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1. Proof of Theorem 1
Proof. Step 1 – the “if” part. Given a function ρ(u) = 1− sup{k ∈ [0, 1]| supv∈Vk

(−v⊤u) ≤ 0} for some admissible
class {Vk}, we show that ρ(·) satisfies all properties required for a CCLF.

Step 1.1 – Complete Classification: If u ≥ 0, then by V1 = ℜ+
m we have that v⊤u ≥ 0 for all v ∈ V1, which implies that

supv∈V1
(−v⊤u) ≤ 0. Hence ρ(x) = 0. Conversely, if u ̸≥ 0, without loss of generality we assume u1 < 0, then we have

sup
v∈V1

(−v⊤u) = sup
v∈ℜm

+

(−v⊤u) ≥ −e1u > 0.

This, combined with V1 = cl(limk↑1 Vk), leads to that ∃δ > 0 such that

sup
v∈V1−δ

(−v⊤u) > 0,

which implies that ρ(u) > 0. This shows that ρ(·) satisfies complete classification.

Step 1.2 – Misclassification avoidance: Fix u such that u < 0. We have e ∈ V0 which implies that

sup
v∈V0

(−v⊤u) ≥ (−e⊤u) > 0.

Hence ρ(u) = 1. Thus, ρ(·) satisfies misclassification avoidance.

Step 1.3 – Monotonicity: If u1 ≤ u2, then for any k ∈ [0, 1], since Vk ⊆ V1 = ℜm
+ , we have that −v⊤u1 ≥ −v⊤u2 for

any v ∈ Vk. Thus,
{ sup
v∈Vk

(−v⊤u1) ≤ 0} =⇒ { sup
v∈Vk

(−v⊤u2) ≤ 0}.

Hence ρ(u1) ≥ ρ(u2). Thus, ρ(·) satisfies monotonicity.

Step 1.4 – Order & scale invariance: Order invariance follows directly from the fact that Vk is order invariant for all k.
Scale invariant holds because for α > 0 and k ∈ [0, 1],

{ sup
v∈Vk

(−v⊤u) ≤ 0} ⇐⇒ { sup
v∈Vk

(−v⊤αu) ≤ 0}.

Step 1.5 – Quasi-convexity: To show quasi-convexity, let c = max(ρ(u1), ρ(u2)) and without loss of generality assume
c < 1 since otherwise the claim trivially holds. Thus we have that for any ϵ > 0

sup
v∈V1−c−ϵ

(−v⊤ui) ≤ 0, i = 1, 2,
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which implies that for α ∈ [0, 1]
sup

v∈V1−c−ϵ

{−v⊤[αu1 + (1− α)u2]} ≤ 0.

Thus 1− ρ(αu1 + (1− α)u2) ≥ 1− c since ϵ can be arbitrarily close to 0. The quasi-convexity holds.

Step 1.6 – Lower semi-continuity: We show that ρ(u∗) ≤ lim infi ρ(ui) for ui
i→ u∗. Let c > lim infi ρ(ui), then there

exists an infinite sub-sequence {uij} such that ρ(uij ) < c. That is

−v⊤uij ≤ 0; ∀v ∈ V1−c, ∀j.

Note that uij → u∗, hence
−v⊤u∗ ≤ 0; ∀v ∈ V1−c,

i.e., 1− ρ(u∗) ≥ 1− c. Since c can be arbitrarily close to lim infi ρ(ui), the semi-continuity follows.

Step 2 – the “only if” part. Given a function ρ(·) which is a CCLF, we show that it can be represented as

ρ(u) = 1− sup{k ∈ [0, 1]| sup
v∈Vk

(−v⊤u) ≤ 0},

for some admissible class {Vk}. This consists of three steps. We first show that ρ(·) can be represented as ρ(u) =
1 − sup{k ∈ [0, 1]| supv∈Vk

(−v⊤u) ≤ 0}, for some {Vk}. Here {Vk} is not necessarily admissible, but satisfies
Vk ⊆ Vk′ for all k ≤ k′. We then show that we can replace Vk by a class of closed, convex, order-invariant, cones Vk.
Finally we show that {Vk} is admissible to complete the proof.

Step 2.1. The representability of ρ(·) follows from Theorem 2 of (Brown & Sim, 2009). For completeness we re-state the
result as a lemma, and provide the proof below.

Lemma A-1. Given a CCLF ρ(·), then there exists {Vk} that satisfies Vk ⊆ Vk′ for all k ≤ k′, such that

ρ(u) = 1− sup{k ∈ [0, 1]| sup
v∈Vk

(−v⊤u) ≤ 0}.

Step 2.2. We construct {Vk} as follows. Let V̂k , cl(cc(or(Vk))). Then we let Vk , V̂k for k ∈ (0, 1), and
V0 ,

∩
k∈(0,1) V̂k, and V1 , cl(

∪
k∈(0,1) V̂k). Here or(·) (respectively cc(·)) is the minimal order invariant (respectively,

convex cone) superset, defined as

or(S) = {Pv|P ∈ Pn,v ∈ S}, cc(S) = {
k∑

i=1

λivi|k ∈ N,vi ∈ S, λi ≥ 0}.

Let
ρ′(u) = 1− sup{k ∈ [0, 1]| sup

v∈V̂k

(−v⊤u) ≤ 0},

and observe that Vk ⊆ V̂k, hence ρ(u) ≤ ρ′(u). To show that ρ(u) ≥ ρ′(u), it suffices to show that for any k, ϵ and u,
the following holds,

{ sup
v∈Vk

(−v⊤u) ≤ 0} =⇒ { sup
v∈V̂k−ϵ

(−v⊤u) ≤ 0}. (A-1)

Note that {supv∈Vk
(−v⊤u) ≤ 0} implies k ≤ 1− ρ(u), and hence by order invariance of ρ(·), we have k ≤ 1− ρ(Pu)

for all P ∈ Pn. This means
sup

v∈Vk−ϵ

sup
P∈Pn

(−v⊤Pu) ≤ 0,

which is equivalent to
sup

v∈or(Vk−ϵ)

(−v⊤u) ≤ 0.

By definition of cc(·), this leads to
sup

v∈cc(or(Vk−ϵ))

(−v⊤u) ≤ 0,
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which further implies, by continuity of −v⊤u, that

sup
v∈cl(cc(or(Vk−ϵ)))

(−v⊤u) ≤ 0.

Thus we have ρ(u) = ρ′(u). Finally note that V̂k ⊆ V̂k′ for k ≤ k′, which leads to the following

sup
v∈V̂0

(−v⊤u) ≤ sup
v∈

∩
k∈(0,1) V̂k

(−v⊤u) ≤ sup
v∈V̂ϵ

(−v⊤u);

sup
v∈V̂1−ϵ

(−v⊤u) ≤ sup
v∈

∪
k∈(0,1) V̂k

(−v⊤u) ≤ sup
v∈V̂1

(−v⊤u).

By definitions of V0 and V1, together with the fact (due to continuity)

sup
v∈cl(

∪
k∈(0,1) V̂k)

(−v⊤u) = sup
v∈

∪
k∈(0,1) V̂k

(−v⊤u),

we conclude that
ρ(u) = 1− sup{k ∈ [0, 1]| sup

v∈Vk

(−v⊤u) ≤ 0}.

Step 2.3. Now we check that {Vk} is indeed admissible. Property 1-3 are straightforward from the definition of Vk. To
see that V0 is closed, recall that the intersection of a class of closes sets is close.

We next show Property 4: V1 = ℜm
+ . By definition of V1, we have

lim
k→1

sup
v∈Vk

(−v⊤u) = sup
v∈V1

(−v⊤u).

Hence ρ(u) = 0 if and only if supv∈V1
(−v⊤u) ≤ 0. Thus by the property of complete classification we have the

following
{ sup
v∈V1

(−v⊤u) ≤ 0} ⇐⇒ {u ≥ 0}. (A-2)

Denote the dual cone of a cone X by X∗ and recall that for any k, Vk is a closed convex cone, hence we have

(V∗
1)

∗ = V1.

The definition of dual cone states that
V∗

1 = {u|u⊤v ≥ 0;∀v ∈ V1},
which combined with Equation (A-2) implies that

V∗
1 = ℜm

+ .

Since ℜm
+ is self-dual, we have

V1 = ℜm
+ .

We now turn to Property 5. Fix k > 0. Consider u = −e. By misclassification avoidance, ρ(u∗) = 1, which means there
exists v∗ ∈ Vk such that v∗⊤u < 0, i.e.,

∑m
i=1 vi > 0. Define a permutation matrix P ∈ Pm:

P =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0

 .

Thus, by order invariance of Vk, P tv∗ ∈ Vk for t = 0, · · · ,m − 1. By convexity, this implies 1
m

∑m−1
t=0 P tv∗ ∈ Vk.

Note that 1
m

∑m−1
t=0 P tv∗ = [

∑m
i=1 v

∗
i ]e/m, thus ∑m

i=1 v
∗
i

m
e ∈ Vk.

Since
∑m

i=1 v
∗
i > 0 and Vk is a cone, we have λe ∈ Vk for all λ ≥ 0 and k > 0. By definition of V0, this implies

λe ∈ V0.
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The rest of this appendix provides a proof to Lemma A-1.

Proof. We recall the following results adapted from (Brown & Sim, 2009).

Definition A-1. Let U be the set of random variables on the probability space (Ω,F ,P). A function ρ(·) : U → [0, 1] is a
collective satisfying measure if the following holds for all U,U ′ ∈ U .

1. If U ≥ 0, then ρ(U) = 1;

2. If U < 0, then ρ(U) = 0;

3. If U ≥ U ′ then ρ(U) ≥ ρ(U ′);

4. limα≥0 ρ(U + α) = ρ(U);

5. If λ ∈ [0, 1], then ρ(λU + (1− λ)U ′) ≥ min(ρ(U), ρ(U ′));

6. If k > 0, then ρ(kU) = ρ(U).

Theorem A-1. Any collective satisfying measure ρ(·) can be represented as

ρ(U) = sup{k ∈ [0, 1]| sup
Q∈Qk

EQ(−U) ≤ 0},

for a class of sets of probability measures Qk satisfying Qk ⊆ Qk′ for k ≤ k′.

Given this general result, we focus on a special case where Ω = {1, 2 · · · ,m}. Note that in this case each random variable
U : Ω 7→ ℜ can be represented as a vector u ∈ ℜm where ui = U(i). Given a CCLF ρ(·) : ℜm → ℜ, we define ρ : U 7→ ℜ
as following

ρ(U) = 1− ρ(u); where ui = U(i), i = 1, · · · ,m.

It is straightforward to check that ρ(·) is a collective satisfying measure. Thus, Theorem A-1 states there exists a class of
sets of probability measure Qk such that

1− ρ(u) = ρ(U) = sup{k ∈ [0, 1]| sup
Q∈Qk

EQ(−U) ≤ 0}.

Note that any probability measure Q on Ω = {1, · · · ,m} can be represented by a vector v ∈ ℜm such that vi = Q(i).
Thus EQ(−X) = −v⊤x where v and u are the vector form for Q and U respectively. Hence we have there exists Vk

such that
ρ(u) = 1− sup{k ∈ [0, 1]| sup

v∈Vk

(−v⊤u) ≤ 0}.

Note that for k ≤ k′, Vk ⊆ Vk′ since Qk ⊆ Qk′ . This concludes the proof of Lemma A-1.

2. Proof of Theorem 2
Proof. Claim 1: We check that all conditions of Definition 1 are satisfied by ρ(·). The only condition needs a proof is the
semi-continuity. Consider a sequence uj → u0, and let t0 = max{t :

∑t
i=1 u

0
(i) < 0}. Without loss of generality we let

u0
1 ≤ u0

2 ≤, · · · ,≤ u0
m. Thus we have that

∑t0

i=1 u
0
i < 0. This implies that lim supj

∑t0

i=1 u
j
i < 0, which further leads

to lim infj(max{t :
∑t

i=1 u
j
(i) < 0}) ≥ t0. Hence lim infj ρ(u

j) ≥ ρ(u0), which established the semi-continuity. Thus,

we conclude that ρ(·) is a CCLF. Further, observe that max{t :
∑t

i=1 u(i) < 0} ≥
∑m

i=1 1(ui < 0), which established the
first claim.

Claim 2: It is straightforward to check that Vk satisfies all conditions of Definition 2, and hence is an admissible set.
Thus, we proceed to show that Vk is an admissible set corresponding to ρ(·), i.e., to show

ρ(u) = 1− sup{k ∈ [0, 1]| sup
v∈Vk

(−v⊤u) ≤ 0}.
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Fix a u ∈ ℜm. If u ≥ 0, then we have ρ(u) = 0, as well as supv∈V1
(−v⊤u) ≤ 0, and hence the equivalence holds

trivially. Thus we assume u ̸≥ 0, and let t0 = max{t :
∑t

i=1 u(i) < 0}. By definition we have

V1−t0/m = conv
{
λeN ′ |λ > 0, |N ′| = t0 + 1

}
.

Note that by definition of t0

min
|N ′|=t0+1

∑
i∈N ′

ui ≥ 0,

which implies that
sup

v∈{eN′ ||N ′|=t0+1}
(−v⊤u) ≤ 0.

This leads to
sup

v∈V1−t0/m

(−v⊤u) ≤ 0. (A-3)

On the other hand for arbitrarily small ϵ > 0, by definition

V1−t0/m+ϵ = conv
{
λeN |λ > 0, |N | = t0

}
.

Because minN :|N |=t0
∑

i∈N ui < 0, we have

sup
v∈V1−t0/m+ϵ

(−v⊤u) > 0.

Combining with Equation (A-3) we established the second claim.

Claim 3: Let ρ′(·) be a CCLF satisfying that ρ′(u) ≥ ϱ(u) for all u ∈ ℜm, and let {V′
k} be its corresponding admissible

set. Thus, it suffices to show that Vk ⊆ V′
k for all k. This holds trivially for k = 0, since ρ′(u) = 1 for all u < 0

implies that λe ∈ V′
0. When k > 0, let s/m < k ≤ (s + 1)/m for some integer s. Then, since V′

k is an order-invariant
convex cone, it suffices to show that e[1:m−s] ∈ V′

k to establish the third claim. Consider u∗ , −e[1:m−s]. Then, by
ρ′(u∗) ≥

∑
i 1(u

∗
i < 0)/m = s/m < k, we have

sup
v∈V′

k

(−v⊤u∗) > 0

=⇒ ∃v∗ ∈ V′
k :

m−s∑
i=1

v∗i > 0.

Define a permutation matrix P :

P =

[
P1 0(m−s)×s

0(m−s)×s 0s×s

]
,

where P1 is a (m− s)× (m− s) matrix:

P1 =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0

 .

Thus, by order invariance of V′
k, P tv∗ ∈ V′

k for t = 0, · · · ,m− s− 1. By convexity, this implies 1
m−s

∑m−s−1
t=0 P tv∗ ∈

V′
k. Note that 1

m−s

∑m−s−1
t=0 P tv∗ = [

∑
i∈[1:m−s] v

∗
i ]e[1:m−s]/(m− s), thus∑m−s

i=1 v∗i
m− s

e[1:m−s] ∈ V′
k.

Since
∑m−s

i=1 v∗
i

m−s is positive, and V′
k is a cone, we have e[1:n−s] ∈ V′

k, which completes the proof.
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3. Proof of Theorem 3
Proof. We prove the theorem by constructing such a function ρ(·). To do this, first consider ρ̌ : Rm 7→ [0, 1] defined as

ρ̌(u) = min
γ>0

ρ̂(u/γ).

Then it is easy to check that ρ̌(·) satisfies complete classification, misclassification avoidance, monotonicity, order invari-
ance, and scale invariance. To see that ρ̌(u) ≥ ϱ(u), note that if u has t negative coefficients, than for any γ > 0, u/γ also
has t negative coefficients, which means

ρ̂(u/γ) ≥ t/m.

Taking minimization over γ, we have ρ̌(u) ≥ ϱ(u) holds. Finally, we show quasi-convexity of ρ̌(·). Fix u1, u2, and
α ∈ [0, 1], let γ1, γ2 be ϵ-optimal, i.e.,

ρ̂(ui/γi) ≤ ρ̌(ui) + ϵ, i = 1, 2.

Since ρ̂ is quasi-convex, we have

ρ̂(
αu1 + (1− α)u2

αγ1 + (1− α)γ2
) = ρ̂(

αγ1
αγ1 + (1− α)γ2

· u1

γ1
+

(1− α)γ2
αγ1 + (1− α)γ2

· u2

γ2
)

≤ max{ρ̂(u1

γ1
), ρ̂(

u2

γ2
)}

which implies

ρ̌(αu1 + (1− α)u2) ≤ ρ̂(
αu1 + (1− α)u2

αγ1 + (1− α)γ2
) ≤ max{ρ̂(u1

γ1
), ρ̂(

u2

γ2
)} ≤ max{ρ̌(u1), ρ̌(u2)}+ ϵ.

Hence ρ̌(·) is quasi-convex. Note that the only property that is not satisfied is the semi-continuity. To handle this, define
ρ : Rm 7→ [0, 1] as

ρ(u) = lim
ϵ↓0

ρ̌(u+ ϵe)

Because of monotonicity of ρ̌(·), ρ(·) is well-defined. In addition, it can be shown that ρ(·) is lower-semicontinuous.
Complete classification, misclassification avoidance, monotonicity, order invariance, scale invariance, and quasi-convexity
all follows easily from the fact that same property holds for ρ̌(·). Thus, ρ(·) is a CCLF w.r.t. m. Next, we show that

ρ̂(u) ≥ ρ(u) ≥ ϱ(u).

The first inequality holds due to ρ̂(u) ≥ ρ̌(u) ≥ ρ̌(u + ϵe). The second inequality holds because for any u, there exists
ϵ > 0 small enough such that ϱ(u + ϵe) = ϱ(u). Thus, taking limit over ρ̌(u + ϵe) ≥ ϱ(u + ϵe) establishes the second
inequality. Recall that ρ̄(u) is the minimal CCLF, we establish the lemma by

ϱ(u) ≤ ρ̄(u) ≤ ρ(u).

4. Proof of Theorem 5
Proof. To prove Theorem 5, we start with establishing the following lemma. Observe that ρ(u) only takes value in
{0, 1/m, 2/m, · · · 1}.

Lemma A-2. The level set of Problem (4), i.e., Ui , {(u,w)|ρ(u) ≤ 1 − i/m; fj(u,w) ≤ 0,∀j} for i = 1, · · · ,m,
equals the following

{(u,w)| ∃d :
m∑
i=1

[d− ui]
+ ≤ (m− i+ 1)d; fj(u,w) ≤ 0, ∀j.}
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Proof. From Property 2 of Theorem 2, we have that Ui equals to the feasible set of the following program

sup
v∈Vi/m

(−v⊤u) ≤ 0;

fj(u,w) ≤ 0; j = 1, · · · , n.

Recall that Vi/m = conv {λeN |λ > 0, |N | = m− i+ 1} we have that supv∈Vi/m
(−v⊤u) ≤ 0 is equivalent to

inf
v:0≤v≤e,e⊤v=m−i+1

v⊤u ≥ 0,

which left-hand-side by duality theorem is equivalent to the following optimization problem on (c, d)

Maximize:
m∑
i=1

ci + (m− i+ 1)d

Subject to: ci + d ≤ ui

ci ≤ 0.

Thus we have u ∈ Ui if and only if there exists c, d, and w such that

e⊤c+ (m− i+ 1)d ≥ 0;

c+ de ≤ u;

c ≤ 0;

fj(u,w) ≤ 0; j = 1, · · · , n.

Note that this can be further simplified, since optimal ci = −[d− ui]
+, as

m∑
i=1

[d− ui]
+ ≤ (m− i+ 1)d (A-4)

fj(u,w) ≤ 0; j = 1, · · · , n.

This establishes the lemma.

Now we turn to prove Theorem 5. Recall the assumption that there are no u,w such that u ≥ 0, and fj(u,w) ≤ 0 for all
j. Thus any feasible solution to (A-4) must have d > 0. Hence the feasible set to Problem (A-4) is equivalent to that of

m∑
i=1

[1− ui/d]
+ ≤ (m− i+ 1)

fj(u,w) ≤ 0; j = 1, · · · ,m.

Thus, finding the optimal solution to Problem (4) is equivalent to solve the following

Minimize:
m∑
i=1

[1− ui/d]
+

Subject to: fj(u,w) ≤ 0; j = 1, · · · , n;
d > 0. (A-5)

By a change of variable where we let h = 1/d, s = uh, t = wh, this is equivalent to

Minimize:
m∑
i=1

[1− si]
+

Subject to: hfj(s/h, t/h) ≤ 0; j = 1, · · · , n;
h > 0.

Hence Theorem 5 is established.
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