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Abstract
Supervised linear embedding models like WSA-
BIE (Weston et al., 2011) and supervised seman-
tic indexing (Bai et al., 2010) have proven suc-
cessful at ranking, recommendation and annota-
tion tasks. However, despite being scalable to
large datasets they do not take full advantage of
the extra data due to their linear nature, and we
believe they typically underfit. We propose a new
class of models which aim to provide improved
performance while retaining many of the bene-
fits of the existing class of embedding models.
Our approach works by reweighting each com-
ponent of the embedding of features and labels
with a potentially nonlinear affinity function. We
describe several variants of the family, and show
its usefulness on several datasets.

1. Introduction
Given an initial representation of data, one way to perform
learning is to find the parameters of a function that maps
that data to another, possibly lower-dimensional space –
the so-called embedding space. By measuring similarity
in the learnt embedding space, one can solve a variety of
tasks, such as classification, retrieval, ranking, recommen-
dation or regression. Linear embedding models have had a
high degree of success in all these applications, for example
singular value decomposition (SVD) for recommendation
(Billsus & Pazzani, 1998; Koren et al., 2009), latent seman-
tic indexing (LSI) for retrieval (Deerwester et al., 1990)
and newer methods like supervised semantic indexing (Bai
et al., 2010) and WSABIE which use a supervised ranking
objective instead (Weston et al., 2011; Bai et al., 2010).
These models are simple to understand and implement, and
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are scalable to large training sets in terms of number of ex-
amples and features due to the low dimensionality of the
embedding. However, despite their success, their perfor-
mance largely depends on the quality of the original fea-
tures and due to their linear nature they can tend to underfit
(Bai et al., 2010).

Our goal in this paper is to develop a class of embedding
models that retains the beneficial qualities of standard lin-
ear embedding models while trying to improve on their
shortcomings. We desire models that have high enough
capacity to capture things of interest, are trained easily
(have reliable optimization that scales to large data), are
fast enough at test time, and if possible are simple to un-
derstand and implement as well.

The proposed class of models are called affinity weighted
embedding (AWE) models. Analogous to, but not the same
as, how kernel methods generalize linear models, we al-
low the user to define an affinity function. Model infer-
ence works by reweighting, using the affinity function, each
part of the sum that comprises the embedding of input fea-
tures and labels, thus giving a potentially nonlinear model.
Similarly to kernel methods, one is free to define/engineer
the affinity function that works best for a specific task or
dataset. This gives both modeling power and control to
the designer. We also explore the possibility of learning
affinity functions rather than fixing them in advance. Suit-
able choices of affinity function can lead to higher capacity
models that outperform linear models, and sometimes to
faster models at inference time as well. We give results on
a variety of datasets showing the usefulness of these vari-
ous choices – for music annotation, image annotation and
YouTube video recommendation.

The rest of the paper is organized as follows. In section 2
we give an overview of classical linear embedding models,
and in section 3 we describe our proposed approach which
is a generalization of them. We then give examples of affin-
ity functions and describe training methods. In section 4 we
describe related work and in section 5 we detail the experi-
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ments we performed. Finally, section 6 concludes.

2. Linear Embedding Models
Standard linear embedding models are of the form:

fEMB(x, y) = x>U>V y =
∑
ij

xiU
>
i Vjyj . (1)

where x ∈ R|X | are the input features and y ∈ R|Y| are the
output features. The output is either a possible label (in the
annotation case), a document (in the information retrieval
case) or an item (in the recommendation case). In the an-
notation case the output is typically a “one-hot” vector of
all zeros and a single one in the dimension that indicates
that particular class, where there are |Y| classes. In the rec-
ommendation case the one-hot representation is also often
used, and |Y| is the number of items. In the information
retrieval case the document is often represented as a bag
of words, so Y is the dictionary of words, and a particular
document is then represented as a sparse vector, e.g. with
tf-idf weighting.

To score a given input-output pair, both the input and the
output are mapped into a d-dimensional embedding space
using the d × |X | and d × |Y| matrices U and V and then
similarity in the embedding space is performed using a dot
product. In some setups, other metrics such as Euclidean
distance or cosine similarity are also used. At prediction
time, one computes the above score f(x, y) for each pos-
sible label, and then sorts (or otherwise keeps the top k
labels, depending on the task), largest score first.

These types of models are used in a variety of applica-
tions. For example, in the task of collaborative filter-
ing, one is required to rank items according to their sim-
ilarity to the user, and methods which learn latent rep-
resentations of both users and items have proven very
effective. In particular, singular value decomposition
(SVD) (Billsus & Pazzani, 1998; Koren et al., 2009) and
non-negative matrix factorization (NMF) (Lee & Seung,
2001) are two standard methods that at inference/prediction
time use equation (1), although the methods to learn the ac-
tual parameters U and V themselves are different. In the
task of document retrieval, on the other hand, one is re-
quired to rank text documents given a text query. The clas-
sical method latent semantic indexing (LSI) (Deerwester
et al., 1990) is an unsupervised approach that learns from
documents only, but still has the form of equation (1) at
test time. Other popular methods include probabilistic la-
tent semantic analysis (PLSA) (Hofmann, 1999) and latent
dirichlet allocation (LDA) (Blei et al., 2003).

More recently, supervised methods have been proposed that
learn the latent representation from (query, document) rele-
vance pairs, e.g. the method supervised semantic indexing

(SSI) (Bai et al., 2010). Finally, for multiclass classifica-
tion tasks, particularly when involving thousands of possi-
ble labels, latent models have also proven to be very useful,
e.g. the WSABIE model performs well on large-scale im-
age (Weston et al., 2011) and music (Weston et al., 2012)
annotation tasks. The latter algorithm also performs well
for recommendation (Makadia et al., 2013; Weston et al.,
2013).

Linear embedding models scale well to large data and are
simple to implement and use. However, as they contain no
nonlinearities, other than in the feature representations x
and y, they can be limited in their ability to fit large com-
plex datasets, and typically seem to underfit, see e.g. (Bai
et al., 2010) section 4.5 and figure 2.

3. Affinity Weighted Embedding Models
In this work we propose the following generalized embed-
ding model:

fAWE(x, y) =
∑
ij

Gij(x, y) xiU
>
i Vjyj . (2)

where G is a function that measures the affinity between
two points. Given a pair x, y and feature indices i and j, G
returns a scalar. Large values of the scalar indicate a high
degree of match between feature i of input x and feature j
of label y.

If G is chosen beforehand it can be seen as a way of en-
coding prior knowledge about these pairwise relationships
analogous to choosing the kernel in kernel methods such as
in support vector machines (SVMs) (Vapnik, 1998). How-
ever, in contrast to kernels, G is not defined in the model
as being computed over all training examples, but over all
labels. If a particular feature on the input side, for a given
label, is irrelevant then a good choice of G would likely
downweight it. Further, if a particular label (or feature of
a label) is irrelevant for a given input, a good choice of G
would likely downweight that too. Similarly, relevant fea-
tures or labels should be upweighted.

Potentially, G can also be learnt rather than being speci-
fied beforehand, which can also be seen as related to the
research area of learning kernels, see e.g. (Chapelle et al.,
2002; Cortes et al., 2009).

Different methods of choosing (or learning) G lead to dif-
ferent variants of our proposed approach. In the following
subsection we will give some examples of specific choices
one can employ. First, however, we describe some general
recipes for constructing a function G:

• Gij(x, y) = c for some constant c. This is the base-
line case. If G returns a constant our model clearly
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reverts to the classical linear embedding model pre-
dictions using (1).

• Gij(x, y) = G(x, y). G can be chosen such that it
gives the same outputs for all i and j for a given pair
x, y, i.e. Gij(x, y) = G(x, y). In this case each fea-
ture index pair i, j returns the same scalar so the model
reduces to:

f(x, y) = G(x, y) x>U>V y.

In the special case of X = Y one could use a known
kernel function such as a radial basis function (RBF)
(Shawe-Taylor & Cristianini, 2004) for example. For
the more general case, when the dimensionality of the
input and label are not the same, and other approaches
must be employed.

• Another way to compare x and y is by running over
a set of m known training pairs and scoring based on
those pairs:

G(x, y) =

m∑
i=1

Kx(x,xi)Ky(y,yi) (3)

where x and y are the sets of vectors from the training
set, and Kx and Ky are kernel functions that operate
on inputs and labels respectively. See the next subsec-
tion for concrete examples.

• Gij(x, y) = Gij where G is a |X | × |Y| matrix. In
this case the returned scalar for i, j is the same inde-
pendent of the input vector x and label y, i.e. it is a
reweighting of the feature pairs. This gives the model:

f(x, y) =
∑
ij

GijxiU
>
i Vjyj .

This is likely only to be useful in large, possibly
sparse, feature spaces, e.g. if Gij represents the
weight of a word pair in an information retrieval task
or an item pair in a recommendation task.

• Further, it is possible that Gij could take a particular
form, e.g. it is represented as a low rank matrix Gij =

Û>i V̂j . Or, for a simpler model, we set Û = U and
V̂ = V , i.e. to be the same as the parameters used in
eq. (2). Finally, we can introduce a nonlinearity via
an activation function s : R 7→ R. Then, we have the
function:

Gij(x, y) = s(xiU
>
i Vjyj). (4)

We describe some specific examples of this kind of
function in the next subsection.

3.1. Specific Choices of Gij(x, y)

We now describe some specific choices of G. In order for
G to produce a real-valued weight for its given arguments
it is necessary for it to somehow compare x and y even
though they may be of differing dimensionality.

In practice, we will explore two basic approaches to sur-
mount this difficulty: (i) first map x and y to a common
space and then perform a nonlinearity (cf. eq (4)); or (ii)
compare x and y to known examples of the pairs indepen-
dently, thus avoiding comparing x and y directly (cf. eq.
(3)). We give specific examples of several possible choices
of G that follow one of the above two approaches.

Sigmoid
Gi,j(x, y) = s′(xiU

>
i Vjyj) (5)

where s′ is a sigmoid function, for example the logistic
function:

s′(η) =
1

1 + e−η
.

This has the effect of switching off low scoring features,
and only “activating” high scoring ones. It depends upon
the matching score xiU>i Vjyj where U and V must be
learnt appropriately (i.e. to activate and to switch off the
right features for good performance).

Linear Sigmoid A similar choice is the linear sigmoid
which approximates a sigmoid with a piece-wise linear
function:

Gi,j(x, y) = sl(x
>U>V y) (6)

where

sl(η) =


β if η < β,
η if β ≤ η ≤ α,
α otherwise.

Here, the parameters α and β must also be chosen.

Max The max affinity is defined as:

Gmax(x, y) = max
i
xiU

>
i V y. (7)

This has the effect of taking the input feature with the max-
imum affinity with the output label being considered and
reweighting the overall score using that weight. In a rec-
ommendation task, it thus could promote labels with a close
nearest neighbor in the input. Consider for example a task
like music recommendation, if the user has listened to a
song very similar to the target output, a large weight will
be used.

Top-k The max affinity can be generalized to the top-k
affinity, whereby the weight is assigned as the sum of the
k most similiar input features to give a smoother weighting
function.
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The affinity function is given by:

Gtop−k(x, y) =
∑
j≤k

xtjU
>
tj V y.

where t indexes the scores of the inputs such that they are
sorted:

(xt1U
>
t1V y) ≥ (xt2U

>
t2V y) ≥ . . . (xt|x|U

>
t|x|
V y).

For k = 1 we obtain the max affinity function.

RBF The RBF affinity only weights examples, not indi-
vidual input and label features following eq. (3):

GRBF (x, y) =

m∑
i=1

exp(−λx||x−xi||2) exp(−λy||y−yi||2)

where x and y are the sets of vectors from the training set,
and λx and λy are hyperparameters.

Latent RBF The RBF affinity may perform poorly when
the input features are too sparse. One way to improve it is to
first map the inputs and/or labels into a lower dimensional
latent space, and then compute the RBF there instead:

G(x, y) = (8)
m∑
i=1

exp(−λx||Ux− Uxi||2) exp(−λy||V y − V yi||2)

Again, this requires that the parameters U and V be learnt
appropriately for good performance.

Hybrid Latent RBF In the case of a finite, fixed set of
labels, particularly if the set is well covered by the training
data, it may be better to consider a hybrid of the RBF and
latent RBF:

G(x, y) =

m∑
i=1

exp(−λx||Ux−Uxi||2) exp(−λy||y−yi||2)

Here, a latent space is used for comparison of input x with
the input part of the training data, but for the labels the
original space is used. That is because we may not have a
problem with sparsity in the label space so the latent space
there is no longer needed. In the extreme case of very large
λy we instead get:

G(x, y) =

m∑
i=1

exp(−λx||Ux− Uxi||2)[y = yi]

i.e, we only sum over the subset of the training data which
have the label y (the parts of the sum where the labels y
and yi are equal). This is useful in the label annotation or
item ranking settings where a label from a finite fixed set
is either selected or not, but would not be a good idea in
an information retrieval setting where a test document may
not match any of the training documents.

k-NN Affinity Instead of computing a smooth G as
above we can clip (sparsify) G by taking only the top k
nearest neighbors to Ux, and set the rest to 0:

G(x, y) =
∑
j≤k

exp(−λx||Ux− Uxtj ||2)[y = ytj ] (9)

where

||Ux−Uxt1 ||2 ≤ ||Ux−Uxt2 ||2 ≤ . . . ||Ux−Uxt|X|||
2

So, for each training example, we simply have to find the k
nearest neighboring examples in the embedding space, and
then we reweight their labels using eq. (9). This means
for any training point only at most k labels have a non-zero
score, so if U is known it makes it feasible to compute all
the neighbors in advance and store in memory or on disk,
even when the number of labels is very large. We use this
trick to speed up training via an iterative method, described
in section 3.3.

Approximate k-NN Affinity As computing nearest
neighbors can be slow one might want to consider approx-
imate methods for speeding that part up. Many algorithms
have been developed for this goal and typically rely on ei-
ther hashing in the input space e.g. via locality-sensitive
hashing (LSH) (Indyk & Motwani, 1998) or through build-
ing a tree over the inputs (Bentley, 1975). Applying one of
those approaches to find the indices of the nearest neigh-
bors t1, . . . , tk, then computing eq. (9) would result in a
much faster method.

Cluster Affinity Finally, in the same spirit of providing
an affinity function that is fast to compute, one could sim-
ply use the following:

G(x, y) =

{
1, if Ux and y are in the same cluster,
0, otherwise.

(10)
First, one uses a clustering algorithm of choice to hierarchi-
cally cluster the embedded examples Uxi, i = 1, . . . ,m
(e.g. hierarchical k-means). Then, one keeps the top N
most frequently occuring labels in each leaf node. Infer-
ence time with such an affinity function is now actually
faster than even a linear embedding model. That is because
a linear embedding model has to score all labels, but eq. (2)
using (10) only has to score the labels that are in the same
cluster as the input.

While in this paper we do not perform any experiments us-
ing this affinity function, we note that the work of (Makadia
et al., 2013) already developed exactly this approach, with-
out seeing it within our general framework. They reported
large speedups (from 30-1000x faster) with no loss in pre-
cision, and sometimes with improved precision as well due
to the nonlinear nature of the affinity.
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Algorithm 1 Affinity Weighted Embedding SGD training.
Initialize model parameters U and V (we use mean 0,
standard deviation 1√

m
.

repeat
Pick a random example input x.
For example x randomly pick a positive item x ∈ Yx.
Compute f(x, y), defined in eq. (2).
Set N = 0.
repeat

Pick a random item ȳ ∈ Y \ Yx.
N = N + 1.

until f(x, ȳ) > f(x, y)− γ or N ≥ |Y \ Yx|
if f(u, d̄) > f(u, d)− γ then

Make a gradient step to minimize:
L
( |Y\Yx|

N

)
max(0, γ + f(x, ȳ)− f(x, y)).

Project weights to enforce constraints, e.g. if
||Vi|| > 1 then set Vi ← Vi/||Vi|| (and similar for
U ).

end if
until validation error does not improve.

3.2. Training Objective

Now that we have described the model, the next step is to
describe how to train it. We could train such a model us-
ing any standard objective, for example a regression (least
squares) approach such as in SVD, but in this work we fo-
cus on learning to rank as it has previously been observed to
perform well for linear embedding models on a number of
tasks (Shi et al., 2012; Weston et al., 2011; 2013). Note that
the ranking objective is a supervised objective and requires
training data consisting of positive input-output examples
which we denote xi, i = 1, . . . ,m and Yxi

, i = 1, . . . ,m.
Here Yx denotes the set of positives labels for a given input
x. For example, in a recommendation task this could be the
set of items that the user has purchased / watched / listened
to, depending on the context. If each training example has
only one possible relevant label/item/document it can be
more convenient to write xi, yi, i = 1, . . . ,m instead.

Our starting point is the objective of the linear embedding
model, WSABIE (Weston et al., 2011), which learns the
model parameters by minimizing:

m∑
i=1

∑
y∈Yxi

∑
ȳ /∈Yxi

L
(
ranky(x)

)
max(0, γ+f(x, ȳ)−f(x, y)),

(11)
where γ is the margin, a hyperparameter one must choose.

In the absence of negative data, the above objective tries
to rank all the positive labels as highly as possible. Here,
ranky(x) is the rank of the positive label y relative to all

the negative labels:

ranky(x) =
∑
ȳ /∈Yx

I(f(x, y) ≤ γ + f(x, ȳ)),

and L(η) converts the rank to a weight. Choosing L(η) =
Cη for any positive constant C optimizes the mean rank,
whereas a weighting such as L(η) =

∑η
i=1 1/i opti-

mizes the top of the ranked list, as described in (Usunier
et al., 2009). To train with such an objective, stochas-
tic gradient descent (SGD) has previously been employed,
i.e. during each SGD step one samples a triple (x, y, ȳ)
from the sum in eq. (11). For speed the computation
of ranky(x) is then replaced with a sampled approxima-
tion: sample N items ȳ until a violation is found, i.e.
max(0, γ + f(x, ȳ)− f(x, y))) > 0 and then approximate
the rank with |Y \ Yx|/N . At each step, one typically also
enforces that ||Ui|| ≤ 1 and ||Vj || ≤ 1, for all i and j, as a
means of regularization.

For a fixed affinity functionG (i.e., which we are not learn-
ing) we can use almost the same optimization procedure
as used for the linear embedding model in (Weston et al.,
2011), we just need to compute the relevant gradients for
our model. Pseudocode is given in Algorithm 1. In the
next section we discuss training for the case of learning G
as well.

3.3. Learning G

Here, for the case of a parameterized G, we describe two
ways to learn the parameters of G as well as the model
parameters U and V : either jointly or via an iterative ap-
proach.

Joint learning The most straight-forward method is sim-
ply to perform SGD as in Algorithm 1, but update the pa-
rameters of G as well during the gradient update step. This
works well for some choices of G, such as the sigmoid or
top-k affinities, but if they are costly to compute such as the
k-NN affinity (cf. eq. (9)) it can be very slow. For that rea-
son we explore an iterative solution instead for those cases.

Iterative learning While it may be possible to learn the
parameters ofG jointly with U and V an iterative approach
is also possible:

1. Train a standard embedding model: f(x, y) =
x>U>V y as an initialization step for U and V .

2. Train G, fixing U and V .

3. Train U and V , fixing G.

4. Possibly repeat steps 2-3, or else stop early.
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For affinity functions employing the parameters U and V
(see subsection 3.1) step 2 just requires G to be built using
the embedding U learnt in step (1) (i.e. no actual optimiza-
tion), and that is then used to build a new embedding model
in step (3). Due to the iterative nature of the steps we can
compute G for all examples in parallel using a MapReduce
framework, and store the training set necessary for step (3),
thus making learning efficient. This procedure works well
e.g. for the k-NN affinity.

4. Relation to Previous Work
Some of the simplest forms of machine learning are lin-
ear models, e.g. linear SVMs (Vapnik, 1998). They are
easy to understand and implement and engineers can en-
code knowledge via features in a straight-forward fashion.
However, their capacity is fixed so performance will satu-
rate as training sizes increase. Moreover, these models can
take too much memory for large scale tasks. e.g. for hun-
dreds of thousands of labels (unless sparsity is skillfully
employed).

Linear embedding models are almost as simple, having
similar properties to linear models, but can take much less
memory. This is because they effectively factorize the
model parameters rather than storing the full matrix. We
already detailed many examples of these methods in sec-
tion 2.

It is hard for embedding models to overfit because of the
low dimension used, and because they are effectively shar-
ing weights between all classes by sharing the embedding
space (a kind of multi-tasking) in contrast to e.g. one-vs-
rest SVMs. For example, this may be advantageous in the
case where there are very few examples for some classes
and many examples for others. However, these models can
underfit - their capacity is small due to the linear mapping
into a low dimensional embedding space, and saturates on
large scale datasets. There is an inability to memorize cer-
tain feature-class pair relationships due to the low rank of
the matrix U>V . For example, in an information retrieval
setting if one wants to model whether input x and label
y share the same bag of words, this is not exactly pos-
sible because that would require a full rank matrix, i.e.
f(x, y) = x>Iy, but we only have f(x, y) = x>Wy,
where W = U>V . Similarly in recommendation they can-
not memorize the user-item matrix. Some solutions to this
problem have been explored in (Bai et al., 2010). In gen-
eral, semantically similar objects will obtain close-by vec-
tors in the embedding space, which leads to good general-
ization properties, e.g. word synonyms are close. However,
this can also be a curse when exact differentiation between
similar things is required, e.g. the difference between Mon-
day and Tuesday may be important for some queries, but

they will likely have similar vectors1. AWE fixes some of
the above problems because the memorization ability lost
in embedding models can be encoded in the affinity func-
tion G. Moreover, AWE also retains the desirable general-
ization properties of the embedding vectors.

Of course, there exist many other ways of building non-
linearities in maching learning methods. There are several
neural network architectures that can be seen as using em-
beddings followed by nonlinearities. For example, the neu-
ral network language model of Bengio et al. (2003) learns
an embedding vector for each word and then nonlinearly
combines them to predict the next word to occur in a sen-
tence. Since then, other works have explored further text
embedding applications, e.g. (Collobert et al., 2011). In
a more general setting, siamese network approaches learn
a nonlinear embedding for matching two items, they are
often applied to images (Salakhutdinov & Hinton, 2007;
Hadsell et al., 2006).

Nearest neighbor is another way achieving nonlinearity by
way of memorization, although generalization may be lack-
ing due to the local nature of the decision. Kernel methods,
e.g. with an RBF kernel, can be see as trying to fix this
problem by learning the global weighting of the RBF cen-
ters. However, other kernels can be chosen to encode var-
ious prior knowledge as well, see (Shawe-Taylor & Cris-
tianini, 2004) for a review. As previously discussed, in that
regard affinity functions have some commonality with ker-
nels and kernel methods.

5. Experiments
We conducted experiments on three different tasks: (i)
Magnatagatune (annotating music with text tags); (ii) Im-
ageNet (annotation images with labels); and (iii) YouTube
video recommendation (recommending videos for a given
user). WSABIE has been applied to all three tasks previ-
ously (Weston et al., 2012; 2011; Makadia et al., 2013; We-
ston et al., 2013).

5.1. MagnaTagATune

The Magnatagatune dataset requires one to annotate music
with text tags (Law et al., 2009). Each example consists
of the audio features of the song as input, and a set of one
or more tags as the labels. There are 16,289 data examples
used for training and validation, 6498 examples used for
test, and 160 possible tags. Performance is measured using
precision at 1 and 3.

To represent the audio as feature vectors we used MFCC
features for both WSABIE and our method, similar to those
used in (Weston et al., 2012). For both models we used an

1Example given in Percy Liang’s invited oral at ICML 2013.
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embedding dimension of 100. We optimized the other hy-
perparameters of WSABIE (learning rate and margin) and
then used the same hyperparameters for AWE. We used the
latent k-NN affinity function (cf. eq. (9)), with k = 20, and
optimized with the iterative training method, using only
3 steps, Due to the choice of G, it makes sense to com-
pare our approach to standard k-NN (reoptimizing k in that
case), and consider it as a baseline. Finally, as we use a
latent k-NN affinity we also compare to standard k-NN op-
erating in the embedding space induced by WSABIE, i.e.
first mapping the inputs x to the embedding space using
the learnt matrix U , and then computing the neighbors as
usual.

The results are reported in Table 1. Our method improved
over WSABIE slightly, and was superior to the k-NN base-
lines. The latter shows that the improvement does not come
directly from the affinity function alone but rather from
the way the model uses that affinity function to improve
the learnt embeddings. However, k-NN in the embedding
space was superior to k-NN in the original space, showing
the power of the embedding representation. We speculate
that the improvement of AWE over WSABIE is only small
due to the small size of the dataset (only 16,000 training
examples, and 104 input dimensions for the MFCCs). We
believe our method will be more useful on larger tasks.

Table 1. Magnatagatune Results
Algorithm Prec@1 Prec@3

k-Nearest Neighbor 39.4% 28.6%
k-NN (Embedding space) 45.2% 31.9%
WSABIE 48.7% 37.5%
Affinity Weighted Embedding 52.7% 39.2%

5.2. ImageNet

ImageNet (Deng et al., 2009) is a large scale image dataset
organized according to WordNet (Fellbaum, 1998). Con-
cepts in WordNet, described by multiple words or word
phrases, are hierarchically organized. Mechanical Turk is
employed to attach quality-controlled human-verified im-
ages to these concepts, and the dataset is growing as more
images are reliably labeled.

We used the Fall 2011 version, which contains about 10M
images, from which we kept 10% for validation, 10% for
test, and the remaining 80% for training. There are around
21,000 possible labels that can be attached to an image
which range from animals (“white admiral butterfly”) to
objects (“refracting telescope”). Our task is, for a given
test image, to rank the labels.

We used a similar feature representation as in (Weston

et al., 2011) which combines multiple feature representa-
tions which are the concatenation of various spatial and
multiscale color and texton histograms for a total of about
5×105 dimensions. Then, KPCA is performed (Schoelkopf
et al., 1999) on the combined feature representation us-
ing the intersection kernel (Barla et al., 2003) to produce a
474 dimensional input vector. The same input features are
used for both linear embedding (WSABIE) and our method,
AWE. We used an embedding dimension of 128 for both.

In (Weston et al., 2011) it was shown that the ranking al-
gorithm WSABIE performs well on this task. WSABIE
was shown to be superior to unbalanced one-vs-rest (see
also (Perronnin et al., 2012)), PAMIR (Grangier & Ben-
gio, 2008), and k-nearest neighbors. Note that since that
result deep neural networks (Krizhevsky et al., 2012; Dean
et al., 2012) have been shown to be state-of-the-art on this
dataset, outperforming other methods by a significant mar-
gin.

We used a similar setup for AWE as in the MagnaTagATune
dataset: we use the same hyperparameters as for WSABIE
and we employ the latent k-NN affinity function (cf. eq.
(9)), with k = 20. Again we use k-NN operating in the
embedding space as a baseline.

The results are reported in Table 2. On this task we ob-
tained large improvements over WSABIE. Indeed, our
method now appears competitive with the convolutional
neural network model of (Dean et al., 2012). Note, that this
method was run on a different train/test split, although that
is unlikely to be a large factor due to the large sizes of the
datasets. However, we believe the method of (Krizhevsky
et al., 2012) would likely perform better again if applied
in the same setting, but the experiments are in a different
setup (they use the Fall 2009 version with 10k classes).

Table 2. ImageNet Results (Fall 2011, 21k labels). The result
marked with an asterisk is on a different train/test split.

Algorithm Prec@1

WSABIE (KPCA features) 9.2%
k-Nearest Neighbor (WSABIE space) 13.7%
Affinity Weighted Embedding 16.4%
Convolutional Net (Dean et al., 2012) 15.6%∗

5.3. YouTube Recommendations

We next considered another very large scale problem, that
of recommending videos from a large online video commu-
nity, www.youtube.com. The dataset consists of a large
set of anonymized users, where for each user there is a set
of associated items based on their watch/listen history as
well as additional features that indicate their preferences.

www.youtube.com
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The user-item matrix is a sparse binary matrix. The million
most popular videos are considered as the set of items (la-
bels) to rank, and our aim is to rank these videos for a given
user, to suggest videos that are relevant to the user. The
training data is thus of the form where each training pair is
based on an anonymized user. For each user the input xi
is a sparse vector of videos that the user has watched. The
dataset consists of 100s of millions of examples (users). We
set aside 0.5M examples for validation, and 1M for test.

Table 3. YouTube Results
Algorithm Prec@1 Prec@10

SVD -54% -57%
WSABIE - -
AWE Gsig β = −1 +2% +12%
AWE Gsig β = −0.5 +9% +16%
AWE Gsig β = 0 +31% +29%
AWE Gsig β = 0.25 +51% +40%
AWE Gsig β = 0.5 +28% +20%
AWE Gtop−k k = 1 +6% +5%
AWE Gtop−k k = 5 +18% +17%
AWE Gtop−k k = 7 +19% +19%
AWE Gtop−k k = 11 +21% +21%

To construct evaluation data, we randomly selected 5
watched items for testing per user, and kept them apart
from training. At prediction time for the set of test users
we then ranked all test items (i.e. items that they have not
watched/listened to that are present in the training set) and
observe where the 5 watched test items appear in the ranked
list of recommendations. We then evaluate precision at 1
and 10 metrics.

WSABIE has previously been shown to perform well on this
problem, including being employed in live experiments on
www.youtube.com (Makadia et al., 2013; Weston et al.,
2013). We took the best performing existing WSABIE sys-
tem (although for memory and speed reasons we fixed the
embedding dimension to bem = 64) and used the same pa-
rameters for AWE. For AWE we tried two different affinity
functions, the max/top-k affinity (cf. eq. (7)) and the linear
sigmoid (cf. eq. (6)). We trained using joint learning.

As well as comparing to the natural baseline WSABIE, we
also compare to SVD, a popular method for recommenda-
tion tasks. For SVD we use the L2-optimal matrix fac-
torization for the complete matrix with log-odds weight-
ing on the columns, which downweights the importance
of the popular features, as that worked better than uniform
weights.

Results are given in Table 3, we report relative changes in
the metrics compared to the WSABIE baseline. Firstly, the
WSABIE baseline outperforms SVD, as has been observed

in previous work (Weston et al., 2013) presumably because
it is better at optimizing the evaluated ranking metrics due
to its loss function which (approximately) optimizes them.

We then report results of AWE with the two affinity func-
tions Gsig and Gtop−k with varying choices of their hyper-
parameters. We observe improvements across a wide-range
of these parameters. The smallest gains are for Gtop−k for
k = 1 which uses only the max scoring feature (c.f. eq.
(7)), perhaps because choosing only the max is too brittle
and ignores too many features, and for Gsig for β = −1
(in all cases α = 1). The largest gains are a 51% im-
provement in precision@1 and a 40% improvement in pre-
cision@10 using Gsig with β = 0.25. For both affinity
functions, it appears that focusing on the features which are
more related on a per-label basis (via the affinity weighting)
gives improvements. One can see this as a per-example
and per-label form of feature selection. For example, in
the YouTube case it means that for a particular music video
one might focus on the music videos a particular user has
viewed (or, depending on the hyperparameter even more
focused such as only the videos in the same music genre)
whereas for a comedy video it might focus only on other
comedies, and so forth.

6. Conclusions
In conclusion, we proposed a class of models: Affinity
Weighted Embedding (AWE). By incorporating an affin-
ity function G into supervised linear embedding we obtain
a flexible approach for encoding knowledge. Depending
how it is defined, G can provide a good blend of memo-
rization and generalization, as well as potentially faster in-
ference. We gave several examples how such an approach
with different specific choices of G can benefit real-world
applications.

Future work should answer several questions. Firstly, what
other functions G are there that are interesting and useful?
Is there a choice that gives both improved generalization
and speed without prohibitive memory consumption, i.e.
so that it has no drawbacks at all?

For some choices of G we have explored, e.g. via k-NN
affinity, the cost of increased capacity (and improved per-
formance) from usingG is that it both increases the storage
and computational requirements compared to linear em-
bedding models. For example, one might have to compute
the nearest-neighbors, although approximations and/or par-
allel computing can be employed. However, most nonlin-
ear models, for example SVMs, neural networks or nearest
neighbor have this problem as well. One avenue to explore
in that regard is to use approximate methods in order to
compute G.

www.youtube.com
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