Supplementary Material

Wenzhuo Yang

A0096049@NUS.EDU.SG
Department of Mechanical Engineering, National University of Singapore, Singapore 117576

Melvyn Sim

DSCSIMM@NUS.EDU.SG
Department of Decision Sciences, National University of Singapore, Singapore 117576

Huan Xu

MPEXUH@NUS.EDU.SG
Department of Mechanical Engineering, National University of Singapore, Singapore 117576

1. Proof of Theorem 1

Proof. Step 1 - the "if"' part. Given a function $\rho(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}$ for some admissible class $\left\{\mathbf{V}_{k}\right\}$, we show that $\rho(\cdot)$ satisfies all properties required for a CCLF.
Step 1.1 - Complete Classification: If $\mathbf{u} \geq 0$, then by $\mathbf{V}_{1}=\Re_{m}^{+}$we have that $\mathbf{v}^{\top} \mathbf{u} \geq 0$ for all $\mathbf{v} \in \mathbf{V}_{1}$, which implies that $\sup _{\mathbf{v} \in \mathbf{V}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0$. Hence $\rho(\mathbf{x})=0$. Conversely, if $\mathbf{u} \nsupseteq 0$, without loss of generality we assume $u_{1}<0$, then we have

$$
\sup _{\mathbf{v} \in \mathbf{V}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)=\sup _{\mathbf{v} \in \Re_{+}^{m}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \geq-\mathbf{e}_{1} \mathbf{u}>0 .
$$

This, combined with $\mathbf{V}_{1}=\operatorname{cl}\left(\lim _{k \uparrow 1} \mathbf{V}_{k}\right)$, leads to that $\exists \delta>0$ such that

$$
\sup _{\mathbf{v} \in \mathbf{V}_{1-\delta}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)>0
$$

which implies that $\rho(\mathbf{u})>0$. This shows that $\rho(\cdot)$ satisfies complete classification.
Step 1.2 - Misclassification avoidance: Fix \mathbf{u} such that $\mathbf{u}<\mathbf{0}$. We have $\mathbf{e} \in \mathbf{V}_{0}$ which implies that

$$
\sup _{\mathbf{v} \in \mathbf{V}_{0}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \geq\left(-\mathbf{e}^{\top} \mathbf{u}\right)>0
$$

Hence $\rho(\mathbf{u})=1$. Thus, $\rho(\cdot)$ satisfies misclassification avoidance.
Step 1.3 - Monotonicity: If $\mathbf{u}_{1} \leq \mathbf{u}_{2}$, then for any $k \in[0,1]$, since $\mathbf{V}_{k} \subseteq \mathbf{V}_{1}=\Re_{+}^{m}$, we have that $-\mathbf{v}^{\top} \mathbf{u}_{1} \geq-\mathbf{v}^{\top} \mathbf{u}_{2}$ for any $\mathbf{v} \in \mathbf{V}_{k}$. Thus,

$$
\left\{\sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}_{1}\right) \leq 0\right\} \quad \Longrightarrow \quad\left\{\sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}_{2}\right) \leq 0\right\}
$$

Hence $\rho\left(\mathbf{u}_{1}\right) \geq \rho\left(\mathbf{u}_{2}\right)$. Thus, $\rho(\cdot)$ satisfies monotonicity.
Step 1.4 - Order \& scale invariance: Order invariance follows directly from the fact that \mathbf{V}_{k} is order invariant for all k. Scale invariant holds because for $\alpha>0$ and $k \in[0,1]$,

$$
\left\{\sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\} \quad \Longleftrightarrow \quad\left\{\sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \alpha \mathbf{u}\right) \leq 0\right\}
$$

Step 1.5 - Quasi-convexity: To show quasi-convexity, let $c=\max \left(\rho\left(\mathbf{u}_{1}\right), \rho\left(\mathbf{u}_{2}\right)\right)$ and without loss of generality assume $c<1$ since otherwise the claim trivially holds. Thus we have that for any $\epsilon>0$

$$
\sup _{\mathbf{v} \in \mathbf{V}_{1-c-\epsilon}}\left(-\mathbf{v}^{\top} \mathbf{u}_{i}\right) \leq 0, \quad i=1,2
$$

which implies that for $\alpha \in[0,1]$

$$
\sup _{\mathbf{v} \in \mathbf{V}_{1-c-\epsilon}}\left\{-\mathbf{v}^{\top}\left[\alpha \mathbf{u}_{1}+(1-\alpha) \mathbf{u}_{2}\right]\right\} \leq 0
$$

Thus $1-\rho\left(\alpha \mathbf{u}_{1}+(1-\alpha) \mathbf{u}_{2}\right) \geq 1-c$ since ϵ can be arbitrarily close to 0 . The quasi-convexity holds.
Step 1.6 - Lower semi-continuity: We show that $\rho\left(\mathbf{u}_{*}\right) \leq \liminf _{i} \rho\left(\mathbf{u}_{i}\right)$ for $\mathbf{u}_{i} \xrightarrow{i} \mathbf{u}_{*}$. Let $c>\liminf _{i} \rho\left(\mathbf{u}_{i}\right)$, then there exists an infinite sub-sequence $\left\{\mathbf{u}_{i_{j}}\right\}$ such that $\rho\left(\mathbf{u}_{i_{j}}\right)<c$. That is

$$
-\mathbf{v}^{\top} \mathbf{u}_{i_{j}} \leq 0 ; \quad \forall \mathbf{v} \in \mathbf{V}_{1-c}, \forall j
$$

Note that $\mathbf{u}_{i_{j}} \rightarrow \mathbf{u}_{*}$, hence

$$
-\mathbf{v}^{\top} \mathbf{u}_{*} \leq 0 ; \quad \forall \mathbf{v} \in \mathbf{V}_{1-c}
$$

i.e., $1-\rho\left(\mathbf{u}_{*}\right) \geq 1-c$. Since c can be arbitrarily close to $\liminf _{i} \rho\left(\mathbf{u}_{i}\right)$, the semi-continuity follows.

Step 2 - the "only if"' part. Given a function $\rho(\cdot)$ which is a CCLF, we show that it can be represented as

$$
\rho(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}
$$

for some admissible class $\left\{\mathbf{V}_{k}\right\}$. This consists of three steps. We first show that $\rho(\cdot)$ can be represented as $\rho(\mathbf{u})=$ $1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}$, for some $\left\{\overline{\mathbf{V}}_{k}\right\}$. Here $\left\{\overline{\mathbf{V}}_{k}\right\}$ is not necessarily admissible, but satisfies $\overline{\mathbf{V}}_{k} \subseteq \overline{\mathbf{V}}_{k^{\prime}}$ for all $k \leq k^{\prime}$. We then show that we can replace $\overline{\mathbf{V}}_{k}$ by a class of closed, convex, order-invariant, cones \mathbf{V}_{k}. Finally we show that $\left\{\mathbf{V}_{k}\right\}$ is admissible to complete the proof.
Step 2.1. The representability of $\rho(\cdot)$ follows from Theorem 2 of (Brown \& Sim, 2009). For completeness we re-state the result as a lemma, and provide the proof below.
Lemma A-1. Given a CCLF $\rho(\cdot)$, then there exists $\left\{\overline{\mathbf{V}}_{k}\right\}$ that satisfies $\overline{\mathbf{V}}_{k} \subseteq \overline{\mathbf{V}}_{k^{\prime}}$ for all $k \leq k^{\prime}$, such that

$$
\rho(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}
$$

Step 2.2. We construct $\left\{\mathbf{V}_{k}\right\}$ as follows. Let $\hat{\mathbf{V}}_{k} \triangleq \operatorname{cl}\left(\operatorname{cc}\left(\operatorname{or}\left(\overline{\mathbf{V}}_{k}\right)\right)\right)$. Then we let $\mathbf{V}_{k} \triangleq \hat{\mathbf{V}}_{k}$ for $k \in(0,1)$, and $\mathbf{V}_{0} \triangleq \bigcap_{k \in(0,1)} \hat{\mathbf{V}}_{k}$, and $\mathbf{V}_{1} \triangleq \operatorname{cl}\left(\bigcup_{k \in(0,1)} \hat{\mathbf{V}}_{k}\right)$. Here or (\cdot) (respectively $\operatorname{cc}(\cdot)$) is the minimal order invariant (respectively, convex cone) superset, defined as

$$
\operatorname{or}(S)=\left\{P \mathbf{v} \mid P \in \mathcal{P}_{n}, \mathbf{v} \in S\right\}, \quad \operatorname{cc}(S)=\left\{\sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i} \mid k \in \mathbb{N}, \mathbf{v}_{i} \in S, \lambda_{i} \geq 0\right\}
$$

Let

$$
\rho^{\prime}(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \hat{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}
$$

and observe that $\overline{\mathbf{V}}_{k} \subseteq \hat{\mathbf{V}}_{k}$, hence $\rho(\mathbf{u}) \leq \rho^{\prime}(\mathbf{u})$. To show that $\rho(\mathbf{u}) \geq \rho^{\prime}(\mathbf{u})$, it suffices to show that for any k, ϵ and \mathbf{u}, the following holds,

$$
\begin{equation*}
\left\{\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\} \quad \Longrightarrow \quad\left\{\sup _{\mathbf{v} \in \hat{\mathbf{V}}_{k-\epsilon}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\} \tag{A-1}
\end{equation*}
$$

Note that $\left\{\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}$ implies $k \leq 1-\rho(\mathbf{u})$, and hence by order invariance of $\rho(\cdot)$, we have $k \leq 1-\rho(P \mathbf{u})$ for all $P \in \mathcal{P}_{n}$. This means

$$
\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k-\epsilon}} \sup _{P \in \mathcal{P}_{n}}\left(-\mathbf{v}^{\top} P \mathbf{u}\right) \leq 0
$$

which is equivalent to

$$
\sup _{\mathbf{v} \in \operatorname{or}\left(\overline{\mathbf{V}}_{k-\epsilon}\right)}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0
$$

By definition of $\mathrm{cc}(\cdot)$, this leads to

$$
\sup _{\mathbf{v} \in \operatorname{cc}\left(\operatorname{or}\left(\overline{\mathbf{V}}_{k-\epsilon}\right)\right)}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0
$$

which further implies, by continuity of $-\mathbf{v}^{\top} \mathbf{u}$, that

$$
\sup _{\mathbf{v} \in \mathrm{cl}\left(\operatorname{cc}\left(\operatorname{or}\left(\overline{\mathbf{V}}_{k-\epsilon}\right)\right)\right)}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0
$$

Thus we have $\rho(\mathbf{u})=\rho^{\prime}(\mathbf{u})$. Finally note that $\hat{\mathbf{V}}_{k} \subseteq \hat{\mathbf{V}}_{k^{\prime}}$ for $k \leq k^{\prime}$, which leads to the following

$$
\begin{aligned}
& \sup _{\mathbf{v} \in \hat{\mathbf{V}}_{0}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq \sup _{\mathbf{v} \in \bigcap_{k \in(0,1)} \hat{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq \sup _{\mathbf{v} \in \hat{\mathbf{V}}_{\epsilon}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \\
& \sup _{\mathbf{v} \in \hat{\mathbf{V}}_{1-\epsilon}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq \sup _{\mathbf{v} \in \cup_{k \in(0,1)} \hat{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq \sup _{\mathbf{v} \in \hat{\mathbf{V}}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)
\end{aligned}
$$

By definitions of \mathbf{V}_{0} and \mathbf{V}_{1}, together with the fact (due to continuity)

$$
\sup _{\mathbf{v} \in \mathrm{cl}\left(\bigcup_{k \in(0,1)} \hat{\mathbf{V}}_{k}\right)}\left(-\mathbf{v}^{\top} \mathbf{u}\right)=\sup _{\mathbf{v} \in \bigcup_{k \in(0,1)} \hat{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)
$$

we conclude that

$$
\rho(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}
$$

Step 2.3. Now we check that $\left\{\mathbf{V}_{k}\right\}$ is indeed admissible. Property 1-3 are straightforward from the definition of \mathbf{V}_{k}. To see that \mathbf{V}_{0} is closed, recall that the intersection of a class of closes sets is close.

We next show Property 4: $\mathbf{V}_{1}=\Re_{+}^{m}$. By definition of \mathbf{V}_{1}, we have

$$
\lim _{k \rightarrow 1} \sup _{\mathbf{v} \in \mathbf{V}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)=\sup _{\mathbf{v} \in \mathbf{V}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)
$$

Hence $\rho(\mathbf{u})=0$ if and only if $\sup _{\mathbf{v} \in \mathbf{V}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0$. Thus by the property of complete classification we have the following

$$
\begin{equation*}
\left\{\sup _{\mathbf{v} \in \mathbf{V}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\} \quad \Longleftrightarrow \quad\{\mathbf{u} \geq 0\} \tag{A-2}
\end{equation*}
$$

Denote the dual cone of a cone X by X^{*} and recall that for any k, \mathbf{V}_{k} is a closed convex cone, hence we have

$$
\left(\mathbf{V}_{1}^{*}\right)^{*}=\mathbf{V}_{1}
$$

The definition of dual cone states that

$$
\mathbf{V}_{1}^{*}=\left\{\mathbf{u} \mid \mathbf{u}^{\top} \mathbf{v} \geq 0 ; \forall \mathbf{v} \in \mathbf{V}_{1}\right\}
$$

which combined with Equation (A-2) implies that

$$
\mathbf{V}_{1}^{*}=\Re_{+}^{m}
$$

Since \Re_{+}^{m} is self-dual, we have

$$
\mathbf{V}_{1}=\Re_{+}^{m}
$$

We now turn to Property 5. Fix $k>0$. Consider $\mathbf{u}=-\mathbf{e}$. By misclassification avoidance, $\rho\left(\mathbf{u}^{*}\right)=1$, which means there exists $\mathbf{v}^{*} \in \mathbf{V}_{k}$ such that $\mathbf{v}^{* \top} \mathbf{u}<0$, i.e., $\sum_{i=1}^{m} v_{i}>0$. Define a permutation matrix $P \in \mathcal{P}_{m}$:

$$
P=\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
. & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Thus, by order invariance of $\mathbf{V}_{k}, P^{t} \mathbf{v}^{*} \in \mathbf{V}_{k}$ for $t=0, \cdots, m-1$. By convexity, this implies $\frac{1}{m} \sum_{t=0}^{m-1} P^{t} \mathbf{v}^{*} \in \mathbf{V}_{k}$. Note that $\frac{1}{m} \sum_{t=0}^{m-1} P^{t} \mathbf{v}^{*}=\left[\sum_{i=1}^{m} v_{i}^{*}\right] \mathbf{e} / m$, thus

$$
\frac{\sum_{i=1}^{m} v_{i}^{*}}{m} \mathbf{e} \in \mathbf{V}_{k}
$$

Since $\sum_{i=1}^{m} v_{i}^{*}>0$ and \mathbf{V}_{k} is a cone, we have $\lambda \mathbf{e} \in \mathbf{V}_{k}$ for all $\lambda \geq 0$ and $k>0$. By definition of \mathbf{V}_{0}, this implies $\lambda \mathbf{e} \in \mathbf{V}_{0}$.

The rest of this appendix provides a proof to Lemma A-1.

Proof. We recall the following results adapted from (Brown \& Sim, 2009).
Definition A-1. Let \mathcal{U} be the set of random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. A function $\bar{\rho}(\cdot): \mathcal{U} \rightarrow[0,1]$ is a collective satisfying measure if the following holds for all $U, U^{\prime} \in \mathcal{U}$.

1. If $U \geq 0$, then $\bar{\rho}(U)=1$;
2. If $U<0$, then $\bar{\rho}(U)=0$;
3. If $U \geq U^{\prime}$ then $\bar{\rho}(U) \geq \bar{\rho}\left(U^{\prime}\right)$;
4. $\lim _{\alpha \geq 0} \bar{\rho}(U+\alpha)=\bar{\rho}(U)$;
5. If $\lambda \in[0,1]$, then $\bar{\rho}\left(\lambda U+(1-\lambda) U^{\prime}\right) \geq \min \left(\bar{\rho}(U), \bar{\rho}\left(U^{\prime}\right)\right)$;
6. If $k>0$, then $\bar{\rho}(k U)=\bar{\rho}(U)$.

Theorem A-1. Any collective satisfying measure $\bar{\rho}(\cdot)$ can be represented as

$$
\bar{\rho}(U)=\sup \left\{k \in[0,1] \mid \sup _{\mathbb{Q} \in \mathcal{Q}_{k}} \mathbb{E}_{\mathbb{Q}}(-U) \leq 0\right\}
$$

for a class of sets of probability measures \mathcal{Q}_{k} satisfying $\mathcal{Q}_{k} \subseteq \mathcal{Q}_{k^{\prime}}$ for $k \leq k^{\prime}$.
Given this general result, we focus on a special case where $\Omega=\{1,2 \cdots, m\}$. Note that in this case each random variable $U: \Omega \mapsto \Re$ can be represented as a vector $\mathbf{u} \in \Re^{m}$ where $u_{i}=U(i)$. Given a CCLF $\rho(\cdot): \Re^{m} \rightarrow \Re$, we define $\bar{\rho}: \mathcal{U} \mapsto \Re$ as following

$$
\bar{\rho}(U)=1-\rho(\mathbf{u}) ; \quad \text { where } u_{i}=U(i), i=1, \cdots, m
$$

It is straightforward to check that $\bar{\rho}(\cdot)$ is a collective satisfying measure. Thus, Theorem A-1 states there exists a class of sets of probability measure \mathcal{Q}_{k} such that

$$
1-\rho(\mathbf{u})=\bar{\rho}(U)=\sup \left\{k \in[0,1] \mid \sup _{\mathbb{Q} \in \mathcal{Q}_{k}} \mathbb{E}_{\mathbb{Q}}(-U) \leq 0\right\}
$$

Note that any probability measure Q on $\Omega=\{1, \cdots, m\}$ can be represented by a vector $\mathbf{v} \in \Re^{m}$ such that $v_{i}=Q(i)$. Thus $\mathbb{E}_{Q}(-X)=-\mathbf{v}^{\top} \mathbf{x}$ where \mathbf{v} and \mathbf{u} are the vector form for Q and U respectively. Hence we have there exists $\overline{\mathbf{V}}_{k}$ such that

$$
\rho(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}
$$

Note that for $k \leq k^{\prime}, \overline{\mathbf{V}}_{k} \subseteq \overline{\mathbf{V}}_{k^{\prime}}$ since $\mathcal{Q}_{k} \subseteq \mathcal{Q}_{k^{\prime}}$. This concludes the proof of Lemma A-1.

2. Proof of Theorem 2

Proof. Claim 1: We check that all conditions of Definition 1 are satisfied by $\bar{\rho}(\cdot)$. The only condition needs a proof is the semi-continuity. Consider a sequence $\mathbf{u}^{j} \rightarrow \mathbf{u}^{0}$, and let $t^{0}=\max \left\{t: \sum_{i=1}^{t} u_{(i)}^{0}<0\right\}$. Without loss of generality we let $u_{1}^{0} \leq u_{2}^{0} \leq, \cdots, \leq u_{m}^{0}$. Thus we have that $\sum_{i=1}^{t^{0}} u_{i}^{0}<0$. This implies that $\lim \sup _{j} \sum_{i=1}^{t^{0}} u_{i}^{j}<0$, which further leads to $\liminf _{j}\left(\max \left\{t: \sum_{i=1}^{t} u_{(i)}^{j}<0\right\}\right) \geq t^{0}$. Hence $\liminf _{j} \bar{\rho}\left(\mathbf{u}^{j}\right) \geq \bar{\rho}\left(\mathbf{u}^{0}\right)$, which established the semi-continuity. Thus, we conclude that $\bar{\rho}(\cdot)$ is a CCLF. Further, observe that $\max \left\{t: \sum_{i=1}^{t} u_{(i)}<0\right\} \geq \sum_{i=1}^{m} \mathbf{1}\left(u_{i}<0\right)$, which established the first claim.
Claim 2: It is straightforward to check that $\overline{\mathbf{V}}_{k}$ satisfies all conditions of Definition 2, and hence is an admissible set. Thus, we proceed to show that $\overline{\mathbf{V}}_{k}$ is an admissible set corresponding to $\bar{\rho}(\cdot)$, i.e., to show

$$
\bar{\rho}(\mathbf{u})=1-\sup \left\{k \in[0,1] \mid \sup _{\mathbf{v} \in \overline{\mathbf{V}}_{k}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0\right\}
$$

Fix a $\mathbf{u} \in \Re^{m}$. If $\mathbf{u} \geq 0$, then we have $\bar{\rho}(\mathbf{u})=0$, as well as $\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{1}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0$, and hence the equivalence holds trivially. Thus we assume $\mathbf{u} \nsupseteq 0$, and let $t^{0}=\max \left\{t: \sum_{i=1}^{t} u_{(i)}<0\right\}$. By definition we have

$$
\overline{\mathbf{V}}_{1-t^{0} / m}=\operatorname{conv}\left\{\lambda \mathbf{e}_{N^{\prime}}\left|\lambda>0,\left|N^{\prime}\right|=t^{0}+1\right\}\right.
$$

Note that by definition of t^{0}

$$
\min _{\left|N^{\prime}\right|=t^{0}+1} \sum_{i \in N^{\prime}} u_{i} \geq 0
$$

which implies that

$$
\sup _{\mathbf{v} \in\left\{\mathbf{e}_{N^{\prime}}| | N^{\prime} \mid=t^{0}+1\right\}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0
$$

This leads to

$$
\begin{equation*}
\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{1-t^{0} / m}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0 \tag{A-3}
\end{equation*}
$$

On the other hand for arbitrarily small $\epsilon>0$, by definition

$$
\overline{\mathbf{V}}_{1-t^{0} / m+\epsilon}=\operatorname{conv}\left\{\lambda \mathbf{e}_{N}\left|\lambda>0,|N|=t^{0}\right\}\right.
$$

Because $\min _{N:|N|=t^{0}} \sum_{i \in N} u_{i}<0$, we have

$$
\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{1-t^{0} / m+\epsilon}}\left(-\mathbf{v}^{\top} \mathbf{u}\right)>0
$$

Combining with Equation (A-3) we established the second claim.
Claim 3: Let $\rho^{\prime}(\cdot)$ be a CCLF satisfying that $\rho^{\prime}(\mathbf{u}) \geq \varrho(\mathbf{u})$ for all $\mathbf{u} \in \Re^{m}$, and let $\left\{\mathbf{V}_{k}^{\prime}\right\}$ be its corresponding admissible set. Thus, it suffices to show that $\overline{\mathbf{V}}_{k} \subseteq \mathbf{V}_{k}^{\prime}$ for all k. This holds trivially for $k=0$, since $\rho^{\prime}(\mathbf{u})=1$ for all $\mathbf{u}<\mathbf{0}$ implies that $\lambda \mathbf{e} \in \mathbf{V}_{0}^{\prime}$. When $k>0$, let $s / m<k \leq(s+1) / m$ for some integer s. Then, since \mathbf{V}_{k}^{\prime} is an order-invariant convex cone, it suffices to show that $\mathbf{e}_{[1: m-s]} \in \mathbf{V}_{k}^{\prime}$ to establish the third claim. Consider $\mathbf{u}^{*} \triangleq-\mathbf{e}_{[1: m-s]}$. Then, by $\rho^{\prime}\left(\mathbf{u}^{*}\right) \geq \sum_{i} \mathbf{1}\left(u_{i}^{*}<0\right) / m=s / m<k$, we have

$$
\begin{gathered}
\sup _{\mathbf{v} \in \mathbf{V}_{k}^{\prime}}\left(-\mathbf{v}^{\top} \mathbf{u}^{*}\right)>0 \\
\Longrightarrow \quad \exists \mathbf{v}^{*} \in \mathbf{V}_{k}^{\prime}: \sum_{i=1}^{m-s} v_{i}^{*}>0 .
\end{gathered}
$$

Define a permutation matrix P :

$$
P=\left[\begin{array}{ll}
P_{1} & 0_{(m-s) \times s} \\
0_{(m-s) \times s} & 0_{s \times s}
\end{array}\right]
$$

where P_{1} is a $(m-s) \times(m-s)$ matrix:

$$
P_{1}=\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
. & \cdot & \cdot & \cdots & . \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Thus, by order invariance of $\mathbf{V}_{k}^{\prime}, P^{t} \mathbf{v}^{*} \in \mathbf{V}_{k}^{\prime}$ for $t=0, \cdots, m-s-1$. By convexity, this implies $\frac{1}{m-s} \sum_{t=0}^{m-s-1} P^{t} \mathbf{v}^{*} \in$ \mathbf{V}_{k}^{\prime}. Note that $\frac{1}{m-s} \sum_{t=0}^{m-s-1} P^{t} \mathbf{v}^{*}=\left[\sum_{i \in[1: m-s]} v_{i}^{*}\right] \mathbf{e}_{[1: m-s]} /(m-s)$, thus

$$
\frac{\sum_{i=1}^{m-s} v_{i}^{*}}{m-s} \mathbf{e}_{[1: m-s]} \in \mathbf{V}_{k}^{\prime}
$$

Since $\frac{\sum_{i=1}^{m-s} v_{i}^{*}}{m-s}$ is positive, and \mathbf{V}_{k}^{\prime} is a cone, we have $\mathbf{e}_{[1: n-s]} \in \mathbf{V}_{k}^{\prime}$, which completes the proof.

3. Proof of Theorem 3

Proof. We prove the theorem by constructing such a function $\rho(\cdot)$. To do this, first consider $\check{\rho}: \mathcal{R}^{m} \mapsto[0,1]$ defined as

$$
\check{\rho}(u)=\min _{\gamma>0} \hat{\rho}(u / \gamma) .
$$

Then it is easy to check that $\check{\rho}(\cdot)$ satisfies complete classification, misclassification avoidance, monotonicity, order invariance, and scale invariance. To see that $\check{\rho}(u) \geq \varrho(u)$, note that if u has t negative coefficients, than for any $\gamma>0, u / \gamma$ also has t negative coefficients, which means

$$
\hat{\rho}(u / \gamma) \geq t / m
$$

Taking minimization over γ, we have $\check{\rho}(u) \geq \varrho(u)$ holds. Finally, we show quasi-convexity of $\check{\rho}(\cdot)$. Fix u_{1}, u_{2}, and $\alpha \in[0,1]$, let γ_{1}, γ_{2} be ϵ-optimal, i.e.,

$$
\hat{\rho}\left(u_{i} / \gamma_{i}\right) \leq \check{\rho}\left(u_{i}\right)+\epsilon, \quad i=1,2 .
$$

Since $\hat{\rho}$ is quasi-convex, we have

$$
\begin{aligned}
\hat{\rho}\left(\frac{\alpha u_{1}+(1-\alpha) u_{2}}{\alpha \gamma_{1}+(1-\alpha) \gamma_{2}}\right) & =\hat{\rho}\left(\frac{\alpha \gamma_{1}}{\alpha \gamma_{1}+(1-\alpha) \gamma_{2}} \cdot \frac{u_{1}}{\gamma_{1}}+\frac{(1-\alpha) \gamma_{2}}{\alpha \gamma_{1}+(1-\alpha) \gamma_{2}} \cdot \frac{u_{2}}{\gamma_{2}}\right) \\
& \leq \max \left\{\hat{\rho}\left(\frac{u_{1}}{\gamma_{1}}\right), \hat{\rho}\left(\frac{u_{2}}{\gamma_{2}}\right)\right\}
\end{aligned}
$$

which implies

$$
\check{\rho}\left(\alpha u_{1}+(1-\alpha) u_{2}\right) \leq \hat{\rho}\left(\frac{\alpha u_{1}+(1-\alpha) u_{2}}{\alpha \gamma_{1}+(1-\alpha) \gamma_{2}}\right) \leq \max \left\{\hat{\rho}\left(\frac{u_{1}}{\gamma_{1}}\right), \hat{\rho}\left(\frac{u_{2}}{\gamma_{2}}\right)\right\} \leq \max \left\{\check{\rho}\left(u_{1}\right), \check{\rho}\left(u_{2}\right)\right\}+\epsilon .
$$

Hence $\check{\rho}(\cdot)$ is quasi-convex. Note that the only property that is not satisfied is the semi-continuity. To handle this, define $\rho: \mathcal{R}^{m} \mapsto[0,1]$ as

$$
\rho(u)=\lim _{\epsilon \downarrow 0} \check{\rho}(u+\epsilon e)
$$

Because of monotonicity of $\check{\rho}(\cdot), \rho(\cdot)$ is well-defined. In addition, it can be shown that $\rho(\cdot)$ is lower-semicontinuous. Complete classification, misclassification avoidance, monotonicity, order invariance, scale invariance, and quasi-convexity all follows easily from the fact that same property holds for $\check{\rho}(\cdot)$. Thus, $\rho(\cdot)$ is a CCLF w.r.t. m. Next, we show that

$$
\hat{\rho}(u) \geq \rho(u) \geq \varrho(u)
$$

The first inequality holds due to $\hat{\rho}(u) \geq \check{\rho}(u) \geq \check{\rho}(u+\epsilon e)$. The second inequality holds because for any u, there exists $\epsilon>0$ small enough such that $\varrho(u+\epsilon e)=\varrho(u)$. Thus, taking limit over $\check{\rho}(u+\epsilon e) \geq \varrho(u+\epsilon e)$ establishes the second inequality. Recall that $\bar{\rho}(u)$ is the minimal CCLF, we establish the lemma by

$$
\varrho(u) \leq \bar{\rho}(u) \leq \rho(u)
$$

4. Proof of Theorem 5

Proof. To prove Theorem 5, we start with establishing the following lemma. Observe that $\bar{\rho}(\mathbf{u})$ only takes value in $\{0,1 / m, 2 / m, \cdots 1\}$.

Lemma A-2. The level set of Problem (4), i.e., $\mathcal{U}_{i} \triangleq\left\{(\mathbf{u}, \mathbf{w}) \mid \bar{\rho}(\mathbf{u}) \leq 1-i / m ; f_{j}(\mathbf{u}, \mathbf{w}) \leq 0, \forall j\right\}$ for $i=1, \cdots, m$, equals the following

$$
\left\{(\mathbf{u}, \mathbf{w}) \mid \exists d: \sum_{i=1}^{m}\left[d-u_{i}\right]^{+} \leq(m-i+1) d ; f_{j}(\mathbf{u}, \mathbf{w}) \leq 0, \forall j .\right\}
$$

Proof. From Property 2 of Theorem 2, we have that \mathcal{U}_{i} equals to the feasible set of the following program

$$
\begin{aligned}
& \sup _{\mathbf{v} \in \overline{\mathbf{V}}_{i / m}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0 \\
& f_{j}(\mathbf{u}, \mathbf{w}) \leq 0 ; \quad j=1, \cdots, n
\end{aligned}
$$

Recall that $\overline{\mathbf{V}}_{i / m}=\operatorname{conv}\left\{\lambda \mathbf{e}_{N}|\lambda>0,|N|=m-i+1\}\right.$ we have that $\sup _{\mathbf{v} \in \overline{\mathbf{V}}_{i / m}}\left(-\mathbf{v}^{\top} \mathbf{u}\right) \leq 0$ is equivalent to

$$
\inf _{\mathbf{v}: \mathbf{0} \leq \mathbf{v} \leq \mathbf{e}, \mathbf{e}^{\top} \mathbf{v}=m-i+1} \mathbf{v}^{\top} \mathbf{u} \geq 0
$$

which left-hand-side by duality theorem is equivalent to the following optimization problem on (\mathbf{c}, d)

$$
\begin{array}{ll}
\text { Maximize: } & \sum_{i=1}^{m} c_{i}+(m-i+1) d \\
\text { Subject to: } & c_{i}+d \leq u_{i} \\
& c_{i} \leq 0
\end{array}
$$

Thus we have $\mathbf{u} \in \mathcal{U}_{i}$ if and only if there exists \mathbf{c}, d, and \mathbf{w} such that

$$
\begin{aligned}
& \mathbf{e}^{\top} \mathbf{c}+(m-i+1) d \geq 0 \\
& \mathbf{c}+d \mathbf{e} \leq \mathbf{u} \\
& \mathbf{c} \leq \mathbf{0} \\
& f_{j}(\mathbf{u}, \mathbf{w}) \leq 0 ; \quad j=1, \cdots, n
\end{aligned}
$$

Note that this can be further simplified, since optimal $c_{i}=-\left[d-u_{i}\right]^{+}$, as

$$
\begin{align*}
& \sum_{i=1}^{m}\left[d-u_{i}\right]^{+} \leq(m-i+1) d \tag{A-4}\\
& f_{j}(\mathbf{u}, \mathbf{w}) \leq 0 ; \quad j=1, \cdots, n
\end{align*}
$$

This establishes the lemma.
Now we turn to prove Theorem 5. Recall the assumption that there are no \mathbf{u}, \mathbf{w} such that $\mathbf{u} \geq 0$, and $f_{j}(\mathbf{u}, \mathbf{w}) \leq 0$ for all j. Thus any feasible solution to (A-4) must have $d>0$. Hence the feasible set to Problem (A-4) is equivalent to that of

$$
\begin{aligned}
& \sum_{i=1}^{m}\left[1-u_{i} / d\right]^{+} \leq(m-i+1) \\
& f_{j}(\mathbf{u}, \mathbf{w}) \leq 0 ; \quad j=1, \cdots, m
\end{aligned}
$$

Thus, finding the optimal solution to Problem (4) is equivalent to solve the following

$$
\begin{array}{ll}
\text { Minimize: } & \sum_{i=1}^{m}\left[1-u_{i} / d\right]^{+} \\
\text {Subject to: } & f_{j}(\mathbf{u}, \mathbf{w}) \leq 0 ; \quad j=1, \cdots, n \\
& d>0 \tag{A-5}
\end{array}
$$

By a change of variable where we let $h=1 / d, \mathbf{s}=\mathbf{u} h, \mathbf{t}=\mathbf{w} h$, this is equivalent to

$$
\begin{array}{ll}
\text { Minimize: } & \sum_{i=1}^{m}\left[1-s_{i}\right]^{+} \\
\text {Subject to: } & h f_{j}(\mathbf{s} / h, \mathbf{t} / h) \leq 0 ; \quad j=1, \cdots, n \\
& h>0
\end{array}
$$

Hence Theorem 5 is established.

References

Brown, D.B. and Sim, M. Satisficing measures for analysis of risky positions. Management Science, 55(1):71-84, 2009.

