A. Appendix

In this section, we provide the proofs of several technical results that are claimed or used in our main paper.

A.1. Proof of Proposition 4.1

The proof follows via a reduction from the so-called SUBSETSUM problem, which is known to be NP-hard (Garey \& Johnson, 1979). Recall that the SUbSETSUM decision problem is as follows: given n numbers, a_{1}, \ldots, a_{n} in \mathbb{R}, decide if there exists a partition $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=\sum_{j \in S^{c}} a_{j}
$$

We show that if we can solve the mixed linear equations problem in polynomial time, then we can solve the SUBSETSUM problem, which would thus imply that $P=N P$.
Given $\left\{a_{1}, \ldots, a_{n}\right\}$, we must design a matrix X, and output variable \mathbf{y}, such that if we could solve the mixed linear equation problem specified by (\mathbf{y}, X), then we could decide the subset sum problem on $\left\{a_{1}, \ldots, a_{n}\right\}$. To this end, we define:

$$
X=\left[\begin{array}{ccc}
& I_{n} & \\
& I_{n} & \\
a_{1} & \cdots & a_{n}
\end{array}\right], \quad \mathbf{y}=\left(\begin{array}{c}
\mathbf{1}_{n \times 1} \\
\mathbf{0}_{n \times 1} \\
\sum_{i} a_{i} / 2
\end{array}\right)
$$

Here, I_{n} denotes the $n \times n$ identity matrix, $\mathbf{1}_{n \times 1}$ the $n \times 1$ vector of 1 's, and similarly, $\mathbf{0}_{n \times 1}$ the $n \times 1$ vector of 0 's. Finding a solution to the mixed linear equations problem amounts to finding a subset $S \subseteq[2 n+1]$ of the $2 n+1$ constraints, and vectors $\beta^{(1)}, \beta^{(2)} \in \mathbb{R}^{n}$, so that $\beta^{(1)}$ satisfies the equalities $X_{S} \beta^{(1)}=\mathbf{y}_{S}$, and $\beta^{(2)}$ the equalities $X_{S^{c}} \beta_{2}=\mathbf{y}_{S^{c}}$. Note that S cannot contain i and $n+i$, since these equalities are mutually exclusive. The consequence is that we have $\beta_{i}^{(1)} \in\{0,1\}$, with $\beta_{i}^{(1)}=1-\beta_{i}^{(2)}$. Thus if the first $2 n$ constraints are satisfied, the final constraint, therefore, can only be satisfied if we have

$$
\sum_{i \in S} a_{i}=\sum_{i} a_{i} \beta_{i}^{(1)}=\sum_{j} a_{j} \beta_{j}^{(2)}=\sum_{j \in S^{c}} a_{j}
$$

thus proving the result.

A.2. Proof of Proposition 4.2

To show that our SVD initialization produces a good initial solution, requires two steps. Recall that Algorithm 5 finds the two dimensional subspace spanned by the top two eigenvectors of the matrix $M=\frac{1}{\left|\mathcal{S}_{*}\right|} \sum_{i \in \mathcal{S}_{*}} y_{i}^{2} \mathbf{x}_{i} \otimes \mathbf{x}_{i}$, and then searches on a discretization of the circle in that subspace for two vectors that minimize the loss function, \mathcal{L}_{+}evaluated on the samples in \mathcal{S}_{+}.

We first show that the top eigenspace of M is indeed close to the top eigenspace of its expectation, $p_{1} \beta_{1}^{*} \otimes \beta_{1}^{*}+p_{2} \beta_{2}^{*} \otimes \beta_{2}^{*}+I$, i.e., it is close to $\operatorname{span}\left\{\beta_{1}^{*}, \beta_{2}^{*}\right\}$, and that some pair of elements of the discretization are close to $\left(\beta_{1}^{*}, \beta_{2}^{*}\right)$. This is the content of lemma A.1. We then show that our loss function \mathcal{L}_{+}is able to select good points from the discretization.
Our algorithm then uses the loss function \mathcal{L}_{+}(evaluated on new samples in \mathcal{S}_{+}) to select good points from the grid G. Lemma A. 2 shows that as long as the number \mathcal{S}_{+}of these new samples is large enough, we can upper and lower bound, with high probability, the empirically evaluated loss $\mathcal{L}_{+}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)$ of any candidate pair $\hat{\beta}_{1}, \hat{\beta}_{2}$ by the true error err of that candidate pair. This provides the critical result allowing us to do the correct selection in the 1-d search phase.

Now we are ready to prove the result. Suppose the conditions of lemma A. 1 hold. Then we are guaranteed the existence of $\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)$ in the grid G with δ-resolution, such that $\max _{i}\left\|\bar{\beta}_{i}-\beta_{i}^{*}\right\|<\delta$. Next, let $\left(\beta_{1}^{(0)}, \beta_{2}^{(0)}\right)$ be the output of our SVD initialization, and let err denote their distance from $\left(\beta_{1}^{*}, \beta_{2}^{*}\right)$. By definition, the vectors $\left(\beta_{1}^{(0)}, \beta_{2}^{(0)}\right)$ minimize the loss function \mathcal{L}_{+}taken on inputs \mathcal{S}_{+}, and hence $\mathcal{L}_{+}\left(\beta_{1}^{(0)}, \beta_{2}^{(0)}\right) \leq \mathcal{L}_{+}\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)$. Using the lower bound from lemma A.2, applied to $\left(\beta_{1}^{(0)}, \beta_{2}^{(0)}\right)$ we have:

$$
\frac{1}{5} \sqrt{\min \left\{p_{1}, p_{2}\right\}} \operatorname{err} \leq \sqrt{\frac{\mathcal{L}_{+}\left(\beta_{1}^{(0)}, \beta_{2}^{(0)}\right)}{\left|\mathcal{S}_{+}\right|}}
$$

From the upper bound applied to $\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)$, we have

$$
\sqrt{\frac{\mathcal{L}_{+}\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)}{\left|\mathcal{S}_{+}\right|}} \leq 1.1 \delta
$$

Recalling that $\mathcal{L}_{+}\left(\beta_{1}^{(0)}, \beta_{2}^{(0)}\right) \leq \mathcal{L}_{+}\left(\bar{\beta}_{1}, \bar{\beta}_{2}\right)$, and taking

$$
\delta \leq \frac{2}{11} \widehat{c}\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{2}{\sqrt{\min \left\{p_{1}, p_{2}\right\}}}^{3}
$$

we combine to finally obtain:

$$
\begin{aligned}
\operatorname{err} & \leq \frac{11}{2} \frac{\delta}{\sqrt{\min \left\{p_{1}, p_{2}\right\}}} \\
& \leq \widehat{c} \min \left\{p_{1}, p_{2}\right\}\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{2}
\end{aligned}
$$

where \widehat{c} is as in the statement of proposition 4.2.

A.3. Proof of Proposition 4.3

Using standard concentration results, in lemma A.1, we have shown if

$$
\left|\mathcal{S}_{*}\right|>c(1 / \widetilde{\delta})^{2} k \log ^{2} k
$$

with probability at least $1-\frac{1}{k^{2}}$,

$$
\|M-\mathbb{E}(M)\|<3 \widetilde{\delta}
$$

Hence, we have

$$
\left|\left|\lambda_{1}^{*}-\lambda_{2}^{*}\right|-\left|\lambda_{1}-\lambda_{2}\right|\right| \leq 6 \widetilde{\delta}
$$

The approximate error of Δ_{b}^{*} can be bounded as:

$$
\begin{aligned}
2 p_{b}\left|\Delta_{b}^{*}-\Delta_{b}\right| & \leq 6 \widetilde{\delta}+\left(p_{b}^{2}-p_{-b}^{2}\right)\left[\frac{1}{\lambda_{-b}^{*}-\lambda_{b}^{*}}-\frac{1}{\lambda_{-b}-\lambda_{b}}\right] \\
& \leq 6 \widetilde{\delta}+\left|p_{b}^{2}-p_{-b}^{2}\right| \frac{6 \widetilde{\delta}}{\left(\lambda_{-b}^{*}-\lambda_{b}^{*}\right)\left(\lambda_{-b}-\lambda_{b}\right)} \\
& \leq 6 \widetilde{\delta}+\left|p_{b}^{2}-p_{-b}^{2}\right| \frac{6 \widetilde{\delta}}{\left|\lambda_{-b}^{*}-\lambda_{b}^{*}\right|\left(\left|\lambda_{-b}^{*}-\lambda_{b}^{*}\right|-6 \widetilde{\delta}\right)} \\
& \leq 6 \widetilde{\delta}+\left|p_{b}^{2}-p_{-b}^{2}\right| \frac{12 \widetilde{\delta}}{\left|\lambda_{-b}^{*}-\lambda_{b}^{*}\right|^{2}}
\end{aligned}
$$

In the last inequality we use $\widetilde{\delta} \leq \frac{\left|\lambda_{1}^{*}-\lambda_{2}^{*}\right|}{12}$.
Next, we calculate approximation error of eigenvectors. Note that $\mathbb{E}\left(\frac{M-I}{2}\right)=p_{1} \beta_{1}^{*} \otimes \beta_{1}^{*}+p_{2} \beta_{2}^{*} \otimes \beta_{2}^{*}$, we have

$$
\left\{\lambda_{1}^{*}, \lambda_{2}^{*}\right\}=\left\{\frac{1+\kappa}{2}, \frac{1-\kappa}{2}\right\}
$$

Using lemma A.3, we have,

$$
\left\|\mathbf{v}_{b}-\mathbf{v}_{b}^{*}\right\|_{2}^{2} \leq \frac{6 \tilde{\delta}}{\kappa}+\frac{24 \tilde{\delta}}{1-\kappa} \leq \frac{24 \tilde{\delta}}{\kappa(1-\kappa)}, b=1,2
$$

Then

$$
\begin{equation*}
\left\|\beta_{b}^{*}-\beta_{b}\right\|_{2} \leq\left|\sqrt{\frac{1-\Delta_{b}^{*}}{2}} \mathbf{v}_{b}^{*}-\sqrt{\frac{1-\Delta_{b}}{2}} \mathbf{v}_{b}\right|+\left|\sqrt{\frac{1+\Delta_{b}^{*}}{2}} \mathbf{v}_{-b}^{*}-\sqrt{\frac{1+\Delta_{b}}{2}} \mathbf{v}_{-b}\right| \tag{14}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\left|\sqrt{\frac{1-\Delta_{b}^{*}}{2}} \mathbf{v}_{b}^{*}-\sqrt{\frac{1-\Delta_{b}}{2}} \mathbf{v}_{b}\right| & \left.=\sqrt{\frac{1-\Delta_{b}^{*}}{2}} \mathbf{v}_{b}^{*}-\sqrt{\frac{1-\Delta_{b}^{*}}{2}} \mathbf{v}_{b}+\sqrt{\frac{1-\Delta_{b}^{*}}{2}} \mathbf{v}_{b}-\sqrt{\frac{1-\Delta_{b}}{2}} \mathbf{v}_{b} \right\rvert\, \\
& \leq \sqrt{\frac{1-\Delta_{b}^{*}}{2}}\left\|\mathbf{v}_{b}-\mathbf{v}_{b}^{*}\right\|_{2}+\left|\sqrt{\frac{1-\Delta_{b}^{*}}{2}}-\sqrt{\frac{1-\Delta_{b}}{2}}\right|\left\|\mathbf{v}_{b}\right\|_{2} \\
& \leq\left\|\mathbf{v}_{b}-\mathbf{v}_{b}^{*}\right\|_{2}+\left|\sqrt{\frac{1-\Delta_{b}^{*}}{2}}-\sqrt{\frac{1-\Delta_{b}}{2}}\right| \\
& \leq\left\|\mathbf{v}_{b}-\mathbf{v}_{b}^{*}\right\|_{2}+\sqrt{\frac{1}{2}\left|\Delta_{b}-\Delta_{b}^{*}\right|}
\end{aligned}
$$

Plug the above result back to (14), we obtain

$$
\begin{aligned}
\left\|\beta_{b}^{*}-\beta_{b}\right\|_{2} & \lesssim \sqrt{\left|\Delta_{b}-\Delta_{b}^{*}\right|}+\sum_{b}\left\|\mathbf{v}_{b}-\mathbf{v}_{b}^{*}\right\|_{2} \\
& \lesssim \sqrt{\frac{\widetilde{\delta}}{\kappa(1-\kappa)}+\frac{1}{\sqrt{\min \left\{p_{1}, p_{2}\right\}}} \sqrt{\widetilde{\delta}+\frac{\widetilde{\delta}}{\kappa^{2}}}} \\
& \lesssim \sqrt{\frac{\widetilde{\delta}}{\min \left\{p_{1}, p_{2}\right\}}} \times \sqrt{\frac{1}{\kappa(1-\kappa)}+\frac{1}{\kappa^{2}}} \\
& =\sqrt{\frac{\widetilde{\delta}}{\min \left\{p_{1}, p_{2}\right\}}} \frac{1}{\kappa \sqrt{1-\kappa}}
\end{aligned}
$$

By setting the above upper bound to be less than $\widehat{c} \min \left\{p_{1}, p_{2}\right\}\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{2}$, we complete the proof.

A.4. Proof of Proposition 4.5

It's equivalent to show that $J_{b}=J_{b}^{*}, b=1,2$. Let's consider $b=1$, that is for all $p_{1} *\left|\mathcal{S}_{t}\right|$ samples that are generated by $y=\mathbf{x}^{T} \beta_{1}^{*}$. For simplicity, let β_{1}, β_{2} denote $\beta_{1}^{(t-1)}, \beta_{2}^{(t-1)}$, we need

$$
\left(\mathbf{x}^{T}\left(\beta_{1}^{*}-\beta_{1}\right)\right)^{2}<\left(\mathbf{x}^{T}\left(\beta_{1}^{*}-\beta_{2}\right)\right)^{2}
$$

From lemma 5.1,

$$
\begin{align*}
\mathbb{P}\left[\left(\mathbf{x}^{T}\left(\beta_{1}^{*}-\beta_{1}\right)\right)^{2}<\left(\mathbf{x}^{T}\left(\beta_{1}^{*}-\beta_{2}\right)\right)^{2}\right] & \geq 1-\frac{\left\|\beta_{1}^{*}-\beta_{1}\right\|_{2}}{\left\|\beta_{1}^{*}-\beta_{2}\right\|_{2}} \tag{15}\\
& \geq 1-2 \frac{\left\|\beta_{1}^{*}-\beta_{1}\right\|_{2}}{\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{2}} \tag{16}\\
& \geq 1-\frac{2 c_{1}}{k^{2}} \tag{17}
\end{align*}
$$

Then we use union bound for $p_{1} *\left|\mathcal{S}_{t}\right|$ samples in J_{1}^{*},

$$
\mathbb{P}\left[\left(\mathbf{x}_{i}^{T}\left(\beta_{1}^{*}-\beta_{1}\right)\right)^{2}<\left(\mathbf{x}_{i}^{T}\left(\beta_{1}^{*}-\beta_{2}\right)\right)^{2}, \text { for all } i \in J_{1}^{*}\right] \geq 1-p_{1} c_{2} k \times \frac{2 c_{1}}{k^{2}} \geq 1-\frac{c^{\prime}}{k}
$$

So all samples are correctly clustered with high probability.
As $\frac{1}{\min \left(p_{1}, p_{2}\right)} k<\left|\mathcal{S}_{t}\right|$, number of samples in J_{1} and J_{2} are both greater than k. Therefore, least square solution reveals the ground truth. In other words, $e r r^{(t)}=0$.

A.5. Proof of Lemma 5.1

(1)

Without loss of generality, we assume $T\{u, v\}=T\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$. Let x_{1}, x_{2} denote $\mathbf{x}^{T} \mathbf{e}_{1}, \mathbf{x}^{T} \mathbf{e}_{2}$. As x_{1}, x_{2} are independent Gaussian random variables, we have $x_{1}=A \cos \theta, x_{2}=A \sin \theta$, where A is Rayleigh random variable, and θ is uniformly distributed over $[0,2 \pi)$. Conditioning on $\left(\mathbf{x}^{T} u\right)^{2}>\left(\mathbf{x}^{T} v\right)^{2}$, the range of θ is truncated to be $\left[\theta_{0}, \theta_{0}+\alpha_{(u, v)}\right] \cup\left[\theta_{0}+\pi, \theta_{0}+\right.$ $\left.\pi+\alpha_{(u, v)}\right]$ for some θ_{0}. It is not hard to see the eigenvalues of covariance matrix of $\left(x_{1}, x_{2}\right)$ are $1+\frac{\sin \alpha_{(u, v)}}{\alpha_{(u, v)}}, 1-\frac{\sin \alpha_{(u, v)}}{\alpha_{(u, v)}}$. As the rest if the eigenvalues of Σ are 1 , this completes the proof.
(2)

Note that

$$
\mathbb{P}\left[\left(\mathbf{x}^{T} u\right)^{2}>\left(\mathbf{x}^{T} v\right)^{2}\right]=\frac{\alpha_{(u, v)}}{\pi}
$$

If $\|u\|_{2}>\|v\|_{2}, \alpha_{(u, v)}>\frac{\pi}{2}$, when $\|u\|_{2}<\|v\|_{2}$,

$$
\cos \alpha_{(u, v)} \geq \frac{\|v\|_{2}^{2}-\|u\|_{2}^{2}}{\|u\|_{2}^{2}+\|v\|_{2}^{2}}
$$

Note that for any $\alpha \in[0, \pi / 2], \alpha \leq \frac{\pi}{2} \sin \alpha$. We have

$$
\mathbb{P}\left[\left(\mathbf{x}^{T} u\right)^{2}>\left(\mathbf{x}^{T} v\right)^{2}\right] \leq \frac{1}{2} \sin \alpha_{(u, v)} \leq \frac{\|u\|_{2}\|v\|_{2}}{\|u\|_{2}^{2}+\|v\|_{2}^{2}} \leq \frac{\|u\|_{2}}{\|v\|_{2}}
$$

A.6. Supporting Lemmas

Lemma A.1. For any given $\delta>0$, let G denote the grid points, at resolution δ, of the unit circle on the subspace spanned by the top two eigenvectors of M, formed with $\left|S_{*}\right|$ samples. Then, there exists an absolute constant c such that if

$$
\left|S_{*}\right| \geq c(1 / \tilde{\delta})^{2} k \log ^{2} k
$$

where

$$
\tilde{\delta}=\frac{\delta^{2}}{384}\left(1-\sqrt{1-4\left(1-\left\langle\beta_{1}^{*}, \beta_{2}^{*}\right\rangle^{2}\right) p_{1} p_{2}}\right)
$$

then

$$
\min _{\mathbf{a} \in G}\left\|\beta_{i}^{*}-\mathbf{a}\right\| \leq \delta, i=1,2
$$

with probability at least $1-O\left(\frac{1}{k^{2}}\right)$.
Proof. In order to prove the result, we make use of standard concentration results.
Let $\Sigma=\mathbb{E}[M]$. We observe that $\mathbb{P}[|y|>\sqrt{2 \alpha \log k}] \leq n^{-\alpha}, \mathbb{P}\left[\|\mathbf{x}\|_{2}^{2} \geq 3 k\right] \leq e^{-k / 3}$. Suppose N is much less than $O\left(k^{10}\right)$, where the constant is arbitrarily chosen here. Set $\alpha=12$. Then with probability at least $1-O\left(\frac{1}{k^{2}}\right)$, The vectors $y_{i} \mathbf{x}_{i}$ are all supported in a ball with radius $\sqrt{72 k \log k}$. Directly following theorem 5.44 in (Vershynin, 2010), we claim that when $N>C(1 / \tilde{\delta})^{2} k \log ^{2} k$,

$$
\|M-\Sigma\| \leq \tilde{\delta}\|\Sigma\| \leq 3 \tilde{\delta}
$$

We use $\sigma_{i}(A)$ to denote the i 'th biggest eigenvalue of the positive semidefinite matrix A. By simple algebraic calculation we get $\sigma_{1}(\Sigma)=2+\kappa, \sigma_{2}(\Sigma)=2-\kappa$, where $\kappa=\sqrt{1-4\left(1-\left\langle\beta_{1}^{*}, \beta_{2}^{*}\right\rangle^{2}\right) p_{1} p_{2}}$. The top two eigenvectors of Σ are denoted as $\mathbf{v}_{1}^{*}, \mathbf{v}_{2}^{*}$. We use $\mathbf{v}_{1}, \mathbf{v}_{2}$ to denote the top two eigenvectors of M. Lemma A. 3 yields that

$$
\begin{aligned}
\left\|\mathbf{v}_{i}^{*}-\mathcal{P}_{T\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)} \mathbf{v}_{i}^{*}\right\|_{2}^{2} & \leq \frac{12 \tilde{\delta}}{\sigma_{2}(M)-\sigma_{3}(M)} \\
& \leq \frac{12 \tilde{\delta}}{\sigma_{2}(\Sigma)-\sigma_{3}(\Sigma)-6 \tilde{\delta}} \\
& =\frac{12 \tilde{\delta}}{1-\kappa-6 \tilde{\delta}} \\
& =\frac{24 \tilde{\delta}}{1-\kappa}, i=1,2
\end{aligned}
$$

The last inequality holds when $\tilde{\delta} \leq \frac{1-\kappa}{12}$. Using the fact that for any two vectors $\mathbf{a}, \mathbf{b},\|\mathbf{a}+\mathbf{b}\|_{2}^{2} \leq 2\|\mathbf{a}\|_{2}^{2}+2\|\mathbf{b}\|_{2}^{2}$, we conclude that

$$
\left\|\beta_{i}^{*}-\mathcal{P}_{T\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)} \beta_{i}^{*}\right\|_{2}^{2} \leq \frac{48 \tilde{\delta}}{1-\kappa}, i=1,2
$$

Let $w=\left\|\beta_{i}^{*}-\mathcal{P}_{T(\mathbf{u}, \mathbf{v})} \beta_{i}^{*}\right\|_{2}$. Then, by simple geometric relation,

$$
\begin{aligned}
& \min _{\mathbf{a} \in \mathbb{S}^{k}-1} \cap T_{(\mathbf{u}, \mathbf{v})} \\
&\left\|\mathbf{a}-\beta_{i}^{*}\right\|_{2}^{2}
\end{aligned} \leq 2-2 \sqrt{1-w^{2}} .
$$

Consider the δ-resolution grid G. We observe that for any point in $\mathbb{S}^{k-1} \cap T_{(\mathbf{u}, \mathbf{v})}$, there exists a point in G that is within $\delta / 2$ away from it. By triangle inequality, we end up with

$$
\begin{equation*}
\min _{\mathbf{a} \in W}\left\|\mathbf{a}-\beta_{i}^{*}\right\|_{2} \leq \delta \tag{18}
\end{equation*}
$$

Lemma A.2. Let $\hat{\beta}_{1}, \hat{\beta}_{2}$ be any two given vectors with error defined by err $:=\max _{i=1,2}\left\|\hat{\beta}_{i}-\beta_{i}^{*}\right\|$. There exist constants $c_{1}, c_{2}>0$ such that as long as we have enough testing samples,

$$
\left|\mathcal{S}_{+}\right| \geq c_{1} k / \min \left\{p_{1}, p_{2}\right\}
$$

then with probability at least $1-O\left(e^{-c_{2} k}\right)$

$$
\sqrt{\frac{\mathcal{L}_{+}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\left|\mathcal{S}_{+}\right|}} \leq 1.1 \mathrm{err}
$$

and

$$
\sqrt{\frac{\mathcal{L}_{+}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right)}{\left|\mathcal{S}_{+}\right|}} \geq \frac{1}{5} \sqrt{\min \left\{p_{1}, p_{2}\right\}} \min \left\{\operatorname{err}, \frac{1}{2}\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{2}\right\}
$$

Proof. Our notation here, namely, $J_{1}, J_{2}, J_{1}^{*}, J_{2}^{*}$, is consistent with proof of Theorem 4.4. Note that we have:

$$
\mathcal{L}\left(\beta_{1}, \beta_{2}\right)=\sum_{i} \min _{z_{i}} z_{i}\left(y_{i}-\mathbf{x}_{i}^{T} \beta_{1}\right)^{2}+\left(1-z_{i}\right)\left(y_{i}-\mathbf{x}_{i}^{T} \beta_{2}\right)^{2}
$$

For the upper bound, we assign label z_{i} as the true label. Then,

$$
\mathcal{L} \leq \sum_{i \in J_{1}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{1}^{*}-\beta_{1}\right)\right)^{2}+\sum_{i \in J_{2}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{2}^{*}-\beta_{2}\right)\right)^{2}
$$

When $\left|\mathcal{S}_{+}\right| \geq C \frac{k}{\min \left\{p_{1}, p_{2}\right\}}$, then the number of samples in set J_{1}^{*}, J_{2}^{*} is also greater than $C k$. Following standard concentration results, there exist constants C, c_{1}, such that with probability greater than $1-e^{-c_{1} k}$, we have

$$
\left\|\frac{1}{p_{j}\left|\mathcal{S}_{+}\right|} \sum_{i \in J_{j}^{*}}\left(\mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)-I\right\| \leq 0.21, j=1,2 .
$$

We have

$$
\begin{aligned}
\mathcal{L} & \leq 1.21 p_{1}\left|\mathcal{S}_{+}\right|\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}^{2}+1.21 p_{2}\left|\mathcal{S}_{+}\right|\left\|\beta_{2}-\beta_{2}^{*}\right\|_{2}^{2} \\
& \leq 1.21\left|\mathcal{S}_{+}\right| \mathrm{err}^{2}
\end{aligned}
$$

For the lower bound, we observe that

$$
\mathcal{L}=\underbrace{\sum_{i \in J_{1} \cap J_{1}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{1}-\beta_{1}^{*}\right)\right)^{2}+\sum_{i \in J_{2} \cap J_{1}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{2}-\beta_{1}^{*}\right)\right)^{2}}_{A 1}+\underbrace{\sum_{i \in J_{1} \cap J_{2}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{1}-\beta_{2}^{*}\right)\right)^{2}+\sum_{i \in J_{2} \cap J_{2}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{2}-\beta_{2}^{*}\right)\right)^{2}}_{A 2}
$$

First we consider the first term, A1. Note a simple fact that $\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}<\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}$ or $\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}>\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}$. In the first case, from Lemma 5.1, $\mathbb{E}\left[\left|J_{1} \cap J_{1}^{*}\right|\right] \geq \frac{1}{2} p_{1}\left|\mathcal{S}_{+}\right|$. From Hoeffding's inequality and concentration result (see proof of Lemma 5.1 for similar techniques), for any $\delta \in\left(0,1-\frac{2}{\pi}\right)$, there exist constants $C^{\prime}, c_{1}^{\prime}$, such that when $N \geq C^{\prime} k / p_{1}$, with probability at least $1-e^{-c_{1}^{\prime} k}$,

$$
\sum_{i \in J_{1} \cap J_{1}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{1}-\beta_{1}^{*}\right)\right)^{2} \geq \frac{1}{4} p_{1}\left|\mathcal{S}_{+}\right|\left(1-\frac{1}{\pi}-\delta\right)\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}^{2}
$$

In the second case, we have a similar result:

$$
\sum_{i \in J_{2} \cap J_{1}^{*}}\left(\mathbf{x}_{i}^{T}\left(\beta_{2}-\beta_{1}^{*}\right)\right)^{2} \geq \frac{1}{4} p_{1}\left|\mathcal{S}_{+}\right|\left(1-\frac{1}{\pi}-\delta\right)\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}^{2}
$$

Let $1-\frac{2}{\pi}-\delta=0.3$ and choose $C^{\prime}, c_{1}^{\prime}$ to let the above results also hold for A2. We then conclude that when $N>$ $C^{\prime} \frac{k^{\pi}}{\min \left\{p_{1}, p_{2}\right\}}$,

$$
\begin{equation*}
\mathcal{L} \geq \frac{0.3}{4} p_{1}\left|\mathcal{S}_{+}\right| \min \left\{\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}^{2},\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}^{2}\right\}+\frac{0.3}{4} p_{2}\left|\mathcal{S}_{+}\right| \min \left\{\left\|\beta_{1}-\beta_{2}^{*}\right\|_{2}^{2},\left\|\beta_{2}-\beta_{2}^{*}\right\|_{2}^{2}\right\} \tag{19}
\end{equation*}
$$

When $\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}<\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}$ and $\left\|\beta_{2}-\beta_{2}^{*}\right\|_{2}<\left\|\beta_{1}-\beta_{2}^{*}\right\|_{2}$, (19) implies

$$
\begin{equation*}
\mathcal{L} \geq \frac{1}{25} \min \left\{p_{1}, p_{2}\right\}\left|\mathcal{S}_{+}\right| \operatorname{err}^{2} \tag{20}
\end{equation*}
$$

When $\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}>\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}$ and $\left\|\beta_{2}-\beta_{2}^{*}\right\|_{2}<\left\|\beta_{1}-\beta_{2}^{*}\right\|_{2}$, we have

$$
\begin{align*}
\mathcal{L} & \geq \frac{1}{25} \min \left\{p_{1}, p_{2}\right\}\left|\mathcal{S}_{+}\right|\left(\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}^{2}+\left\|\beta_{2}-\beta_{2}^{*}\right\|_{2}^{2}\right) \tag{21}\\
& \geq \frac{1}{25} \min \left\{p_{1}, p_{2}\right\}\left|\mathcal{S}_{+}\right| \frac{1}{4}\left\|\beta_{1}^{*}-\beta_{2}^{*}\right\|_{2}^{2} \tag{22}
\end{align*}
$$

Note that it is impossible for $\left\|\beta_{1}-\beta_{1}^{*}\right\|_{2}>\left\|\beta_{2}-\beta_{1}^{*}\right\|_{2}$ and $\left\|\beta_{2}-\beta_{2}^{*}\right\|_{2}>\left\|\beta_{1}-\beta_{2}^{*}\right\|_{2}$ both to be true. Otherwise, we could switch the subscripts of the two β 's. Putting (20) and (22) together, we complete the proof.

Lemma A.3. Suppose symmetric matrix $\Sigma \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_{1} \geq \lambda_{2}>\lambda_{3} \ldots$ with corresponding normalized eigenvectors denoted as $u_{1}, u_{2}, u_{3}, \ldots$. Let M be another symmetric matrix with eigenvalues: $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2}>\tilde{\lambda}_{3} \ldots$ and eigenvectors $\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}, \ldots$ (a) Let span $\left\{u_{1}, u_{2}\right\}$ denote the hyperplane spanned by $u_{1} u_{2}$. If $\|M-\Sigma\|_{2} \leq \varepsilon$, for $\varepsilon<\frac{\lambda_{2}-\lambda_{3}}{2}$ we have

$$
\begin{equation*}
\left\|\tilde{u}_{i}-\mathcal{P}_{T\left(u_{1}, u_{2}\right)} \tilde{u}_{i}\right\|_{2}^{2} \leq \frac{4 \varepsilon}{\lambda_{2}-\lambda_{3}}, i=1,2 \tag{23}
\end{equation*}
$$

Moreover, if $\lambda_{1} \neq \lambda_{2}$,

$$
\begin{gather*}
\left\|u_{1}-\tilde{u}_{1}\right\|_{2}^{2} \leq \frac{4 \epsilon}{\lambda_{1}-\lambda_{2}} \tag{24}\\
\left\|u_{2}-\tilde{u}_{2}\right\|_{2}^{2} \leq \frac{4 \epsilon}{\lambda_{1}-\lambda_{2}}+\frac{8 \epsilon}{\lambda_{2}-\lambda_{3}} \tag{25}
\end{gather*}
$$

Proof. Suppose $\tilde{u}_{1}=\alpha_{1} u_{1}+\beta_{1} u_{2}+\gamma_{1} w, \tilde{u}_{2}=\alpha_{2} u_{1}+\beta_{2} u_{2}+\gamma_{2} v$, where w, v are vector orthogonal to span $\left\{u_{1}, u_{2}\right\}$. We have $\alpha_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2}=\alpha_{2}^{2}+\beta_{2}^{2}+\gamma_{2}^{2}=1$. Since $\|M-\Sigma\|_{2} \leq \varepsilon$,

$$
\begin{align*}
& \tilde{u}_{1}^{T} M \tilde{u}_{1} \geq \lambda_{1}-\varepsilon \tag{26}\\
\tilde{u}_{1}^{T} M \tilde{u}_{1} & \leq \tilde{u}_{1}^{T}(M-\Sigma) \tilde{u}_{1}+\tilde{u}_{1}^{T} \Sigma \tilde{u}_{1} \tag{27}\\
& \leq \varepsilon+\tilde{u}_{1}^{T} \Sigma \tilde{u}_{1} \tag{28}
\end{align*}
$$

Combining (26) and (27), using $\tilde{u}_{1}^{T} \Sigma \tilde{u}_{1}=\alpha_{1}^{2} \lambda_{1}+\beta_{1}^{2} \lambda_{2}+\gamma_{1}^{2} \lambda_{3}$, we get

$$
\begin{equation*}
\alpha_{1}^{2} \lambda_{1}+\beta_{1}^{2} \lambda_{2}+\gamma_{1}^{2} \lambda_{3} \geq \lambda_{1}-2 \varepsilon \tag{29}
\end{equation*}
$$

Since $\alpha_{1}^{2} \lambda_{1}+\beta_{1}^{2} \lambda_{2}+\gamma_{1}^{2} \lambda_{3} \leq\left(1-\gamma_{1}^{2}\right) \lambda_{1}+\gamma_{1}^{2} \lambda_{3}$, it implies that

$$
\begin{equation*}
\gamma_{1}^{2} \leq \frac{2 \varepsilon}{\lambda_{1}-\lambda_{3}} \leq \frac{2 \varepsilon}{\lambda_{2}-\lambda_{3}} \tag{30}
\end{equation*}
$$

We assume $\lambda_{1} \neq \lambda_{2}$. Otherwise, the above inequality also holds for \tilde{u}_{2}, then the proof of (23) is completed. By using another upper bound $\alpha_{1}^{2} \lambda_{1}+\beta_{1}^{2} \lambda_{2}+\gamma_{1}^{2} \lambda_{3} \leq \alpha_{1}^{2} \lambda_{1}+\left(1-\alpha_{1}^{2}\right) \lambda_{2}$, the following inequality α_{1}^{2} holds

$$
\begin{equation*}
\alpha_{1}^{2} \geq 1-\frac{2 \varepsilon}{\lambda_{1}-\lambda_{2}} \tag{31}
\end{equation*}
$$

Note $\left\|\tilde{u}_{2}-\mathcal{P}_{T\left(u_{1}, u_{2}\right)} \tilde{u}_{2}\right\|_{2}^{2}=\gamma_{1}^{2}$, we get the distance bound of u_{1}. Next, we show the bound for \tilde{u}_{2}. Similar to (29),

$$
\begin{equation*}
\alpha_{2}^{2} \lambda_{1}+\beta_{2}^{2} \lambda_{2}+\gamma_{2}^{2} \lambda_{3} \geq \lambda_{2}-2 \varepsilon \tag{32}
\end{equation*}
$$

Again, by using $\alpha_{2}^{2} \lambda_{1}+\beta_{2}^{2} \lambda_{2}+\gamma_{2}^{2} \lambda_{3} \leq \alpha_{2}^{2} \lambda_{1}+\left(1-\alpha_{2}^{2}\right) \lambda_{2}$, we get

$$
\begin{equation*}
\gamma_{2}^{2} \leq \frac{2 \varepsilon+\alpha_{2}^{2}\left(\lambda_{1}-\lambda_{2}\right)}{\lambda_{2}-\lambda_{3}} \tag{33}
\end{equation*}
$$

We use the condition that $\tilde{u}_{1} \tilde{u}_{2}$ are orthogonal. Hence, $\alpha_{1}^{2} \alpha_{2}^{2} \leq\left(1-\alpha_{1}^{2}\right)\left(1-\alpha_{2}^{2}\right)$. It is easy to see $\alpha_{1}^{2}+\alpha_{2}^{2} \leq 1$. Plugging it into (33) and using (31) result in

$$
\begin{equation*}
\gamma_{2}^{2} \leq \frac{4 \varepsilon}{\lambda_{2}-\lambda_{3}} \tag{34}
\end{equation*}
$$

Through (30) and (34), we complete the proof of (23).
Using some intermediate results, we derive the bounds for eigenvectors in the case $\lambda_{1} \neq \lambda_{2}$.

$$
\begin{aligned}
\left\|u_{1}-\tilde{u}_{1}\right\|_{2}^{2} & =\left(1-\alpha_{1}\right)^{2}+\beta_{1}^{2}+\gamma_{1}^{2} \\
& =\left(1-\alpha_{1}\right)^{2}+1-\alpha_{1}^{2} \\
& \leq 2\left(1-\alpha_{1}^{2}\right) \\
& \leq \frac{4 \epsilon}{\lambda_{1}-\lambda_{2}}
\end{aligned}
$$

The last inequality follows from (31).
Similarly,

$$
\begin{aligned}
\left\|u_{2}-\tilde{u}_{2}\right\|_{2}^{2} & \leq 2\left(1-\beta_{2}^{2}\right) \\
& =2\left(\alpha_{2}^{2}+\gamma_{2}^{2}\right) \\
& \leq 2\left(1-\alpha_{1}^{2}+\gamma_{2}^{2}\right) \\
& \leq \frac{4 \epsilon}{\lambda_{1}-\lambda_{2}}+\frac{8 \epsilon}{\lambda_{2}-\lambda_{3}}
\end{aligned}
$$

We obtain the last inequality from (31) and (34).

