Large-margin Weakly Supervised Dimensionality Reduction
(Supplementary Material)

1. Proof of Theorem 1

Theorem 1. Fix § > 0. For any preference pair (21, z3) in low-dimensional space Z C R%, which can be partitioned into
K disjoint sets, denoted by {C;—1}X |, assume that ||z1 — 23| € [a,b]. Given a linear preference learning algorithm A
{w:z — R} and |w|| < W, we have for any s C Z,

[0(Ag, 21, 22) — L(As, 51, 82)| < W/2b% — 202 cos(6)

Vi, j=1,--- K 181,21 € C; and sg,25 € Cj,

cos(z1 — 22,81 — S2) > cos(f).
Hence Ais (K, W /2b? — 2a? cos(0))-robust.

Proof. We can partition Z into K disjoint sets so that if preference pairs (s1, $2) and (21, z2) are close, then
cos(z1 — 22,81 — s2) > cos(0).

Therefore,

|€(w7 21, 22) - f(w, S1, 52)|

=|[1 = (w, 21 = 22)] " = [1 = (w, 51 — 52)] 7|

< [w, (21 — 22) — (51 — 52))

< W|[(z1 — 22) — (51 — s2).
For the norm term, we have

[(z1 = 22) = (s1 — s9)|?

= [lz1 — 22| + [[s1 — s2/|* — 2(21 — 22,52 — 52)
< 2b% — 242 cos(0).

By combining the above results, the proof is completed. O

2. Proof of Theorem 2

Theorem 2. If a preference learning algorithm Ais (K, €(-))-robust and the training sample s is composed of n preference
pairs {p; = (s1, 82)}"_, whose examples are generated from p, then for any § > 0, with probability at least 1 — 6, we
have,

£(A)  fomp (A1) < els) + 2, [ 22+ 2L/D)

n

Proof. Let N; be the set of index of points of s that fall into the C;. (|Ny],---,|Nk]) is a IID random variable with
parameters n and (u(C1),- -+ , u(Ck)). We have

[L(As) — Lemp(As)]

K K n

1
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The first and second inequalities are due to the triangle inequality, and the third inequality is because of Zfil w(Cy) =1
and Z =2 = 1. Finally, the last inequality is the application of Proposition 1.



