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A. Appendix
In this section, we provide the proofs of several technical results that are claimed or used in our main paper.

A.1. Proof of Proposition 4.1

The proof follows via a reduction from the so-called SUBSETSUM problem, which is known to be NP-hard (Garey &
Johnson, 1979). Recall that the SUBSETSUM decision problem is as follows: given n numbers, a1, . . . , an in R, decide if
there exists a partition S ⊆ [n] such that ∑

i∈S
ai =

∑
j∈Sc

aj .

We show that if we can solve the mixed linear equations problem in polynomial time, then we can solve the SUBSETSUM
problem, which would thus imply that P = NP .

Given {a1, . . . , an}, we must design a matrix X , and output variable y, such that if we could solve the mixed linear
equation problem specified by (y, X), then we could decide the subset sum problem on {a1, . . . , an}. To this end, we
define:

X =

 In
In

a1 · · · an

 , y =

 1n×1
0n×1∑
i ai/2

 .

Here, In denotes the n×n identity matrix, 1n×1 the n×1 vector of 1’s, and similarly, 0n×1 the n×1 vector of 0’s. Finding
a solution to the mixed linear equations problem amounts to finding a subset S ⊆ [2n + 1] of the 2n + 1 constraints, and
vectors β(1), β(2) ∈ Rn, so that β(1) satisfies the equalities XSβ

(1) = yS , and β(2) the equalities XScβ2 = ySc . Note that
S cannot contain i and n+ i, since these equalities are mutually exclusive. The consequence is that we have β(1)

i ∈ {0, 1},
with β(1)

i = 1− β(2)
i . Thus if the first 2n constraints are satisfied, the final constraint, therefore, can only be satisfied if we

have ∑
i∈S

ai =
∑
i

aiβ
(1)
i =

∑
j

ajβ
(2)
j =

∑
j∈Sc

aj ,

thus proving the result.

A.2. Proof of Proposition 4.2

To show that our SVD initialization produces a good initial solution, requires two steps. Recall that Algorithm 5 finds
the two dimensional subspace spanned by the top two eigenvectors of the matrix M = 1

|S∗|
∑
i∈S∗ y

2
i xi ⊗ xi, and then

searches on a discretization of the circle in that subspace for two vectors that minimize the loss function, L+ evaluated on
the samples in S+.

We first show that the top eigenspace ofM is indeed close to the top eigenspace of its expectation, p1β∗1⊗β∗1+p2β
∗
2⊗β∗2+I ,

i.e., it is close to span{β∗1 , β∗2}, and that some pair of elements of the discretization are close to (β∗1 , β
∗
2). This is the content

of lemma A.1. We then show that our loss function L+ is able to select good points from the discretization.

Our algorithm then uses the loss function L+ (evaluated on new samples in S+) to select good points from the grid G.
Lemma A.2 shows that as long as the number S+ of these new samples is large enough, we can upper and lower bound,
with high probability, the empirically evaluated loss L+(β̂1, β̂2) of any candidate pair β̂1, β̂2 by the true error err of that
candidate pair. This provides the critical result allowing us to do the correct selection in the 1-d search phase.

Now we are ready to prove the result. Suppose the conditions of lemma A.1 hold. Then we are guaranteed the existence
of (β̄1, β̄2) in the grid G with δ-resolution, such that maxi ‖β̄i − β∗i ‖ < δ. Next, let (β

(0)
1 , β

(0)
2 ) be the output of our

SVD initialization, and let err denote their distance from (β∗1 , β
∗
2). By definition, the vectors (β

(0)
1 , β

(0)
2 ) minimize the

loss function L+ taken on inputs S+, and hence L+(β
(0)
1 , β

(0)
2 ) ≤ L+(β̄1, β̄2). Using the lower bound from lemma A.2,

applied to (β
(0)
1 , β

(0)
2 ) we have:

1

5

√
min{p1, p2}err ≤

√
L+(β

(0)
1 , β

(0)
2 )

|S+|
.
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From the upper bound applied to (β̄1, β̄2), we have√
L+(β̄1, β̄2)

|S+|
≤ 1.1δ.

Recalling that L+(β
(0)
1 , β

(0)
2 ) ≤ L+(β̄1, β̄2), and taking

δ ≤ 2

11
ĉ‖β∗1 − β∗2‖2

√
min{p1, p2}

3
,

we combine to finally obtain:

err ≤ 11

2

δ√
min{p1, p2}

≤ ĉmin{p1, p2}‖β∗1 − β∗2‖2.

where ĉ is as in the statement of proposition 4.2.

A.3. Proof of Proposition 4.3

Using standard concentration results, in lemma A.1, we have shown if

|S∗| > c(1/δ̃)2k log2 k,

with probability at least 1− 1
k2 ,

‖M − E(M)‖ < 3δ̃

Hence, we have ∣∣|λ∗1 − λ∗2| − |λ1 − λ2|∣∣ ≤ 6δ̃.

The approximate error of ∆∗b can be bounded as:

2pb|∆∗b −∆b| ≤ 6δ̃ + (p2b − p2−b)[
1

λ∗−b − λ∗b
− 1

λ−b − λb
]

≤ 6δ̃ + |p2b − p2−b|
6δ̃

(λ∗−b − λ∗b)(λ−b − λb)

≤ 6δ̃ + |p2b − p2−b|
6δ̃

|λ∗−b − λ∗b |(|λ∗−b − λ∗b | − 6δ̃)

≤ 6δ̃ + |p2b − p2−b|
12δ̃

|λ∗−b − λ∗b |2

In the last inequality we use δ̃ ≤ |λ
∗
1−λ

∗
2 |

12 .

Next, we calculate approximation error of eigenvectors. Note that E(M−I2 ) = p1β
∗
1 ⊗ β∗1 + p2β

∗
2 ⊗ β∗2 , we have

{λ∗1, λ∗2} = {1 + κ

2
,

1− κ
2
}.

Using lemma A.3, we have,

‖vb − v∗b‖22 ≤
6δ̃

κ
+

24δ̃

1− κ
≤ 24δ̃

κ(1− κ)
, b = 1, 2.

Then

‖β∗b − βb‖2 ≤
∣∣∣∣
√

1−∆∗b
2

v∗b −
√

1−∆b

2
vb

∣∣∣∣+

∣∣∣∣
√

1 + ∆∗b
2

v∗−b −
√

1 + ∆b

2
v−b

∣∣∣∣. (14)
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Note that ∣∣∣∣
√

1−∆∗b
2

v∗b −
√

1−∆b

2
vb

∣∣∣∣ =

√
1−∆∗b

2
v∗b −

√
1−∆∗b

2
vb +

√
1−∆∗b

2
vb −

√
1−∆b

2
vb

∣∣∣∣
≤
√

1−∆∗b
2
‖vb − v∗b‖2 +

∣∣∣∣
√

1−∆∗b
2

−
√

1−∆b

2

∣∣∣∣‖vb‖2
≤ ‖vb − v∗b‖2 +

∣∣∣∣
√

1−∆∗b
2

−
√

1−∆b

2

∣∣∣∣
≤ ‖vb − v∗b‖2 +

√
1

2

∣∣∣∣∆b −∆∗b

∣∣∣∣.
Plug the above result back to (14), we obtain

‖β∗b − βb‖2 .
√∣∣∆b −∆∗b

∣∣+
∑
b

‖vb − v∗b‖2

.

√
δ̃

κ(1− κ)
+

1√
min{p1, p2}

√
δ̃ +

δ̃

κ2

.

√
δ̃

min{p1, p2}
×

√
1

κ(1− κ)
+

1

κ2

=

√
δ̃

min{p1, p2}
1

κ
√

1− κ
.

By setting the above upper bound to be less than ĉmin{p1, p2}‖β∗1 − β∗2‖2, we complete the proof.

A.4. Proof of Proposition 4.5

It’s equivalent to show that Jb = J∗b , b = 1, 2. Let’s consider b = 1, that is for all p1 ∗ |St| samples that are generated by
y = xTβ∗1 . For simplicity, let β1, β2 denote β(t−1)

1 , β
(t−1)
2 , we need

(
xT (β∗1 − β1)

)2
<
(
xT (β∗1 − β2)

)2
.

From lemma 5.1,

P
[(
xT (β∗1 − β1)

)2
<
(
xT (β∗1 − β2)

)2] ≥ 1− ‖β
∗
1 − β1‖2

‖β∗1 − β2‖2
(15)

≥ 1− 2
‖β∗1 − β1‖2
‖β∗1 − β∗2‖2

(16)

≥ 1− 2c1
k2

. (17)

Then we use union bound for p1 ∗ |St| samples in J∗1 ,

P
[(
xTi (β∗1 − β1)

)2
<
(
xTi (β∗1 − β2)

)2
, for all i ∈ J∗1

]
≥ 1− p1c2k ×

2c1
k2
≥ 1− c′

k
.

So all samples are correctly clustered with high probability.

As 1
min(p1,p2)

k < |St|, number of samples in J1 and J2 are both greater than k. Therefore, least square solution reveals the

ground truth. In other words, err(t) = 0.
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A.5. Proof of Lemma 5.1

(1)
Without loss of generality, we assume T{u, v} = T{e1, e2}. Let x1, x2 denote xTe1,x

Te2. As x1, x2 are independent
Gaussian random variables, we have x1 = A cos θ, x2 = A sin θ, where A is Rayleigh random variable, and θ is uniformly
distributed over [0, 2π). Conditioning on (xTu)2 > (xT v)2, the range of θ is truncated to be [θ0, θ0+α(u,v)]∪[θ0+π, θ0+

π+α(u,v)] for some θ0. It is not hard to see the eigenvalues of covariance matrix of (x1, x2) are 1+
sinα(u,v)

α(u,v)
, 1− sinα(u,v)

α(u,v)
.

As the rest if the eigenvalues of Σ are 1, this completes the proof.
(2)
Note that

P
[
(xTu)2 > (xT v)2

]
=
α(u,v)

π
.

If ‖u‖2 > ‖v‖2, α(u,v) >
π
2 , when ‖u‖2 < ‖v‖2,

cosα(u,v) ≥
‖v‖22 − ‖u‖22
‖u‖22 + ‖v‖22

.

Note that for any α ∈ [0, π/2], α ≤ π
2 sinα. We have

P
[
(xTu)2 > (xT v)2

]
≤ 1

2
sinα(u,v) ≤

‖u‖2‖v‖2
‖u‖22 + ‖v‖22

≤ ‖u‖2
‖v‖2

.

A.6. Supporting Lemmas

Lemma A.1. For any given δ > 0, let G denote the grid points, at resolution δ, of the unit circle on the subspace spanned
by the top two eigenvectors of M , formed with |S∗| samples. Then, there exists an absolute constant c such that if

|S∗| ≥ c(1/δ̃)2k log2 k,

where

δ̃ =
δ2

384
(1−

√
1− 4(1− 〈β∗1 , β∗2〉2)p1p2),

then
min
a∈G
‖β∗i − a‖ ≤ δ, i = 1, 2,

with probability at least 1−O
(

1
k2

)
.

Proof. In order to prove the result, we make use of standard concentration results.

Let Σ = E [M ]. We observe that P
[
|y| >

√
2α log k

]
≤ n−α, P

[
‖x‖22 ≥ 3k

]
≤ e−k/3. Suppose N is much less than

O
(
k10
)
, where the constant is arbitrarily chosen here. Set α = 12. Then with probability at least 1−O

(
1
k2

)
, The vectors

yixi are all supported in a ball with radius
√

72k log k. Directly following theorem 5.44 in (Vershynin, 2010), we claim
that when N > C(1/δ̃)2k log2 k,

‖M − Σ‖ ≤ δ̃‖Σ‖ ≤ 3δ̃.

We use σi(A) to denote the i’th biggest eigenvalue of the positive semidefinite matrix A. By simple algebraic calculation
we get σ1(Σ) = 2 + κ, σ2(Σ) = 2 − κ, where κ =

√
1− 4(1− 〈β∗1 , β∗2〉2)p1p2. The top two eigenvectors of Σ are

denoted as v∗1 , v∗2 . We use v1, v2 to denote the top two eigenvectors of M . Lemma A.3 yields that

‖v∗i − PT (v1,v2)v
∗
i ‖22 ≤

12δ̃

σ2(M)− σ3(M)

≤ 12δ̃

σ2(Σ)− σ3(Σ)− 6δ̃

=
12δ̃

1− κ− 6δ̃

=
24δ̃

1− κ
, i = 1, 2.



Alternating Minimization for Mixed Linear Regression

The last inequality holds when δ̃ ≤ 1−κ
12 . Using the fact that for any two vectors a,b,‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22, we

conclude that

‖β∗i − PT (v1,v2)β
∗
i ‖22 ≤

48δ̃

1− κ
, i = 1, 2.

Let w = ‖β∗i − PT (u,v)β
∗
i ‖2. Then, by simple geometric relation,

min
a∈Sk−1∩T(u,v)

‖a− β∗i ‖22 ≤ 2− 2
√

1− w2

≤ 2w2

≤ (
ε

2
)2, i = 1, 2.

Consider the δ-resolution grid G. We observe that for any point in Sk−1 ∩ T(u,v), there exists a point in G that is within
δ/2 away from it. By triangle inequality, we end up with

min
a∈W

‖a− β∗i ‖2 ≤ δ. (18)

Lemma A.2. Let β̂1, β̂2 be any two given vectors with error defined by err := maxi=1,2 ‖β̂i − β∗i ‖. There exist constants
c1, c2 > 0 such that as long as we have enough testing samples,

|S+| ≥ c1k/min{p1, p2},

then with probability at least 1−O
(
e−c2k

)
√
L+(β̂1, β̂2)

|S+|
≤ 1.1 err

and √
L+(β̂1, β̂2)

|S+|
≥ 1

5

√
min{p1, p2}min

{
err,

1

2
‖β∗1 − β∗2‖2

}
.

Proof. Our notation here, namely, J1, J2, J∗1 , J
∗
2 , is consistent with proof of Theorem 4.4. Note that we have:

L(β1, β2) =
∑
i

min
zi

zi(yi − xTi β1)2 + (1− zi)(yi − xTi β2)2.

For the upper bound, we assign label zi as the true label. Then,

L ≤
∑
i∈J∗1

(xTi (β∗1 − β1))2 +
∑
i∈J∗2

(xTi (β∗2 − β2))2.

When |S+| ≥ C k
min{p1,p2} , then the number of samples in set J∗1 ,J∗2 is also greater than Ck. Following standard concen-

tration results, there exist constants C, c1, such that with probability greater than 1− e−c1k, we have

‖ 1

pj |S+|
∑
i∈J∗j

(xix
T
i )− I‖ ≤ 0.21, j = 1, 2.

We have

L ≤ 1.21p1|S+|‖β1 − β∗1‖22 + 1.21p2|S+|‖β2 − β∗2‖22
≤ 1.21|S+|err2.
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For the lower bound, we observe that

L =
∑

i∈J1∩J∗1

(xTi (β1 − β∗1))2 +
∑

i∈J2∩J∗1

(xTi (β2 − β∗1))2

︸ ︷︷ ︸
A1

+
∑

i∈J1∩J∗2

(xTi (β1 − β∗2))2 +
∑

i∈J2∩J∗2

(xTi (β2 − β∗2))2

︸ ︷︷ ︸
A2

.

First we consider the first term, A1. Note a simple fact that ‖β1 − β∗1‖2 < ‖β2 − β∗1‖2 or ‖β1 − β∗1‖2 > ‖β2 − β∗1‖2. In
the first case, from Lemma 5.1, E [|J1 ∩ J∗1 |] ≥ 1

2p1|S+|. From Hoeffding’s inequality and concentration result (see proof
of Lemma 5.1 for similar techniques), for any δ ∈ (0, 1 − 2

π ), there exist constants C ′, c′1, such that when N ≥ C ′k/p1,
with probability at least 1− e−c′1k,∑

i∈J1∩J∗1

(xTi (β1 − β∗1))2 ≥ 1

4
p1|S+|(1−

1

π
− δ)‖β1 − β∗1‖22.

In the second case, we have a similar result:∑
i∈J2∩J∗1

(xTi (β2 − β∗1))2 ≥ 1

4
p1|S+|(1−

1

π
− δ)‖β2 − β∗1‖22.

Let 1 − 2
π − δ = 0.3 and choose C ′, c′1 to let the above results also hold for A2. We then conclude that when N >

C ′ k
min{p1,p2} ,

L ≥ 0.3

4
p1|S+|min{‖β1 − β∗1‖22, ‖β2 − β∗1‖22}+

0.3

4
p2|S+|min{‖β1 − β∗2‖22, ‖β2 − β∗2‖22}. (19)

When ‖β1 − β∗1‖2 < ‖β2 − β∗1‖2 and ‖β2 − β∗2‖2 < ‖β1 − β∗2‖2, (19) implies

L ≥ 1

25
min{p1, p2}|S+|err2. (20)

When ‖β1 − β∗1‖2 > ‖β2 − β∗1‖2 and ‖β2 − β∗2‖2 < ‖β1 − β∗2‖2, we have

L ≥ 1

25
min{p1, p2}|S+|(‖β2 − β∗1‖22 + ‖β2 − β∗2‖22) (21)

≥ 1

25
min{p1, p2}|S+|

1

4
‖β∗1 − β∗2‖22. (22)

Note that it is impossible for ‖β1 − β∗1‖2 > ‖β2 − β∗1‖2 and ‖β2 − β∗2‖2 > ‖β1 − β∗2‖2 both to be true. Otherwise, we
could switch the subscripts of the two β’s. Putting (20) and (22) together, we complete the proof.

Lemma A.3. Suppose symmetric matrix Σ ∈ Rn×n has eigenvalues λ1 ≥ λ2 > λ3... with corresponding normalized
eigenvectors denoted as u1, u2, u3, .... Let M be another symmetric matrix with eigenvalues: λ̃1 ≥ λ̃2 > λ̃3... and
eigenvectors ũ1, ũ2, ũ3, .... (a) Let span{u1, u2} denote the hyperplane spanned by u1 u2. If ‖M − Σ‖2 ≤ ε, for
ε < λ2−λ3

2 we have

‖ũi − PT (u1,u2)ũi‖
2
2 ≤

4ε

λ2 − λ3
, i = 1, 2. (23)

Moreover, if λ1 6= λ2,

‖u1 − ũ1‖22 ≤
4ε

λ1 − λ2
(24)

‖u2 − ũ2‖22 ≤
4ε

λ1 − λ2
+

8ε

λ2 − λ3
(25)
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Proof. Suppose ũ1 = α1u1 + β1u2 + γ1w, ũ2 = α2u1 + β2u2 + γ2v, where w, v are vector orthogonal to span{u1, u2}.
We have α2

1 + β2
1 + γ21 = α2

2 + β2
2 + γ22 = 1. Since ‖M − Σ‖2 ≤ ε,

ũT1Mũ1 ≥ λ1 − ε (26)

ũT1Mũ1 ≤ ũT1 (M − Σ)ũ1 + ũT1 Σũ1 (27)
≤ ε+ ũT1 Σũ1. (28)

Combining (26) and (27), using ũT1 Σũ1 = α2
1λ1 + β2

1λ2 + γ21λ3, we get

α2
1λ1 + β2

1λ2 + γ21λ3 ≥ λ1 − 2ε (29)

Since α2
1λ1 + β2

1λ2 + γ21λ3 ≤ (1− γ21)λ1 + γ21λ3, it implies that

γ21 ≤
2ε

λ1 − λ3
≤ 2ε

λ2 − λ3
. (30)

We assume λ1 6= λ2. Otherwise , the above inequality also holds for ũ2, then the proof of (23) is completed. By using
another upper bound α2

1λ1 + β2
1λ2 + γ21λ3 ≤ α2

1λ1 + (1− α2
1)λ2, the following inequality α2

1 holds

α2
1 ≥ 1− 2ε

λ1 − λ2
. (31)

Note ‖ũ2 − PT (u1,u2)ũ2‖22 = γ21 , we get the distance bound of u1. Next, we show the bound for ũ2. Similar to (29),

α2
2λ1 + β2

2λ2 + γ22λ3 ≥ λ2 − 2ε. (32)

Again, by using α2
2λ1 + β2

2λ2 + γ22λ3 ≤ α2
2λ1 + (1− α2

2)λ2, we get

γ22 ≤
2ε+ α2

2(λ1 − λ2)

λ2 − λ3
. (33)

We use the condition that ũ1 ũ2 are orthogonal. Hence, α2
1α

2
2 ≤ (1−α2

1)(1−α2
2). It is easy to see α2

1 +α2
2 ≤ 1. Plugging

it into (33) and using (31) result in

γ22 ≤
4ε

λ2 − λ3
. (34)

Through (30) and (34), we complete the proof of (23).

Using some intermediate results, we derive the bounds for eigenvectors in the case λ1 6= λ2.

‖u1 − ũ1‖22 = (1− α1)2 + β2
1 + γ21

= (1− α1)2 + 1− α2
1

≤ 2(1− α2
1)

≤ 4ε

λ1 − λ2
.

The last inequality follows from (31).

Similarly,

‖u2 − ũ2‖22 ≤ 2(1− β2
2)

= 2(α2
2 + γ22)

≤ 2(1− α2
1 + γ22)

≤ 4ε

λ1 − λ2
+

8ε

λ2 − λ3
.

We obtain the last inequality from (31) and (34).


