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Abstract

In display advertising, click through rate (CTR)
prediction is the problem of estimating the prob-
ability that an advertisement (ad) is clicked when
displayed to a user in a specific context. Due
to its easy implementation and promising perfor-
mance, logistic regression (LR) model has been
widely used for CTR prediction, especially in in-
dustrial systems. However, it is not easy for LR
to capture the nonlinear information, such as the
conjunction information, from user features and
ad features. In this paper, we propose a nov-
el model, called coupled group lasso (CGL), for
CTR prediction in display advertising. CGL can
seamlessly integrate the conjunction information
from user features and ad features for modeling.
Furthermore, CGL can automatically eliminate
useless features for both users and ads, which
may facilitate fast online prediction. Scalabili-
ty of CGL is ensured through feature hashing and
distributed implementation. Experimental results
on real-world data sets show that our CGL model
can achieve state-of-the-art performance on web-
scale CTR prediction tasks.
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1. Introduction
Recently, online advertising has become the most popular
and effective approach to do brand promotion and produc-
t marketing. It is a multi-billion business on the web and
accounts for the majority of the income for the major inter-
net companies, such as Google, Yahoo and Alibaba. Dis-
play advertising is a big part of online advertising where
advertisers pay publishers for placing graphical advertise-
ments (ads) on publishers’ web pages (Chapelle et al.,
2013). The publishers allocate some positions on their web
pages and sell them to different advertisers. Users visit the
web pages and can view the published ads. There are some
other roles, such as ad agencies and publisher networks, to
compose the complex advertising system (Muthukrishnan,
2009). But that is not the focus of this paper. So we will just
focus on the scenarios with a user-advertiser-publisher tri-
partite business, in which three parties have separate goals
that can be reduced to a unified task in the end. The ad-
vertisers pay more attention on the desired user actions,
such as clicks on the ads, subscriptions to the mailing list,
or purchases of products. Different advertisers target dif-
ferent kinds of users. For example, a basketball company
will be interested in users who bought many sports equip-
ments recently, and a hotel would prefer to display its ads
to people who travel frequently. There are different pay-
ment options for advertisers, such as cost-per-click (CPC),
cost-per-mill (CPM), and cost-per-conversion (CPA) (Mah-
dian & Tomak, 2007). For the publisher part, their goal is to
maximize the revenue from the advertisers and attract more
users to their web pages. So they had better precisely dis-
play suitable ads to a specific user, and avoid affecting user
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experience of the web pages. From the user part, they want
to find useful information from the web pages and find ads
that they are really interested in.

To satisfy the desire of all three parties, an accurate target-
ing of advertising system is of great importance, in which
the click through rate (CTR) prediction of a user to a spe-
cific ad plays the key role (Chapelle et al., 2013). CTR
prediction is the problem of estimating the probability that
the display of an ad to a specific user will lead to a click.
This challenging problem is at the heart of display adver-
tising and has to deal with several hard issues, such as very
large scale data sets, frequently updated users and ads, and
the inherent obscure connection between user profiles (fea-
tures) and ad features.

Recently, many models have been proposed for CTR pre-
diction in display advertising. Some models train standard
classifiers, such as logistic regression (LR) (Neter et al.,
1996) or generalized linear models, on simple concatena-
tion of user and ad features (Richardson et al., 2007; Grae-
pel et al., 2010). Some other models use prior knowledge
like the inherent hierarchical information for statistical s-
moothing in log-linear models (Agarwal et al., 2010) or
LR models (Kuang-chih et al., 2012). In (Menon et al.,
2011), a matrix factorization method is proposed, but it
does not make use of user features. In (Stern et al., 2009),
a probabilistic model is proposed to use user and item meta
data together with collaborative filtering information, in
which user and item feature vectors are mapped into lower-
dimensional space and inner product is used to measure
similarity. However, it does not have the effect of auto-
matic feature selection from user and item meta features.
In addition, inference of the model is too complicated to be
used in a large scale scenario. In (Chapelle et al., 2013),
a highly scalable framework based on LR is proposed, and
terabytes of data from real applications are used for eval-
uation. Due to its easy implementation and state-of-the-
art performance, LR model has become the most popular
one for CTR prediction, especially in industrial system-
s (Chapelle et al., 2013). However, LR is a linear model,
in which the features contribute to the final prediction in-
dependently. Hence, LR can not capture the nonlinear in-
formation, such as the conjunction (cartesian product) in-
formation, between user features and ad features. In real
applications, the conjunction information is very important
for CTR prediction. For example, people who have high
buying power may have more interest in luxury produc-
t than those with low buying power, and college students
may be more likely to buy machine learning books than
high-school students. Better performance can be expected
by exploiting the user-ad two-parts hybrid features through
feature conjunction.

In this paper, we propose a novel model, called coupled

group lasso (CGL) for CTR prediction in display advertis-
ing. The main contributions are outlined as follows:

• CGL can seamlessly integrate the conjunction infor-
mation from user features and ad features for model-
ing, which makes it better capture the underlying con-
nection between users and ads than LR.

• CGL can automatically eliminate useless features for
both users and ads, which may facilitate fast online
prediction.

• CGL is scalable by exploiting feature hashing and dis-
tributed implementation.

2. Background
In this section, we introduce the background of our model,
including the description of CTR prediction task, LR mod-
el, and group lasso (Yuan & Lin, 2006; Meier et al., 2008).

2.1. Notation and Task

We use boldface lowercase letters, such as v, to denote col-
umn vectors and vi to denote the ith element of v. Boldface
uppercase letters, such as M, are used to denote matrices,
with the ith row and the jth column of M denoted by Mi∗
and M∗j , respectively. Mij is the element at the ith row
and jth column of M. MT is the transpose of M and vT

is the transpose of v.

While some display advertising systems have access to on-
ly some id information for users or ads, in this paper we
focus on the scenarios where we can collect both user and
ad features. Actually, the publishers can often collect us-
er actions on the web pages, such as click on an ad, buy
a product or type in some query keywords. They can an-
alyze these history behaviors and then construct user pro-
files (features). On the other hand, when advertisers submit
some ads to the publishers, they often choose some descrip-
tion words, the groups of people to display the ads, or some
other useful features.

We refer to a display of an ad to a particular user in a par-
ticular page view as an ad impression. Each impression is
a case that a user meets an ad in a specific context, such as
daytime, weekdays, and publishing position. Hence, each
impression contains information of three aspects: the user,
the ad, and the context. We use xu of length l to denote
the feature vector of user u, xa of length s to denote the
feature vector of ad a. The context information together
with some advertiser id or ad id information are composed
into a feature vector xo of length d. x is used to denote the
feature vector of an expression, with xT = (xTu ,x

T
a ,x

T
o ).

Hence, if we use z to denote the length of vector x, we
have z = l + s+ d. The result of an impression is click or
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non-click, which makes an instance in the data set.

Given a training set {(x(i), y(i)) | i = 1, ..., N}, in which
xT = (xTu ,x

T
a ,x

T
o ), y ∈ {0, 1} with y = 1 denot-

ing click and y = 0 denoting non-click in an impres-
sion, the CTR prediction problem is to learn a function
h(x) = h(xu,xa,xo) which can be used to predict the
probability of user u to click on ad a in a specific context
o.

2.2. Logistic Regression

The likelihood of LR is defined as h1(x) = Pr(y =
1|x,w) = 1

1+exp(−wTx)
, where w is the parameter (weight

vector) to learn. Please note that the bias term of LR has
been integrated into w by adding an extra feature with con-
stant value 1 to the feature vector. Given a training set
{(x(i), y(i)) | i = 1, ..., N}, the weight vector w is found
by minimizing the following regularized loss function:

min
w

λΩ1(w) +

N∑
i=1

ξ1(w;x(i), y(i)), (1)

ξ1(w;x(i), y(i)) = − log([h1(x(i))]y
(i)

[1− h1(x(i))]1−y
(i)

),

where Ω1(w) is the regularization term.

In real applications, we can use the following L2-norm for
regularization (Golub et al., 1999): Ω1(w) = 1

2 ||w||
2
2 =

wTw
2 . The resulting model is the standard LR model.

We can also use the following L1-norm for regularization:
Ω1(w) = ||w||1 =

∑z
i=1 |wi|, where z is the length of

vector w. The resulting model will be Lasso which can be
used for feature selection or elimination (Tibshirani, 1996).

The optimization function in (1) is easy to implement with
promising performance, which makes LR very popular in
industry. Please note that in the following content, LR
refers to the LR model with L2-norm regularization, and
the LR with L1-norm will be called Lasso as in many liter-
atures (Tibshirani, 1996)

2.3. Group Lasso

The group lasso is a technique to do variable selection on
(predefined) groups of variables (Yuan & Lin, 2006; Meier
et al., 2008). For a parameter vector β ∈ Rz , the regular-
ization term in group lasso is defined as follows:

G∑
g=1

||βIg ||2, (2)

where Ig is the index set belonging to the predefined gth
group of variables, g = 1, 2, · · · , G. The group lasso can
be used together with linear regression (Yuan & Lin, 2006)
or logistic regression (Meier et al., 2008) as a penalty. It is

attractive for its property of doing variable selection at the
group level, where all the variables in some groups will be
zero after learning.

3. Coupled Group Lasso
Although LR has been widely used for CTR prediction, it
can not capture the conjunction information between us-
er features and ad features. One possible solution is to
manually construct the conjunction features from the orig-
inal input features as the input of LR. However, as stated
in (Chapelle et al., 2013), manual feature conjunction will
result in quadratic number of new features, which makes it
extraordinarily difficult to learn the parameters. Hence, the
modeling ability of LR is too weak to capture the complex
relationship in the data.

In this section, we introduce our coupled group
lasso (CGL) model, which can easily model the conjunc-
tion information between users and ads to achieve better
performance than LR.

3.1. Model

The likelihood of CGL is formulated as follows:

h(x) = Pr(y = 1|x,W,V,b)

= σ
(
(xTuW)(xTaV)T + bTxo

)
, (3)

where W is a matrix of size l×k, V is a matrix of size s×k,
b is a vector of length d, σ(x) is the sigmoid function with
σ(x) = 1

1+exp (−x) . Here, W, V and b are parameters to
learn, k is a hyper-parameter.

Furthermore, we put regularization on the negative log-
likelihood to get the following optimization problem of
CGL:

min
W,V,b

N∑
i=1

ξ
(
W,V,b;x(i), y(i)

)
+ λΩ(W,V), (4)

with

ξ(W,V,b;x(i), y(i)) = (5)

− log([h(x(i))]y
(i)

[1− h(x(i))]1−y
(i)

),

Ω(W,V) = ||W||2,1 + ||V||2,1. (6)

Here, ||W||2,1 =
∑l
i=1

√∑k
j=1W

2
ij =

∑l
i=1 ||Wi∗||2 is

the L2,1-norm of the matrix W. Similarly, ||V||2,1 is the
L2,1-norm of the matrix V. From (2), it is easy to find that
the L2,1-norm is actually a group lasso regularization with
each row being a group. Please note that we do not put
regularization on b because from experiments we find that
this regularization does not affect the performance.
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We can find that there are two group lassos in (4), one for
user features and the other for ad features. Furthermore,
the two group lassos are coupled together to determine the
CTR of an impression. Hence, our model is called coupled
group lasso (CGL).

Because (xTuW)(xTaV)T = xTuWVTxa =
xTu (WVT )xa, it is very interesting to see that the
term (xTuW)(xTaV)T in (3) can effectively model the
conjunction information between user features and ad
features. The number of parameters in W and V is only
(l + s)k, where k is typically a small number (less than 50
in our experiments). On the contrary, if we choose to man-
ually construct the conjunction features for LR (Chapelle
et al., 2013), the number of manual conjunction features is
l × s, with both l and s being typically tens of thousands
in CTR prediction. Hence, the number of parameters of
CGL is much less than that of LR with manual conjunction
features, which makes CGL more scalable than LR to
model conjunction features. Furthermore, the less number
of parameters will result in a lower probability to be
overfitting for a model.

Another nice property of CGL comes from the regulariza-
tion term of group lasso. It is easy to find that some rows
of W and V will be all-zero after learning. Because each
row corresponds to a feature of users or ads, we can elim-
inate the features corresponding to all-zero parameter val-
ues. Hence, when we use the learned model for online pre-
diction, it’s not necessary to collect those eliminated fea-
tures for users and ads. This can not only save memory, but
also speed up the online prediction procedure.

3.2. Learning

The goal of our learning algorithm is to find the optimal
values b∗ ∈ Rd,W∗ ∈ Rl×k,V∗ ∈ Rs×k that min-
imize the objective function in (4). The coupled part of
(xTuW)(xTaV)T makes the objective function non-convex.
We adopt an alternating learning method to learn the pa-
rameters. Each time we optimize one parameter with oth-
er parameters fixed. Several iterations will be repeated for
this procedure until some termination condition is satisfied.
More specifically, we first fix the ad parameter V and use
limited-memory BFGS (L-BFGS) (Malouf, 2002; Andrew
& Gao, 2007) to optimize the objective function with re-
spect to (w.r.t) W and b until convergence. Then we fix
the user parameter W, and optimize w.r.t. V and b until
convergence. Obviously, the objective function is convex
in any one of its parameter matrices W or V.

L-BFGS algorithm is in the family of quasi-Newton meth-
ods (Broyden, 1970). L-BFGS stores only a few gradien-
t vectors to approximate the Hessian matrix. Hence, it’s
more suitable for optimization problems with a large num-
ber of variables (Nocedal, 1980; Byrd et al., 1994). To use

the L-BFGS algorithm, we only need to compute the gra-
dient of the parameters.

For ease of presentation, we use ξ(x, y) to denote
ξ(W,V,b;x, y) in (5) by omitting the parameters. For
each instance (x, y), the gradient contributed by this in-
stance can be derived as follows:

∂ξ(x, y)

∂bi
= (h(x)− y)xoi, (7)

∂ξ(x, y)

∂Wij
= xui(h(x)− y)xTaV∗j , (8)

∂ξ(x, y)

∂Vij
= xai(h(x)− y)xTuW∗j , (9)

where xui, xai, and xoi denote the ith element in vectors
xu, xa, and xo, respectively.

The regularization part in (6) can be expanded as follows:

Ω(W,V) = ||W||21 + ||V||21

=

l∑
i=1

√√√√ k∑
j=1

W 2
ij +

s∑
i=1

√√√√ k∑
j=1

V 2
ij

≈
l∑
i=1

√√√√ k∑
j=1

W 2
ij + ε+

s∑
i=1

√√√√ k∑
j=1

V 2
ij + ε,

where ε is a very small positive number to make the regu-
larization term differentiable. Practically, it works well in
our application.

The gradient of Ω(W,V) can be derived as follows:

∂Ω(W,V)

∂Wij
=

Wij√∑k
j=1W

2
ij + ε

, (10)

∂Ω(W,V)

∂Vij
=

Vij√∑k
j=1 V

2
ij + ε

. (11)

We can concatenate the parameter group (W,b) into a
parameter vector, and then compute the gradient vector
g(W,b). Similarly, we can also compute the gradient vec-
tor g(V,b) of the parameter group (V,b). Assume t is the
τ -th parameter in each parameter group, the τ -th element
in gradient vector g(·) has the following form:

gτ (·) =

N∑
i=1

∂ξ(x(i), y(i))

∂t
+ λ

∂Ω(W,V)

∂t
, (12)

where ∂ξ(x(i),y(i))
∂t is computed by using (7), (8), or (9),

and ∂Ω(W,V)
∂t is computed by using (10) or (11), depending

on the value of t. Then we can construct the approximate
Hessian matrix H̃ for L-BFGS.
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The whole learning procedure for CGL is summarized in
Algorithm 1. In each iteration, the alternating learning al-
gorithm ensures that the objective function value always
decreases. Furthermore, the objective function is bounded
below by 0. Practically, when the whole loss function tend-
s to be flat and the decrease turns to be flat, we can regard
that as convergence. Because the objective function is not
jointly convex in both W and V, the solution is a local op-
timum. In our implementation, the convergence condition
of the algorithm is that the relative decrease of the objective
function value turns to be less than a threshold.

Algorithm 1 Alternate Learning for CGL
Input: Data set {(x(i), y(i)) | i = 1, ..., N}, and hyper-
parameters k ∈ N+ and λ ∈ R+.
Output: W∗, V∗, b∗

Initialize b = 0.
Initialize W = random(Rl×k), V = random(Rs×k).
repeat

Fix V.
repeat

Compute gradient g(W,b) using (12).
Compute the approximate Hessian H̃W,b w.r.t. (W,b).
d(W,b) = −H̃W,b ∗ g(W,b).
Perform line search in the direction of d(W,b) and up-
date W,b.

until convergence on W,b
Fix W.
repeat

Compute gradient g(V,b) using (12).
Compute the approximate Hessian H̃V,b w.r.t. (V,b).
d(V,b) = −H̃V,b ∗ g(V,b).
Perform line search in the direction of d(V,b) and up-
date V,b.

until convergence on V,b
until convergence

3.3. Complexity Analysis

Let q = (l + s)k + d denote the total number of parame-
ters in W, V and b. To train the model, we need O(qN)
time to compute the gradient g(·), O(q2) time to compute
the approximate Hessian matrix and O(q2) time for ma-
trix multiplication and parameter update in each iteration.
Hence, the total time complexity is O(qN + q2)µ for µ
iterations.

4. Web-Scale Implementation
Web-scale applications always contain a huge number of
users and ads, with billions of impression instances. Hence,
we need a scalable learning framework. In this section,
we first introduce the hashing and sub-sampling techniques
used for memory saving and class-unbalance handling.
Furthermore, we propose a distributed learning framework
based on message passing interface (MPI), which can run

on clusters with hundreds of computing nodes. By com-
bining these techniques, our learning algorithm is highly
scalable for web-scale applications.

4.1. Hashing and Sub-Sampling

We use the hashing technique (Weinberger et al., 2009) for
efficient feature mapping and instance generating. The o-
riginal features used in real CTR prediction systems are
mainly categorical, the number of which is typically very
large. In order to make the feature mapping (coding) results
uniform and enable fast instance generating, we hash user,
ad and the other (context) features to three separate sub-
spaces of bit vectors. The structure of the hashing frame-
work is illustrated in Figure 1, in which the raw represen-
tation of an impression is hashed to the instance represen-
tation with bit vectors. The raw representation of each im-
pression is composed of several triples, with each triple be-
ing (domain, feature name, feature value). The domain can
be user, ad, or other, which refers to the types of the fea-
tures. For example, the impression in Figure 1 contains
k triples, (d1, f1, v1), (d2, f2, v2), ... , (dk, fk, vk). The in-
stance representation of each impression is composed of
three subspaces of bit vectors, which are denoted as User
features, Ad features and Other features in Figure 1. Given
a triple, we can get the index (also called position or key) of
its coding in the feature space quickly with a hash function.
For example, if an impression has a user (domain) feature
‘buypower’ (feature name) with a value ‘5’ (feature value),
the hash function maps this triple (user, buypower, 5) to one
position in the subspace of User features, and sets the cor-
responding position to be 1. The <position (key), triple>
pairs are stored in the feature map for later searching and
checking. The hashing technique enables efficient feature
engineering and fast prediction together with straightfor-
ward implementation. According to (Weinberger et al.,
2009), the hashing can not only contract the feature space
by collision, but also bring a regularization effect.

Ad features

Hash 
function

Other features

(d1, f1, v1),  (d2, f2, v2), …, (dk, fk, vk) 

(Domain, feature, value) 
Triples <k1, (d1,f1,v1)>

<k2, (d2,f2,v2)>

…

<kd, (dd,fd,vd)>

Feature
map

Raw 
Representation

Instance  
Representation

User features

0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0

Figure 1. The hashing framework for fast feature mapping and in-
stance generating.

The data sets are typically highly unbalanced, with only
a very small proportion of positive instances. In order to
reduce the learning complexity with a minimal influence
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on accuracy, we sample negative instances with a probabil-
ity of γ = 10% and keep all the positive instances. After
sampling, we give a weight 1

γ to each negative instance dur-
ing learning to make the objective calculation unbiased (M-
cMahan et al., 2013).

4.2. Distributed Learning

In each iteration of Algorithm 1, we need to compute the
gradient of all the parameters by using (12) and compute
the current value of the objective function in (4). Both of
these two equations contain summations over all instances,
which can be easily parallelized on one machine (node)
with multi-thread techniques or can be distributed across
several machines in a cluster with MPI.

We implement a distributed learning framework for CGL
based on an MPI-cluster with hundreds of nodes (ma-
chines) and make full use of the parallel property of gra-
dient computing of the parameters. Let P be the number of
nodes. We first evenly distribute the whole data set to each
node, and the allocation of data will not be changed as the
algorithm proceeds, which can minimize data movement
and communication cost.

The AllReduce and BroadCast interfaces in MPI are used
to communicate between master and slaver nodes. Further-
more, a synchronized routine is used to ensure the correct-
ness of our system. We denote the gradient of parameters
locally on node p as g′p. Please note that g′p only contain-
s the gradient of the instance part, with the regularization
part discarded. The τ -th element in gradient vector g′p has
the following form:

g′pτ =

pn∑
i=1

∂ξ(x(i), y(i))

∂t
, (13)

where pn is the number of instances allocated to node p,
and t is the τ -th parameter as stated in (12).

The sketch of the distributed learning framework is sum-
marized in Algorithm 2.

5. Experiment
We have an MPI-cluster with hundreds of nodes, each of
which is a 24-core server with 2.2GHz Intel(R) Xeon(R)
E5-2430 processor and 96GB of RAM. However, we only
use 80 nodes of the cluster for our experiment. One reason
is that 80 nodes are enough to handle real web-scale CTR
applications. Another reason is that the whole cluster is
shared by many groups who are running different jobs. We
do not want to interrupt other jobs. However, our method is
highly scalable to use more nodes for larger scale problems,
which will be verified by our following experiments (refer
to Figure 4).

Algorithm 2 Distributed Learning Framework for CGL
Input: Data set {(x(i), y(i)) | i = 1, ..., N}, and hyper-
parameters k ∈ N+ and λ ∈ R+.
Initialize Num of Nodes: P .
Initialize Parameters: W,V,b.
Split the data set across P nodes evenly.
repeat

for all nodes {p = 1, 2, · · · , P} do in parallel
Compute gradient g′p locally on node p using (13).

end for
Compute gradient g′ =

∑P
p=1 g

′
p with AllReduce .

Add the gradient of the regularization term to g′ in the mas-
ter node.
Take an L-BFGS step in the master node.
BroadCast the updated parameters to each slaver node.

until convergence

5.1. Data Set

We conduct our experiment on three real-world data set-
s connected from Taobao of Alibaba group 1. The train-
ing sets of these three data sets contain the log information
of display ads across different time periods with different
time window sizes, and the subsequent (next) day’s log in-
formation of each training set is for testing to evaluate the
performance of our model. We compose the data sets on
weekdays or holidays from different months to make the
data sets vary from each other and make the results of our
model more convincing. There are billions of impression
instances in each data set, and the dimensionality of the
feature vector for each impression is tens of thousands.

These three data sets are named as Dataset-1, Dataset-2
and Dataset-3, respectively. Train 1 and Test 1 are the
training set and test set for Dataset-1. Similar names can
be got for other two data sets. The characteristics of these
three data sets are briefly summarized in Table 1.2 Please
note that the CTR in Table 1 for a data set is computed as

Number of Clicks
Number of Impressions , which is actually the proportion of
positive instances in the data set. We can find that all the
data sets are highly unbalanced, with only a very small pro-
portion of positive instances. It’s easy to find that the data
set sizes of our experiments are of web-scale.

We sample 20% of each training set for validation to speci-
fy the hyper-parameters of our CGL model and other base-
lines. The k in CGL is fixed to 50 in our experiment unless
otherwise stated.

1We build our data sets from the logs of the advertisements
displayed in http://www.taobao.com, one of the most fa-
mous C2C e-commerce web sites in China. The business model of
Taobao is similar to that of eBay (http://www.ebay.com).

2Dataset-2 contains the log information of a long holiday, dur-
ing which people may go outside and have no time surfing the
internet. So the number of instances and users is relatively small.

http://www.taobao.com
http://www.ebay.com
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Table 1. Characteristics of the three data sets which contain training data of 4 days, 10 days and 7 days from different time periods,
respectively. The subsequent day’s log information of each training set is for test set.

DATA SET # INSTANCES (IN BILLION) CTR (IN %) # ADS # USERS (IN MILLION) STORAGE (IN TB)

TRAIN 1 1.011 1.62 21, 318 874.7 1.895
TEST 1 0.295 1.70 11, 558 331.0 0.646

TRAIN 2 1.184 1.61 21, 620 958.6 2.203
TEST 2 0.145 1.64 6, 848 190.3 0.269

TRAIN 3 1.491 1.75 33, 538 1119.3 2.865
TEST 3 0.126 1.70 9, 437 183.7 0.233

5.2. Evaluation Metrics and Baseline

5.2.1. METRIC

We can regard CTR prediction as a binary classification
problem. Because the data set is highly unbalanced with
only a small proportion of positive instances, prediction ac-
curacy is not a good metric for evaluation. Furthermore,
neither precision nor recall is a good metric. In this paper,
we adopt the area under the receiver operating characteris-
tic curve (AUC) (Bradley, 1997) as a metric to measure the
prediction accuracy, which has been widely used in exist-
ing literatures for CTR prediction (Chapelle et al., 2013).
For a random guesser, the AUC value will be 0.5, which
means total lack of discrimination. In order to have a good
comparison with baseline models, we first remove this con-
stant part (0.5) from the AUC value and then compute the
relative improvement (RelaImpr) of our model, which has
the following mathematical form:

RelaImpr =
AUC(model)− 0.5

AUC(baseline)− 0.5
× 100%.

This RelaImpr metric has actually been widely adopted
in industry for comparing discrimination of models 3.

Our CGL model has an effect of selecting features or elim-
inating features for both users and ads. We introduce group
sparsity (GSparsity) to measure the capability of our
model in feature elimination: GSparsity = ν

l+s × 100%,
where ν is the total number of all-zero rows in parameter
matrices W and V, l and s are the number of rows in W
and V respectively.

5.2.2. BASELINE

Because LR model (with L2-norm) has been widely used
for CTR prediction and has achieved the state-of-the-art
performance, especially in industrial systems (Chapelle
et al., 2013), we adopt LR as the baseline for comparison.
Please note that LR refers to the model in (1) with L2-norm
regularization, and the model in (1) with L1-norm regular-
ization is called Lasso in this paper.

3http://en.wikipedia.org/wiki/Receiver_
operating_characteristic

5.3. Accuracy of Lasso

Table 2 is the relative improvement (RelaImpr) of Lasso
w.r.t. the baseline (LR). We can see that there does not
exist significant difference between LR and Lasso in terms
of prediction accuracy.

Table 2. Relative improvement of Lasso w.r.t. the baseline (LR).

DATA SET DATASET-1 DATASET-2 DATASET-3

RELAIMPR −0.019% −0.096% +0.086%

5.4. Accuracy of CGL

Please note that in Algorithm 1, the W and V are randomly
initialized, which may affect the performance. We perform
six independent rounds of experiments with different ini-
tialization. The mean and variance of the relative improve-
ment of our CGL model (with k = 50) w.r.t. the baseline
LR are reported in Figure 2. It is easy to find that our CGL
model can significantly outperform LR in all three data set-
s. Furthermore, we can find that the random initialization
has an ignorable influence on the performance. Hence, in
the following experiments, we won’t report the variance of
the values.
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Figure 2. The relative improvement of CGL w.r.t. baseline (LR).

5.5. Sensitivity to Hyper-Parameters

In this subsection, we study the influence of the two key
hyper-parameters, k and λ, in our CGL model.

Experiments are conducted for different k and the results
are shown in Figure 3 (a). We can find that, with the in-
creasing of k, the performance turns to be better in general.
But larger k implies more parameters, which can make the

http://en.wikipedia.org/wiki/Receiver_operating_characteristic 
http://en.wikipedia.org/wiki/Receiver_operating_characteristic 
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Figure 3. The influence of hyper-parameters k and λ.

learning much harder in terms of both memory and speed.
We find that k = 50 is a suitable value for our experiments.
Hence, we choose k = 50 for all the experiments in this
paper.

We vary the values of the hyper-parameter λ and draw the
influence on the performance in Figure 3 (b). We can find
that very good performance can be achieved when λ is
around 1 for all data sets, and our CGL is not sensitive to λ
in a relatively large range (from 0.1 to 10).

Actually, the λ controls the tradeoff between the prediction
accuracy and number of eliminated features (GSparsity).
We choose Dataset-2 for demonstration. The relationship
of relative improvement and GSparsity on Dataset-2 is
shown in Table 3. We can find that our CGL does have
the ability to eliminate some features. For this data set, a
GSparsity of 3% − 15% will be a good tradeoff for both
feature elimination and prediction accuracy.

Table 3. Tradeoff between relative improvement of performance
w.r.t. baseline (LR) and GSparsity on Dataset-2.

GSPARSITY 2% 3% 5% 15% 20%

RELAIMPR 3.90% 3.42% 3.02% 2.5% 1.97%

We take a deep look at the parameter matrices for users and
ads, and show the most important features and the most
useless features in Table 4. They are all categorical fea-
tures, in which the most important features for ad part are
popular or hot product categories, such as clothes, skirt and
dress. This seems to be reasonable. The useless features for
ad part contain Movie, Act, Takeout, Food booking service.
This is also reasonable because few users buy these prod-
ucts like food booking service from Taobao. The most im-
portant features for user part are categories they show great
interest, such as daily necessities and clothes. The useless
features for users are some cold categories and some rare
items, such as stage costume and flooring.

5.6. Scalability

To study the scalability of our distributed learning frame-
work, we compute the speedup factor relative to the run-

Table 4. Feature selection results.

AD PART USER PART

IMPORTANT

FEATURES

WOMEN’S CLOTHES,
SKIRT, DRESS,
CHILDREN’S WEAR,
SHOES, CELLPHONE

WATCH, UNDER-
WEAR, FUR CLOTH-
ING, FURNITURE

USELESS

FEATURES

MOVIE, ACT, TAKE-
OUT, FOOD BOOK-
ING SERVICE

STAGE COSTUME,
FLOORING, PENCIL,
OUTDOOR SOCK

ning time with 20 nodes by varying the number of nodes
from 20 to 80. Experiments are repeated several times, and
the mean and variance of the speedup factor are reported in
Figure 4. We can find that the speedup appears to be close
to linear, and close to the ideal speedup factors. Hence, our
CGL is very scalable for web-scale applications.

20 30 40 50 60 70 80

1

1.5

2

2.5

3

3.5

4

Number of computing nodes
S

pe
ed

up

 

 

Dataset−1
Dataset−2
Dataset−3
Ideal

Figure 4. The speedup of the distributed learning framework.

The whole training time (in second) of CGL on 80 nodes is
shown in Table 5, from which we can find that CGL is fast
enough to handle web-scale applications.

Table 5. Training time (in second).

DATA SET DATASET-1 DATASET-2 DATASET-3

TIME 3, 184± 431 3, 296± 387 4, 281± 541

6. Conclusion and Future Work
In this paper, a novel model called CGL is proposed to cap-
ture the conjunction information between features, which
can outperform the state-of-the-art models in web-scale
CTR prediction for display advertising. Actually, our CGL
is general enough to model other similar applications with
outputs determined by two interacting roles. One of our
future works is to pursue new applications of our model.

7. Acknowledgement
This work is supported by the NSFC (No. 61100125), the 863
Program of China (No. 2012AA011003), and the Program for
Changjiang Scholars and Innovative Research Team in University
of China (IRT1158, PCSIRT). Wu-Jun Li is the corresponding
author.



Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising

References
Agarwal, Deepak, Agrawal, Rahul, Khanna, Rajiv, and Ko-

ta, Nagaraj. Estimating rates of rare events with multiple
hierarchies through scalable log-linear models. In KDD,
pp. 213–222, 2010.

Andrew, Galen and Gao, Jianfeng. Scalable training of
l1-regularized log-linear models. In ICML, pp. 33–40,
2007.

Bradley, Andrew P. The use of the area under the roc curve
in the evaluation of machine learning algorithms. Pattern
Recognition, 30(7):1145–1159, 1997.

Broyden, C. G. The convergence of a class of double-rank
minimization algorithms 1. general considerations. IMA
Journal of Applied Mathematics, 6(1):76–90, 1970.

Byrd, Richard H., Nocedal, Jorge, and Schnabel, Robert B.
Representations of quasi-newton matrices and their use
in limited memory methods. Mathematical Program-
ming, 63:129–156, 1994.

Chapelle, Oliver, Manavoglu, Eren, and Rosales, Romer.
Simple and scalable response prediction for display ad-
vertising. ACM Transactions on Intelligent Systems and
Technology, 2013.

Golub, Gene H, Hansen, Per Christian, and O’Leary, Di-
anne P. Tikhonov regularization and total least squares.
SIAM Journal on Matrix Analysis and Applications, 21
(1):185–194, 1999.

Graepel, Thore, Candela, Joaquin Quiñonero, Borchert,
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