of
a pointwise dominator θ‹. However, the converse is not
always true, as the underlying model class Θ might be too
weak (e.g., if Θ contains only a single model θ).

Note that pointwise domination condition does not depend
on the marginal distribution ppxq. If we can find such a
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pointwise dominator, then the test distribution can be arbi-
trarily shifted without damaging the performance of point-
wise dominator θ‹. However, this condition is too strin-
gent and is almost never true on real data. This motivates
us to consider the game formulation in Section 3: Instead
of requiring θ to minimize the loss at every single point x,
we require θ to minimize the loss against every reweighing
function wαpxq that the adversary can play. We define

A8 “
"

α P AS

ˇ

ˇ

ˇ

ˇ

ż

wαpxq dF px, yq “ 1

*

,

where AS is the support of the strategy set of the adver-
sary that does not depend on training samples (e.g., the hy-
percube 0 ď αj ď B), and F px, yq is the joint training
distribution of px, yq. Now we define dominant strategy:
Definition 2 (Dominant Strategy). We say that θ: P Θ is a
dominant strategy for the learner if, for all α P A8, for all
θ1 P Θ,
ż

wαpxqlpfθ:pxq, yqdF px, yqď

ż

wαpxqlpfθ1pxq, yqdF px, yq.

It is easy to show that the pointwise domination condition
implies the existence of dominant strategy.
Theorem 3. Suppose a pointwise dominator θ‹ exists, then
θ‹ is also a dominant strategy for the learner, against any
bounded adversarial set A.

The existence of a dominant strategy of the learner is the
key criterion in deciding whether density ratio correction
is necessary. If such a dominator θ: exists, then it gives
lower or equal loss compared to other models θ1, no mat-
ter which reweighing function wαpxq is used. Thus if one
can find θ:, no density ratio correction is needed in ex-
pectation, since θ: is asymptotically optimal as long as the
training and test distributions come from the given adver-
sarial set. However, if no such dominator exists, then for
any model θ, there exists another model θ1 and a reweigh-
ing functionwα1pxq such that θ1 has strictly lower loss than
θ on wα1pxq. This means that a reweighing wα1pxq and its
corresponding model θ1 are preferable. As a result, density
ratio correction will be helpful if the test set is drawn from
wα1pxq while the training set is not, provided that we can
estimate wα1pxq accurately.

How do we know if such a dominant strategy exists for a
game between Θ and A? The robust solution of the game
can help us in finding out. Let sθ be the solution of the
unweighed loss minimization problem

sθ “ argmin
θPΘ

ż

lpfθpxq, yq dF px, yq, (13)

and pθ be the solution of the reweighed adversarial loss min-
imization problem

pθ “ argmin
θPΘ

max
αPA8

ż

wαpxqlpfθpxq, yq dF px, yq. (14)

Our main observation is that, if a dominant strategy θ: ex-
ists, then under suitable assumptions on the adversary, the
unweighed solution sθ is also a dominant strategy.
Theorem 4. Suppose the reweighing functionwαpxq is lin-
ear inα, and the constant reweighingα0 withwα0pxq “ 1
is in the relative interior of A8. If a dominant strategy θ:

of the learner exists, then the unweighed solution sθ is also
a dominant strategy for the learner.

Thm. 4 suggests a way to test for the existence of dominant
strategy. Consider the adversarial loss

LA8pθq “ max
αPA8

ż

wαpxqlpfθpxq, yq dF px, yq.

By definition, any dominant strategy θ: minimizes the ad-
versarial loss, so Thm. 4 implies that the unweighed solu-
tion sθ will also minimize the adversarial loss. Therefore,
by comparing the value of the minimax solution LA8ppθq
(which by definition minimizes the adversarial loss) against
LA8psθq, we can tell if a dominant strategy exists. If they
are not equal, then we are certain that no such dominant
strategy exists, and density ratio correction can be helpful,
depending on the choice of training and test distributions
from A. On the other hand, if they are equal, we cannot
conclude that a dominant strategy exists, as it is possible
that the reweighed adversarial distribution matches the uni-
form unweighed distribution arbitrarily closely. However,
such examples are rather contrived and we never encoun-
tered such a situation in any of our experiments.

The final question left is how to compare LA8ppθq and
LA8psθq in practice with a finite sample. Let pθn be a solu-
tion of the robust game:

pθn “ argmin
θPΘ

max
αPAn

1

n

n
ÿ

i“1

wαpxiqlpfθpxiq, yiq, (15)

and let sθn be a solution of the unweighed ERM problem:

sθn “ argmin
θPΘ

1

n

n
ÿ

i“1

lpfθpxiq, yiq. (16)

Our convergence results below states that, instead of
LA8ppθq and LA8psθq, we can compare the empirical ad-
versarial losses LAnppθnq and LAnpsθnq.
Theorem 5. Suppose the support AS forα and Θ for θ are
each closed, convex, and bounded. Suppose also wαpxq
and lpfθpxq, yq are bounded continuous functions inα and
θ for each px, yq pair. If the set satisfying the normalization
constraint tα P AS |

ş

wαpxqdF px, yq “ 1u is non-empty
in the relative interior of AS , then we have, for all θ P Θ,

LAnpθq Ñ LA8pθq

in probability, i.e., for all ε, δ ą 0, we can find m P N such
that for all n ě m, we have

|LAnpθq ´ LA8pθq| ă ε
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with probability at least 1´ δ.

For simplicity, we do not consider the moment matching
constraints Knα “ sφte, but this can be handled in the
proof with techniques similar to the normalization con-
straint. We use t-test with cross-validation to compare
these quantities in the experiments.

The chain of implications can be summarized as follows:

No model misspecification for Θ

ñPointwise dominator exists for Θ

ñDominant strategy against any bounded adversary A exists

We can see that “no model misspecification” is a very
strong condition, as it requires a dominator against any
bounded adversary A, including pathologically spiky test
distributions with tall spikes and small support. Also, there
is an implicit assumption in using density ratio correction
that covariate shifts on the test set are not represented by ar-
bitrarily complex functions. Otherwise estimation of den-
sity ratio cannot take place and there is no way to correct
covariate shift. Therefore, instead of focusing on density
ratio correction alone, we look at another way of dealing
with covariate shift, by performing model checking against
a set of restricted changes in test distributions represented
by the adversary A. In the next section we will provide
empirical evaluations of this particular approach.

Our analysis is different from Shimodaira (2000). We do
not start with a strong condition like “no model misspec-
ification”, which is equivalent to requiring the learner to
have a dominant strategy against any adversaries. Instead,
given weak prior knowledge about how the distributions
can shift, we provide a method that can determine whether
reweighing can be helpful. This analysis is more practical
than deciding whether reweighing is needed based on the
strong notion of no model misspecification, as almost all
models are misspecified on real datasets.

5. Empirical Studies
5.1. Experiments on Toy Datasets

We first present two toy examples to show the effectiveness
of our test. We construct a linear model, f1pxq “ x`1`ε,
and a non-linear (cubic) model, f2pxq “ x3 ´ x ` 1 ` ε,
where ε „ N p0, 0.12q is additive Gaussian noise (adapted
from Shimodaira (2000)). For both, we learn a linear re-
gressor fθpxq “ θ1 ¨ x` θ0 from data to minimize squared
loss lpfθpxiq, yiq “ ||θT xi ´ yi||

2 with L2 regularizer on
θ: Ωpθq “ 1

2 ||θ||
2
2.

To show how to detect whether a dominant strategy ex-
ists with various adversarial sets A, we generate 500 data
points uniformly in the interval r´1.5, 2s, which we par-

tition into training and test sets via 10-fold cross valida-
tion. To construct reasonable adversaries, we use Eq.(4)
with Gaussian kernel as our reweighing function. As we
mentioned earlier, the adversarial set is determined by prior
knowledge of how the test distribution might change. In
this toy example, we use a large range of σ, based on the
average distance from an instance to its n

c -nearest neigh-
bours, where n is the number of training points and c P
t2, 4, 8, 16, ¨ ¨ ¨ u. The smaller σ is, the more powerful the
adversary can be, i.e., the more possible test distributions it
can generate. The bases, bj , are chosen to be the training
points. B is set to be 5, a bound that is rarely reached in
practice due to the normalization constraint. Therefore, this
bound does not significantly limit the adversary’s power,
as it allows the adversary to put as much importance on
a single kernel as it wants. We tune the parameter λ via
10-fold cross validation.2 Figure 2(a) shows that LAnppθnq
and LAnpsθnq (mean and one standard deviation as error
bar) are very close for all σ in the linear example, indicat-
ing that the adversary cannot exploit the weakness of linear
learner. Figure 2(b) shows that, for the non-linear example,
even with moderate σ, there is a noticeable difference be-
tween LAnppθnq against LAnpsθnq, strongly suggesting that
no dominant strategy exists in this case, which suggests that
covariate shift correction is necessary if the test distribution
is shifted here. The experiments showing covariate shift
scenarios are in Appendix B due to space limits.

To see how the adversary creates different empirical adver-
sarial losses in a non-linear example, we fix the σ to the
average distance from an instance to its n

5 -nearest neigh-
bour and illustrate a concrete trial in Figure 2(c). It is obvi-
ous that the adversary puts more weights at the test points
where the loss of the classifier learned from training data
is large. Our robust formulation incorporates the adversary
and prevents any point from having too large a loss. As
a result, the adversary cannot undermine the robust learner
severely, which leads to the gap of the empirical adversarial
losses of robust and regular learners in Figure 2(b).

5.2. Experiments on Real-world Datasets

This section presents the experimental results on real world
datasets to show how our formulation determines whether
dominant strategy exists against some adversaries and if so,
how to correct such covariate shifts. We investigate both
regression problems using squared loss, and classification
problems using hinge loss. A linear model is learned from
the dataset unless otherwise specified.

We obtain some classification datasets from UCI reposi-

2Here, as there is no covariate shift, we just use simple cross
validation. Whenever test distribution is shifted in the experi-
ment, parameters are tuned via importance weighted cross vali-
dation (Sugiyama et al., 2007).
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(a) Linear example.
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(b) Cubic example.
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Figure 2. Toy examples. Adversarial test losses are shown in Figures 2(a) and 2(b), where the x-axis shows the values of σ. Figure 2(c)
provides a non-linear example to show how the adversary attacks the regressors by reweighing the test points, with output on the left
y-axis and weight on the right y-axis.

Table 1. Dataset Summary
DATASET SIZE DIM TYPE

AUSTRALIAN 690 14 CLASSIFICATION
BREAST CANCER 683 10 CLASSIFICATION
GERMAN NUMER 1000 24 CLASSIFICATION

HEART 270 13 CLASSIFICATION
IONOSPHERE 351 34 CLASSIFICATION

LIVER DISORDER 345 6 CLASSIFICATION
SONAR 208 60 CLASSIFICATION
SPLICE 1000 60 CLASSIFICATION

AUTO-MPG 392 6 REGRESSION
CANCER 1523 40 REGRESSION

tory3. All are binary classification problems. For regres-
sion task, we use Auto-mpg dataset, which admits a nat-
ural covariate shift scenario, as it contains data collected
from 3 different cities. We also have a set of cancer patient
survival time data provided by our medical collaborators,
containing 1523 uncensored patients with 40 features, in-
cluding gender, stage of cancer, and various measurements
obtained at the time of diagnosis. Table 1 shows the sum-
mary of the datasets we used in the experiments.

5.2.1. DOMINANT STRATEGY DETECTION

We first detect the existence of dominant strategy as we did
in the toy example. To construct reasonable adversaries,
Gaussian kernel is applied to Eq.(4), setting σ to be the av-
erage distance from an instance to its n

5 -nearest neighbour,
the bases bj to be the training points and B to be 5. 4

Figure 3(a) shows the experimental results. Auto-mpg12

3http://archive.ics.uci.edu/ml/index.html
4We allow the user to set up other adversaries, as the appro-

priate adversary depends on user’s belief about how the test dis-
tribution may change. We use this medium power adversary to
differentiate between datasets under linear models. If the adver-
sary is too weak, no correction is needed for all datasets. If the
adversary is too strong, all datasets require correction, as on real
data there is no “correct” model. We omit these less interesting
cases due to space limits.

explores when the training data comes from city 1 and
test data is from city 2, while Auto-mpg13 explores
when training data comes from city 1 and test data comes
from city 3. Here we focus on the empirical adversarial
losses of robust versus regular models. A significant dif-
ference indicates that there is no dominant strategy and
thus, the linear model is vulnerable to our reweighing ad-
versary. For classification datasets and the cancer dataset,
we apply 10-fold cross validation to obtain training and
test sets. For Auto-mpg, we fix the test set and apply
10-fold cross validation to obtain training set. Figure 3(a)
presents these losses over the datasets (mean and one stan-
dard deviation as error bar). t-test at significance level 0.05
indicates that two losses are significantly different for the
Liver disorders and Auto-mpg datasets. As a re-
sult, the linear model is vulnerable for these sets.

To further substantiate the incapability of the linear model,
we attempted to detect dominant strategy for a Gaussian
model set Θ (i.e., changing from linear kernel to Gaussian
kernel where the learner use internal cross-validation to
chose the kernel width). Results are shown in Figure 3(b).
Compared to Figure 3(a), the gap of empirical adversarial
losses between robust and regular models shrinks signif-
icantly in Figure 3(b). Our result indicates that t-test no
longer claims a significant difference between these losses,
suggesting that the adversary cannot severely undermine
the performance of regular learning. Therefore, model re-
vision can be a good alternative to performing covariate
shift correction.

5.2.2. REWEIGHING ALGORITHM FOR COVARIATE
SHIFT SCENARIOS

As previously mentioned, the reweighing mechanism could
improve the performance if the model is vulnerable to the
reweighing adversary. For the covariate shift correction
task, we set the test points as the reference bases bj of the
weight function (Eq. (4)), because they are more informa-

http://archive.ics.uci.edu/ml/index.html
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Figure 3. Experimental results for dominant strategy detection and covariate shift correction. Figure 3(a) and Figure 3(b) show the
adversarial test losses of robust and regular learners.

tive than training points about the test distribution, as sug-
gested by Sugiyama et al. (2008). The reweighing set (σ
and B) is chosen as in Section 5.2.1.

To create covariate shift scenarios in the classification
datasets, we apply the following scheme to obtain shifted
test set. We first randomly pick 75% of the whole set for
robust training (6) to attain a model θ. Then we evaluate
the empirical adversarial loss (8) of this model on the 25%
hold-out test set, and record all the weights of these test
points. The probability that a test instance x will remain in
the test set is min

´

1, wαpxq
1{m

¯

, where m is the number of
test points at the moment (25% of the set). About 10% of
the whole dataset remain after filtering; these instances will
serve as the final test set with shifted distribution. The intu-
ition is: we want some test points with large errors even for
robust learner. These points are more likely to undermine
any model, meaning covariate shift will have more signif-
icant impact on the performance. The procedure is per-
formed 10 times, leading to the average test losses reported
in Figure 3(c). As Auto-mpg has a natural covariate shift
scenario, we do not artificially partition the dataset. We
applied 10-fold cross validation to obtain the training set.
We consider two shifted scenarios in cancer survival time
prediction:

1. Gender split. The dataset contains about 60% male
and 40% female patients. In gender split, we randomly take
20% of the male and 80% of the female patients into train-
ing set, while the rest goes to test set. That is, the training
set is dominated by male patients while the test set is dom-
inated by female patients.

2. Cancer stage split. Approximately 70% of the dataset
are of stage-4. In cancer stage split, we randomly take 20%
of stage-1-to-3 and 80% of stage-4 patients to training set,
while the rest goes to test set. The training set is dominated
by stage-4 patients while the test set is dominated by stage-
1-to-3 patients.

Figure 3(c) compares the test losses of RCSA with

the regular unweighed learning algorithm, the clustering-
based reweighing algorithm (Cortes et al., 2008),
KLIEP (Sugiyama et al., 2008) and RuLSIF (Yamada et al.,
2011). Recall that our analysis in Section 5.2.1 shows that
linear model is insufficient for the Liver disorders
and Auto-mpg datasets, which suggests that reweighing
may help. This is confirmed in Figure 3(c): by putting
more weights on the training instances that are similar to
test instances, the reweighing algorithms can produce mod-
els with smaller test losses for these datasets. Although our
robust game formulation is mainly designed to detect dom-
inant strategy, our RCSA algorithm can correct shifted dis-
tribution using moment matching constraints described in
Section 3.2. As shown in Figure 3(c), our method performs
on par with state-of-the-art algorithms when covariate shift
correction is required. For the datasets that appear linear
(i.e., where the linear model performs relatively well), we
found that the reweighing algorithms did not significantly
reduce the test losses. In some cases, reweighing actually
increased the test losses due to the presence of noise.

6. Conclusions
We have provided a method for determining if covariate
shift correction is needed, given a pre-defined set of po-
tential changes in the test distribution. This is useful for
ensuring the learned predictor will still perform well when
there are uncertainties about the test distribution in the de-
ployment environment, such as changes in gender ratio and
case mix in the cancer prognostic predictor example. It can
also be used to decide if a model class revision of Θ is nec-
essary. Experimental results show that our detection test
is effective on several UCI datasets and a real-world can-
cer patient dataset. This analysis shows the importance of
studying the interaction of covariate shift and model mis-
specification, because the final test set error depends on
both factors.
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Appendix A
Proof of Theorem 3

Proof. By the definition of a pointwise dominator
ż

lpfθ‹pxq, yqdF py | xq ´

ż

lpfθ1pxq, yqdF py | xq ď 0

for all θ1 P Θ. Given any bounded adversarial set A, for
any α P A, wαpxq is a non-negative function of x. There-
fore integrating with respect to dF pxq gives
ż

wαpxq

„
ż

lpfθ‹pxq, yqdF py |xq´

ż

lpfθ1pxq, yqdF py |xq



dF pxqď0

ż

wαpxqlpfθ‹pxq, yqdF px, yqď

ż

wαpxqlpfθ1pxq, yqdF px, yq.

Thus θ‹ is also a dominant strategy against the adversarial
set A.

Proof of Theorem 4

Proof. We use hpθq from Eq. (19) to denote the cost vec-
tor for expected adversarial loss, with the extra argument
θ to emphasize its dependence on θ. As θ: is a dominant
strategy, we have

hpθ:qTα ď hpsθqTαñ phpθ:q ´ hpsθqqTα ď 0 (17)

for all α P A8. By definition, sθ minimizes the adversarial
loss for the constant unweighed strategy α0 of the adver-
sary, so we have

phpθ:q ´ hpsθqqTα0 “ 0. (18)

Let α1 P A8. As α0 is in the relative interior of A8 and
A8 is convex, there exists ε ą 0 such that

α2 “ α1 ` p1` εqpα0 ´α
1q

is in A8. Now by Eq. (17) and (18), we have three colinear
points such that

phpθ:q ´ hpsθqqTα1 ď 0

phpθ:q ´ hpsθqqTα0 “ 0

phpθ:q ´ hpsθqqTα2 ď 0.

So phpθ:q´hpsθqqTαmust be identically 0 on the interval
rα1,α2s, as it is a linear function in α.

This shows hpsθqTα1 “ hpθ:qTα1. As α1 is arbitrary, the
unweighed solution sθ is also a dominant strategy for the
learner Θ.

Proof of Theorem 5

Notice the reweighed loss is linear in α for fixed θ:

1

n

n
ÿ

i“1

wαpxiqlpfθpxiq, yiq “
k
ÿ

j“1

αj
1

n

n
ÿ

i“1

kjpxiqlpfθpxiq, yiq

“ hTnα,

where

phnqj “
1

n

n
ÿ

i“1

kjpxiqlpfθpxiq, yiq.

Therefore we can write LAnpθq as:

LAnpθq “ max
αPAn

hTnα

Similarly, define the corresponding cost vector h for the
expected adversarial loss such that

phqj “

ż

kjpxq lθpfpxq, yqdF px, yq, (19)

and we have
LA8pθq “ max

αPA8
hTα

Similarly, define for the normalization constraint:

1

n

n
ÿ

i“1

wαpxiq “
k
ÿ

j“1

αj
1

n

n
ÿ

i“1

kjpxiq “ g
T
nα,

where

pgnqj “
1

n

n
ÿ

i“1

kjpxiq.

Define the corresponding constraint vector g such that

pgqj “

ż

kjpxq dF px, yq.

Translating into the new notations, we want to prove
ˇ

ˇ

ˇ

ˇ

max
αPAS :gTα“1

hTα´ max
αPAS :gTnα“1

hTnα

ˇ

ˇ

ˇ

ˇ

ă ε

with probability at least 1´ δ, for all sufficiently large n.

To prove the result we need two lemmas, whose proofs ap-
pear after the main proof. The first lemma states that the
sample cost vector hn converges in the infinite limit to h.
The second lemma states that near the feasible solutions
of gTα “ 1, there are feasible solutions of finite sample
constraint gTnα “ 1 for large n, and also vice versa.
Lemma 6. Assume the basis kjpxq for the reweighing func-
tion wpxq are bounded above by Bk, and the loss function
l bounded above by Bl. We then have

Prp}hn ´ h}2 ě εq ď 2k exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

.

Lemma 7. Suppose ε, δ ą 0 are given and let α˚ P A8.
Then there exists m P N such that, for all n ě m, with
probability at least 1´ δ, we can find αn P An such that

}α˚ ´αn} ď ε

Similarly, suppose ε, δ ą 0 are given. Then there exists
m P N such that for all n ě m, for any αn P An, with
probability at least 1´ δ, we can find α˚ P A8 such that

}αn ´α
˚} ď ε.
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PROOF OF MAIN THEOREM

By Lemma 6, there exists n1 P N such that for all n ě n1,
}h´hn} ď ε{p2Bαq with probability 1´δ{3. [condition 1]

Let hTα˚ “ maxαPA8 h
Tα. By Lemma 7, there exists

n2 P N such that for all n ě n2, we can find α1n P An with
}α˚´α1n} ď ε{p2}h}q with probability 1´δ{3 [condition
2]. Conditions 1 and 2 give

max
αPA8

hTα´ max
αPAn

hTnα

ď hTα˚ ´ hTnα
1
n

“ hTα˚ ´ hTα1n ` h
Tα1n ´ h

T
nα

1
n

“ hT pα˚ ´α1nq ` ph´ hnq
Tα1n

ď }h}}α˚ ´α1n} ` }h´ hn}}α
1
n}

ď }h}
ε

2}h}
`

ε

2Bα
Bα “ ε

Similarly, let hTnα
˚
n “ maxαPAn h

T
nα. By Lemma 7,

there exists n3 P N such that for each n ě n3, we can
find α1 P A8 with }α˚n ´ α

1} ď ε{2}h} with probability
1´ δ{3 [condition 3]. Conditions 1 and 3 give

max
αPAn

hTnα´ max
αPA8

hTα

ď hTnα
˚
n ´ h

Tα1

ď hTnα
˚
n ´ h

Tα˚n ` h
Tα˚n ´ h

Tα1

“ phn ´ hq
Tα˚n ` h

T pα˚n ´α
1q

ď }hn ´ h}}α
˚
n} ` }h}}α

˚
n ´α

1}

ď
ε

2Bα
Bα ` }h}

ε

2}h}
“ ε

Therefore when n ě maxtn1, n2, n3u, with probability at
least 1´ δ (by union bound), we have

| max
αPAn

hTnα´ max
αPA8

hTα| ď ε ˝

PROOF OF LEMMA 6

By Hoeffding’s inequality, we have

Prp|phnqj ´ phqj | ą
ε

k
q ď 2 exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

.

By union bound, we have

Prp}hn ´ h}1 ě εq ď 2k exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

.

As }hn ´ h}2 ď }hn ´ h}1, we have

Prp}hn ´ h}2 ě εq ď 2k exp

ˆ

´
2nε2

B2
kB

2
l k

2

˙

. ˝

Eη : gTα=1+η

E0 : gTα=1

f(η)

g(η)

A

Figure 4. Definition of fpηq and gpηq

PROOF OF LEMMA 7

Using Hoeffding’s inequality and union bound (similar to
the proof of Lemma 6), we have

Prp}gn ´ g}2 ě εq ď 2k exp

ˆ

´
2nε2

B2
kk

2

˙

. (20)

Define
Eη “ tα P AS |gTα “ 1` ηu

for each η P R. This is the set of subspaces parallel to
gTα “ 1 (E0). Define also fpηq as the maximum dis-
tance of any points in Eη to E0, and gpηq as the maximum
distance of any points in E0 to Eη (see Fig. 4), i.e.,

fpηq “ max
αPEη

min
α1PE0

}α´α1},

gpηq “ max
αPE0

min
α1PEη

}α´α1}.

Suppose ε, δ ą 0 are given. Using Lemma 8 below,
fpηq Ñ 0 as η Ñ 0, so we can find η0 ą 0 such that
fpηq ă ε whenever |η| ă η0. From Eq. (20), we can find
m P N such that for all n ě m, }gn ´ g} ă η0{Bα with
probability at least 1´ δ.

Letting αn P An for n ě m, we have

|gTαn´1|“|gTαn´g
T
nαn|ď}g´gn}}αn}ď

η0

Bα
Bα“η0

(21)
with probability at least 1´ δ. Hence the subspace gTnα “
1, i.e. An, lies between Eη0 and E´η0 with probability
1 ´ δ. Specifically for a fixed αn P An, it lies on Eη for
some η with |η| ă η0. Therefore

min
α1PE0

}αn ´α
1} ď max

αPEη
min
α1PE0

}α´α1} “ fpηq ď ε

with probability 1´ δ.

For the second part, let α˚ P A8p“ E0q, and ε, δ ą 0 be
given. Using Lemma 8 below, gpηq Ñ 0 as η Ñ 0, so we
can find η0 ą 0 such that gpηq ă ε whenever |η| ă η0.
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Figure 5. Illustration for proof of Lemma 7

By Eq. (21) above, we can find m P N such that An lies
entirely between E´η0 and Eη0 with probability at least
1´ δ. By definition

min
α1PEη0

}α˚ ´α1} ď gpη0q ď ε.

Let αη0 be a point on Eη0 minimizing the distance to α˚,
then the line joining αη0 and α˚ has to intersect with the
subspace gTnα “ 1 at some αn (see Fig. 5). This holds
for all n ě m and we have }αn ´ α˚} ď ε. The same
argument applies to the case when gTnα “ 1 lies between
E0 and E´η0 . Thus

min
α1PAn

}α1 ´α˚} ď ε

for all n ě m, with probability at least 1´ δ.
Lemma 8.

fpηq “ max
αPEη

min
α1PE0

}α´α1}

gpηq “ max
αPE0

min
α1PEη

}α´α1}

converge to 0 as η Ñ 0.

Proof. We want to show fpηq Ñ 0 as η Ñ 0. If not, then
there exists f0 ą 0 and a sequence tηtu8t“1 with ηt Ñ 0,
such that fpηtq ě f0 infinitely often. We collect all those
indices tn such that fpηtnq ě f0, and form a new sequence
µn “ ηtn . Let

αn “ argmax
αPEµn

min
α1PE0

}α´α1}.

As αn lies in a compact set AS , there exist a convergent
subsequence, say βn. Let the subsequence βn converge to
some β, and by continuity we know gTβ “ 1, so β P E0.

The function

spαq “ min
α1PE0

}α´α1}

is a continuous function in α (minimum of a bivariate con-
tinuous function over a compact set).

A

E1

E0

Eη

d1
d2

αj

d1 = min
α′∈E1

‖αj − α′‖

d2 ≥ min
α′∈Eη

‖αj − α′‖
d2 = ηd1

Figure 6. Illustration for the proof of Lemma 8

We have spβnq ě f0 and βn Ñ β, so spβnq converges
to some f 10 ě f0 as s is continuous. However, since β P
E0, we have spβq “ 0. This creates a contradiction and
therefore fpηq Ñ 0.

Next we want to show gpηq Ñ 0 as η Ñ 0. Given γ ą 0,
as E0 is compact, we can cover E0 with at most k balls of
radius γ{2 for some finite k. We label the centres of these
balls as αj , 1 ď j ď k.

We consider the case where η ą 0. The case for η ă 0 is
symmetric. By the assumption of the theorem the set tα P
AS | gTα “ 1u is non-empty in the relative interior of AS .
So there exists η ą 0 such that Eη is non-empty. Without
loss of generality, assume E1 non-empty (can rescale with
any positive constant other than 1), define

dj “ min
α1PE1

}αj ´α
1}.

By convexity (see Fig. 6), for 0 ă η ď 1,

min
α1PEη

}αj ´α
1} ď η min

α1PE1

}αj ´α
1} “ ηdj

For any α P E0, it lies within one of the k balls, say αj .
We have

min
α1PEη

}α´α1} ď min
α1PEη

r}α´αj} ` }αj ´α
1}s

“ }α´αj} ` min
α1PEη

}αj ´α
1}

ď
γ

2
` ηdj

Since the k balls altogether cover E0, for all α P E0, when
η ď γ

2 max1ďjďk dj
,

min
α1PEη

}α´α1} ď
γ

2
` η max

1ďjďk
dj ď

γ

2
`
γ

2
“ γ

Hence
max
αPE0

min
α1PEη

}α´α1} ď γ

whenever η ď minp1, γ{p2 max1ďjďk djqq. The argument
for η ă 0 is symmetric. Therefore gpηq Ñ 0 as η Ñ 0.
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(a) Linear example.
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Figure 7. Test losses of different reweighing algorithms for linear and cubic models.
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(a) Linear example.
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(b) Cubic example.

Figure 8. Reweighing for different models. The model class is correctly specified in (a), while is noticeably misspecified in (b).

Appendix B
This appendix shows the experimental results of covariate
shift scenario for the synthetic data in Section 5.1. Fol-
lowing the setting in Section 5.1, we generate 100 train-
ing points where xtr „ N p0.5, 0.52q and 100 test points
where xte „ N p0, 0.32q. This scenario is adapted from
Shimodaira (2000). The performance of both linear model
and cubic model are investigated for this covariate shift
scenario. Figure 7 reports the test losses (mean and one
standard deviation as errorbar) of different reweighing al-
gorithms over 10 trials. Obviously, reweighing is relatively
effective when there is no dominant strategy in the under-
lining model class (Figure 7(b)), compared to the relatively
well specified case (Figure 7(a)), where reweighing does
not reduce the test loss significantly. To see how reweigh-
ing behaves for different model classes, Figure 8 provide
one trial of the experiment. Although in both cases, the
learning procedure focus on a subset of training points,
reweighing is more influential in the cubic example. As the
model class is well specified in Figure 8(a), learning from
a subset of training points can still recover the global struc-

ture of the true model. However, in Figure 8(b), focusing
on a subset of training points is more likely to recover local
structure of the true model in the test region, and thus the
reweighed model performs better in the test region com-
pared to the unweighed model.


