Supplementary Material: A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Jinfeng Yi

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Lijun Zhang

ZHANGLJ@LAMDA.NJU.EDU.CN
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Jun Wang

WANGJUN@US.IBM.COM
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

Rong Jin
RONGJIN@CSE.MSU.EDU
Anil K. Jain
JAIN@CSE.MSU.EDU
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA

Theorem 1. Let $\epsilon \leq 1 /(6 m)$ be a parameter to control the success probability. Assume

$$
\begin{align*}
& \Delta_{*} \leq \Delta^{1} \leq \Delta_{\max } \tag{1}\\
& \frac{\Delta^{1}}{2 \sqrt{2 s}} \leq \lambda^{1} \leq c \frac{\Delta^{1}}{2 \sqrt{2 s}} \tag{2}\\
& T \geq \max \left(\frac{18}{\mu_{0}} \ln \frac{2 K}{\epsilon}, \frac{3 c_{2} \eta_{0}}{\lambda^{1}},\left(\frac{6 c_{3} \sigma}{\lambda^{1}}\right)^{2}(\ln n+\ln d)\right) \tag{3}
\end{align*}
$$

where c, c_{2} and c_{3} are some universal constants. Then, with a probability at least $1-6 m \epsilon$, we have

$$
\Delta^{m+1}=\max _{1 \leq i \leq K}\left\|\widehat{\mathbf{c}}_{i}^{m+1}-\mathbf{c}_{i}\right\| \leq \max \left(\Delta_{*}, \frac{c \Delta^{1}}{\sqrt{2^{m}}}\right)
$$

Corollary 1. The convergence rate for Δ, the maximum difference between the optimal cluster centers and the estimated ones, is $O(\sqrt{(s \log d) / n})$ before reaching the optimal difference Δ_{*}.

1. Proof of Corollary 1

According to the assumption of λ^{1} in (2), we know that $\frac{1}{\lambda^{1}} \propto \frac{\sqrt{s}}{\Delta^{1}}$. Since the value of T is dominated by the last term in the right side of (3), we have $T \propto \frac{s \log d}{\Delta^{1} \cdot \Delta^{1}}$, which implies

$$
n \propto 2^{m} T \propto 2^{m} \frac{s \log d}{\Delta^{1} \cdot \Delta^{1}}
$$

Combining with the conclusion $\Delta_{m+1} \propto \frac{\Delta^{1}}{\sqrt{2^{m}}}$, we have

$$
\Delta_{m+1} \propto \sqrt{\frac{s \log d}{n}}
$$

Lemma 1. Let Δ^{t} be the maximum difference between the optimal cluster centers and the ones estimated from iteration t, and $\epsilon \in(0,1)$ be the failure probability. Assume

$$
\begin{align*}
\Delta^{t} & \leq \frac{1-\rho}{2}-\sigma \sqrt{5 \ln (3 K)} \triangleq \Delta_{\max } \tag{4}\\
\left|\mathcal{S}^{t}\right| & \geq \frac{18}{\mu_{0}} \ln \frac{2 K}{\epsilon} \tag{5}\\
\lambda^{t} & \geq c_{1} \exp \left(-\frac{\left(1-2 \Delta^{t}-\rho\right)^{2}}{8\left(1+\Delta^{t}\right)^{2} \sigma^{2}}\right)\left(\eta_{0}+\sigma \sqrt{\ln \left|\mathcal{S}^{t}\right|}\right)+\frac{c_{2} \eta_{0}}{\left|\mathcal{S}^{t}\right|}+c_{3} \sigma \frac{\sqrt{\ln \left|\mathcal{S}^{t}\right|}+\sqrt{\ln d}}{\sqrt{\left|\mathcal{S}^{t}\right|}} \tag{6}
\end{align*}
$$

for some constants c_{1}, c_{2} and c_{3}. Then with a probability $1-6 \epsilon$, we have

$$
\Delta^{t+1} \leq 2 \sqrt{s} \lambda^{t}
$$

2. Proof of Lemma 1

For the simplicity of analysis, we will drop the superscript t through this analysis.

2.1. Preliminaries

We denote by \mathcal{C}_{k} the support of \mathbf{c}_{k} and $\overline{\mathcal{C}}_{k}=[d] \backslash \mathcal{C}_{k}$. For any vector $\mathbf{z}, \mathbf{z}(\mathcal{C})$ is defined as $[\mathbf{z}(\mathcal{C})]_{i}=z_{i}$ if $i \in \mathcal{C}$ and zero, otherwise.
For any $\mathbf{x}_{i} \in \mathcal{S}$, we use k_{i} to denote the index of the true cluster, and \widehat{k}_{i} to denote index of the cluster assigned by the nearest neighbor search, i.e.,

$$
\begin{aligned}
\mathbf{x}_{i} & =\mathbf{c}_{k_{i}}+\mathbf{g}_{i} \text { and } \mathbf{g}_{i} \sim N\left(0, \sigma^{2} I\right) \\
\widehat{k}_{i} & =\underset{j \in[K]}{\arg \max } \widehat{\mathbf{c}}_{j}^{\top} \mathbf{x}_{i}
\end{aligned}
$$

Then, we can partition data points in \mathcal{S} based on either the ground truth or the assigned cluster. Let \mathcal{S}_{k} be the subset of data points in \mathcal{S} that belong to the k-th cluster, i.e.,

$$
\begin{equation*}
\mathcal{S}_{k}=\left\{\mathbf{x}_{i} \in \mathcal{S}: \mathbf{x}_{i}=\mathbf{c}_{k}+\mathbf{g}_{i} \text { and } \mathbf{g}_{i} \sim N\left(0, \sigma^{2} I\right)\right\} \tag{7}
\end{equation*}
$$

Let $\widehat{\mathcal{S}}_{k}$ be the subset of data points that are assigned to the k-th cluster based on the nearest neighbor search, i.e.,

$$
\begin{equation*}
\widehat{\mathcal{S}}_{k}=\left\{\mathbf{x}_{i} \in \mathcal{S}: k=\underset{j \in[K]}{\arg \max } \widehat{\mathbf{c}}_{j}^{\top} \mathbf{x}_{i}\right\} \tag{8}
\end{equation*}
$$

2.2. The Main Analysis

Let $\mathcal{L}_{k}(\mathbf{c})$ be the objective function in Step 11 of Algorithm 1. We expand $\mathcal{L}_{k}(\mathbf{c})$ as

$$
\begin{align*}
& \mathcal{L}_{k}(\mathbf{c}) \\
= & \lambda\|\mathbf{c}\|_{1}+\left\|\mathbf{c}-\mathbf{c}_{k}\right\|^{2}+\frac{1}{\left|\widehat{\mathcal{S}}_{k}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}}\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|^{2}-\frac{2}{\left|\widehat{\mathcal{S}}_{k}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}}\left(\mathbf{c}-\mathbf{c}_{k}\right)^{\top}\left(\mathbf{x}_{i}-\mathbf{c}_{k}\right) \\
= & \lambda\|\mathbf{c}\|_{1}+\left\|\mathbf{c}-\mathbf{c}_{k}\right\|^{2}+\frac{1}{\left|\widehat{\mathcal{S}}_{k}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}}\left\|\mathbf{x}_{i}-\mathbf{c}_{k}\right\|^{2} \tag{9}\\
& -2\left(\mathbf{c}-\mathbf{c}_{k}\right)^{\top} \underbrace{\frac{1}{\left|\widehat{\mathcal{S}}_{k}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}}\left(\mathbf{c}_{k_{i}}-\mathbf{c}_{k}\right)}_{A_{k}}-2\left(\mathbf{c}-\mathbf{c}_{k}\right)^{\top} \underbrace{\frac{1}{\left|\widehat{\mathcal{S}}_{k}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}} \mathbf{g}_{i}}_{B_{k}}
\end{align*}
$$

Let \mathbf{c}_{k}^{*} be the optimal solution that minimizes $\mathcal{L}_{k}(\mathbf{c})$, and define $\mathbf{f}_{k}=\mathbf{c}_{k}^{*}-\mathbf{c}_{k}$. We have

$$
\begin{aligned}
& \mathcal{L}_{k}\left(\mathbf{c}_{k}^{*}\right)-\mathcal{L}_{k}\left(\mathbf{c}_{k}\right) \\
= & \lambda\left\|\mathbf{f}_{k}+\mathbf{c}_{k}\right\|_{1}+\left\|\mathbf{f}_{k}\right\|^{2}-2 \mathbf{f}_{k}^{\top} A_{k}-2 \mathbf{f}_{k}^{\top} B_{k}-\lambda\left\|\mathbf{c}_{k}\right\|_{1} \\
\geq & \lambda\left\|\mathbf{c}_{k}\right\|_{1}-\lambda\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\|_{1}+\lambda\left\|\mathbf{f}_{k}\left(\overline{\mathcal{C}}_{k}\right)\right\|_{1}+\left\|\mathbf{f}_{k}\right\|^{2}-2 \mathbf{f}_{k}^{\top} A_{k}-2 \mathbf{f}_{k}^{\top} B_{k}-\lambda\left\|\mathbf{c}_{k}\right\|_{1} \\
\geq & -\lambda\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\|_{1}+\lambda\left\|\mathbf{f}_{k}\left(\overline{\mathcal{C}}_{k}\right)\right\|_{1}+\left\|\mathbf{f}_{k}\right\|^{2}-2\left\|\mathbf{f}_{k}\right\|_{1}\left\|A_{k}\right\|_{\infty}-2\left\|\mathbf{f}_{k}\right\|_{1}\left\|B_{k}\right\|_{\infty} \\
= & -\left(\lambda+2\left\|A_{k}\right\|_{\infty}+2\left\|B_{k}\right\|_{\infty}\right)\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\|_{1}+\left(\lambda-2\left\|A_{k}\right\|_{\infty}-2\left\|B_{k}\right\|_{\infty}\right)\left\|\mathbf{f}_{k}\left(\overline{\mathcal{C}}_{k}\right)\right\|_{1}+\left\|\mathbf{f}_{k}\right\|^{2} \\
\geq & -\sqrt{\left|\mathcal{C}_{k}\right|}\left(\lambda+2\left\|A_{k}\right\|_{\infty}+2\left\|B_{k}\right\|_{\infty}\right)\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\|+\left(\lambda-2\left\|A_{k}\right\|_{\infty}-2\left\|B_{k}\right\|_{\infty}\right)\left\|\mathbf{f}_{k}\left(\overline{\mathcal{C}}_{k}\right)\right\|_{1}+\left\|\mathbf{f}_{k}\right\|^{2} .
\end{aligned}
$$

Thus, if

$$
\lambda \geq 2\left\|A_{k}\right\|_{\infty}+2\left\|B_{k}\right\|_{\infty}
$$

we have

$$
\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\|^{2} \leq\left\|\mathbf{f}_{k}\right\|^{2} \leq\left(\lambda+2\left\|A_{k}\right\|_{\infty}+2\left\|B_{k}\right\|_{\infty}\right) \sqrt{\left|\mathcal{C}_{k}\right|}\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\| \leq 2 \lambda \sqrt{\left|\mathcal{C}_{k}\right|}\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\| \Rightarrow\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\| \leq 2 \lambda \sqrt{\left|\mathcal{C}_{k}\right|}
$$

and thus

$$
\left\|\mathbf{f}_{k}\right\|^{2} \leq 2 \lambda \sqrt{\left|\mathcal{C}_{k}\right|}\left\|\mathbf{f}_{k}\left(\mathcal{C}_{k}\right)\right\| \leq 4 \lambda^{2}\left|\mathcal{C}_{k}\right| \Rightarrow\left\|\mathbf{f}_{k}\right\| \leq 2 \lambda \sqrt{\left|\mathcal{C}_{k}\right|}
$$

In summary, if

$$
\lambda \geq 2\left\|A_{k}\right\|_{\infty}+2\left\|B_{k}\right\|_{\infty}, \forall k \in[K]
$$

we have

$$
\max _{1 \leq k \leq K}\left\|\mathbf{c}_{k}^{*}-\mathbf{c}_{k}\right\| \leq 2 \sqrt{s} \lambda
$$

In the following, we discuss how to bound $\left\|A_{k}\right\|_{\infty}$ and $\left\|B_{k}\right\|_{\infty}$.
2.3. Bound for $\left\|A_{k}\right\|_{\infty}$

From the definition of A_{k} in (9), we have

$$
\left\|A_{k}\right\|_{\infty} \leq 2 \eta_{0} \frac{\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}\right|}{\left|\widehat{\mathcal{S}}_{k}\right|}
$$

2.3.1. LOWER BOUND OF $\left|\widehat{\mathcal{S}}_{k}\right|$

First, we show that the size of \mathcal{S}_{k} is lower-bounded, which means a significant amount of data points in S belong to the k-th cluster. Recall that μ_{1}, \ldots, μ_{K} are the weight of the Gaussian mixtures, and $\mu_{0}=\min _{1 \leq i \leq K} \mu_{i}$. According to the Chernoff bound (Angluin \& Valiant, 1979) provided in Appendix A, we have, with a probability at least $1-\epsilon$

$$
\begin{equation*}
\left|\mathcal{S}_{k}\right| \geq \mu_{k}|\mathcal{S}|\left(1-\sqrt{\frac{2}{\mu_{k}|\mathcal{S}|} \ln \frac{K}{\epsilon}}\right) \stackrel{(5)}{\geq} \frac{2}{3} \mu_{k}|\mathcal{S}|, \forall k \in[K] \tag{10}
\end{equation*}
$$

Next, we prove that a larger amount of data points in \mathcal{S}_{k} belong to $\widehat{\mathcal{S}}_{k}$. We begin by analyzing the probability that the assigned cluster \widehat{k}_{i} of \mathbf{x}_{i} is the true cluster k_{i}. The similarity between \mathbf{x}_{i} and the estimated cluster centers can be bounded by

$$
\begin{aligned}
\widehat{\mathbf{c}}_{k_{i}}^{\top} \mathbf{x}_{i}= & \widehat{\mathbf{c}}_{k_{i}}^{\top}\left(\mathbf{c}_{k_{i}}+\mathbf{g}_{i}\right)=\left\|\mathbf{c}_{k_{i}}\right\|^{2}+\left[\widehat{\mathbf{c}}_{k_{i}}-\mathbf{c}_{k_{i}}\right]^{\top} \mathbf{c}_{k_{i}}+\widehat{\mathbf{c}}_{k_{i}}^{\top} \mathbf{g}_{i} \\
& \geq 1-\left\|\widehat{\mathbf{c}}_{k_{i}}-\mathbf{c}_{k_{i}}\right\|-\left|\widehat{\mathbf{c}}_{k_{i}}^{\top} \mathbf{g}_{i}\right| \geq 1-\Delta-(1+\Delta)\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{k_{i}}}{\left\|\widehat{\mathbf{c}}_{k_{i}}\right\|}\right| \\
& \widehat{\mathbf{c}}_{j}^{\top} \mathbf{x}_{i}= \\
& \widehat{\mathbf{c}}_{j}^{\top}\left(\mathbf{c}_{k_{i}}+\mathbf{g}_{i}\right)=\mathbf{c}_{j}^{\top} \mathbf{c}_{k_{i}}+\left[\widehat{\mathbf{c}}_{j}-\mathbf{c}_{j}\right]^{\top} \mathbf{c}_{k_{i}}+\widehat{\mathbf{c}}_{j}^{\top} \mathbf{g}_{i} \\
& \leq \rho+\left\|\widehat{\mathbf{c}}_{j}-\mathbf{c}_{j}\right\|+\left|\widehat{\mathbf{c}}_{j}^{\top} \mathbf{g}_{i}\right| \leq \rho+\Delta+(1+\Delta)\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{\left\|\widehat{\mathbf{c}}_{j}\right\|}\right|, j \neq k_{i} .
\end{aligned}
$$

Hence, \mathbf{x}_{i} will be assigned to cluster k_{i} if

$$
1-\Delta-(1+\Delta)\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{k_{i}}}{\left\|\widehat{\mathbf{c}}_{k_{i}}\right\|}\right| \geq \rho+\Delta+(1+\Delta)\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{\left\|\widehat{\mathbf{c}}_{j}\right\|}\right|, \forall j \neq k_{i}
$$

which leads to the following sufficient condition

$$
\begin{equation*}
\max _{1 \leq j \leq K}\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{\left\|\widehat{\mathbf{c}}_{j}\right\|}\right| \leq \frac{1-2 \Delta-\rho}{2(1+\Delta)} \triangleq g_{0} \stackrel{(4)}{\geq} \frac{2 \sigma \sqrt{5 \ln (3 K)}}{3} \geq \sigma \sqrt{2 \ln (3 K)} \tag{11}
\end{equation*}
$$

It is easy to verify that for any fixed direction $\widehat{\mathbf{c}}$ with $\|\widehat{\mathbf{c}}\|=1, \mathbf{g}_{i}^{\top} \mathbf{c}$ is a Gaussian random variable with mean 0 and variance σ^{2}. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B, we have

$$
\operatorname{Pr}\left[\max _{1 \leq j \leq K}\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{\left\|\widehat{\mathbf{c}}_{j}\right\|}\right| \leq g_{0}\right] \geq 1-K \exp \left(-\frac{g_{0}^{2}}{2 \sigma^{2}}\right)
$$

Define

$$
\begin{equation*}
\delta=K \exp \left(-\frac{g_{0}^{2}}{2 \sigma^{2}}\right) \stackrel{(11)}{\leq} \frac{1}{3} \tag{12}
\end{equation*}
$$

In summary, we have proved the following lemma.
Lemma 2. Under the condition in (4), with a probability at least $1-\delta, \mathbf{x}_{i}=\mathbf{c}_{k_{i}}+\mathbf{g}_{i} \in \mathcal{S}_{k_{i}} \subset S$ satisfies

$$
\max _{1 \leq j \leq K}\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{\left\|\widehat{\mathbf{c}}_{j}\right\|}\right| \leq g_{0}
$$

and is assigned to the correct cluster k_{i} based on the nearest neighbor search (i.e., $\widehat{k}_{i}=k_{i}$).
Define

$$
\begin{equation*}
\mathcal{S}_{k}^{1}=\left\{\mathbf{x}_{i} \in \mathcal{S}_{k}: \max _{1 \leq j \leq K}\left|\mathbf{g}_{i}^{\top} \frac{\widehat{\mathbf{c}}_{j}}{\left\|\widehat{\mathbf{c}}_{j}\right\|}\right| \leq g_{0}\right\} \subset \widehat{\mathcal{S}}_{k} \cap \mathcal{S}_{k} \tag{13}
\end{equation*}
$$

Since each data point in \mathcal{S}_{k} has a probability at least $1-\delta$ to be assigned to set \mathcal{S}_{k}^{1}, using the Chernoff bound again, we have, with a probability at least $1-\epsilon$,

$$
\begin{align*}
& \left|\widehat{\mathcal{S}}_{k}\right| \geq\left|\widehat{\mathcal{S}}_{k} \cap \mathcal{S}_{k}\right| \geq\left|\mathcal{S}_{k}^{1}\right| \geq \mathrm{E}\left[\left|\mathcal{S}_{k}^{1}\right|\right]\left(1-\sqrt{\frac{2}{\mathrm{E}\left[\left|\mathcal{S}_{k}^{1}\right|\right]} \ln \frac{K}{\epsilon}}\right) \\
& \quad \geq(1-\delta)\left|\mathcal{S}_{k}\right|\left(1-\sqrt{\frac{2}{(1-\delta)\left|\mathcal{S}_{k}\right|} \ln \frac{K}{\epsilon}}\right) \\
& \stackrel{(12)}{\geq} \frac{2}{3}\left|\mathcal{S}_{k}\right|\left(1-\sqrt{\left.\frac{3}{\left|\mathcal{S}_{k}\right|} \ln \frac{K}{\epsilon}\right) \stackrel{(5),(10)}{\geq} \frac{1}{3}\left|\mathcal{S}_{k}\right|, \forall k \in[K] .}\right. \tag{14}
\end{align*}
$$

2.3.2. UPPER BOUND OF $\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}\right|$

Define

$$
\mathcal{O}=\cup_{k=1}^{K} \mathcal{S}_{k}^{1} \subset \mathcal{S} \text { and } \overline{\mathcal{O}}=\cup_{k=1}^{K}\left(\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}\right)=\mathcal{S} \backslash \mathcal{O} \subset \mathcal{S}
$$

From Lemma 2, we know that with a probability at least $1-\delta$, each $\mathbf{x}_{i} \in \mathcal{S}_{k}$ belongs to the set $\mathcal{S}_{k}^{1} \subset \mathcal{O}$. Thus, with probability at least $1-\delta$, each $\mathbf{x}_{i} \in \mathcal{S}$ belongs to \mathcal{O}. In other words, with probability at most δ, each $\mathbf{x}_{i} \in \mathcal{S}$ belongs to $\overline{\mathcal{O}}$. Based on the Chernoff bound, we have, with a probability at least $1-\epsilon$,

$$
\begin{equation*}
|\overline{\mathcal{O}}| \leq 2 \mathrm{E}[|\overline{\mathcal{O}}|]+2 \ln \frac{1}{\epsilon} \leq 2 \delta|\mathcal{S}|+2 \ln \frac{1}{\epsilon} \tag{15}
\end{equation*}
$$

Since $\mathcal{S}_{k}^{1} \subset \mathcal{S}_{k}$, we have $\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k} \subset \widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1} \subset \overline{\mathcal{O}}$. Therefore, with a probability at least $1-\epsilon$, we have

$$
\begin{equation*}
\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}\right| \leq 2 \delta|\mathcal{S}|+2 \ln \frac{1}{\epsilon}, \forall k \in[K] \tag{16}
\end{equation*}
$$

Combining (10), (14) and (16), we have, with probability at least $1-3 \epsilon$

$$
\begin{equation*}
\left\|A_{k}\right\|_{\infty} \leq 2 \eta_{0} \frac{2 \delta|\mathcal{S}|+2 \ln \frac{1}{\epsilon}}{\frac{2}{9} \mu_{k}|\mathcal{S}|}=\frac{18 \eta_{0}}{\mu_{k}}\left(\delta+\frac{1}{|\mathcal{S}|} \ln \frac{1}{\epsilon}\right)=O\left(\delta \eta_{0}\right)+O\left(\frac{\eta_{0}}{|\mathcal{S}|}\right), \forall k \in[K] \tag{17}
\end{equation*}
$$

2.4. Bound for $\left\|B_{k}\right\|_{\infty}$

Notice that $\left\{\mathbf{g}_{i}: \mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}\right\}$, determined by the estimated centers $\widehat{\mathbf{c}}_{1}, \ldots, \widehat{\mathbf{c}}_{K}$, is a specific subset of $\left\{\mathbf{g}_{i}: \mathbf{x}_{i} \in \mathcal{S}\right\}$. Although \mathbf{g}_{i} is drawn from the Gaussian distribution $N\left(0, \sigma^{2} I\right)$, the distribution of elements in $\left\{\mathbf{g}_{i}: \mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}\right\}$ is unknown. As a result, we cannot direct apply concentration inequality of Gaussian random vectors to bound $\left\|B_{k}\right\|_{\infty}$. Let $U_{1} \in \mathbb{R}^{d \times K}$ be a matrix whose columns are basis vectors of the subspace spanned by $\widehat{\mathbf{c}}_{1}, \ldots, \widehat{\mathbf{c}}_{K}$, and $U_{2} \in \mathbb{R}^{d \times(d-K)}$ be a matrix whose columns are basis vectors of the complementary subspace. We then divide each \mathbf{g}_{i} as

$$
\mathbf{g}_{i}=\mathbf{g}_{i}^{\|}+\mathbf{g}_{i}^{\perp}
$$

where $\mathbf{g}_{i}^{\|}=U_{1} U_{1}^{\top} \mathbf{g}_{i}$, and $\mathbf{g}_{i}^{\perp}=U_{2} U_{2}^{\top} \mathbf{g}_{i}$.
First, we upper bound $\left\|B_{k}\right\|_{\infty}$ as

$$
\begin{equation*}
\left\|B_{k}\right\|_{\infty} \leq \underbrace{\left\|\frac{1}{\left|\widehat{\mathcal{S}}_{k}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}} \mathbf{g}_{i}^{\perp}\right\|_{\infty}}_{\widehat{B}_{k}^{1}}+\underbrace{\frac{\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}\right|}{\left|\widehat{\mathcal{S}}_{k}\right|}\left\|\frac{1}{\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1} \mid} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}} \mathbf{g}_{i}^{\|}\right\|_{\infty}}_{\widehat{B}_{k}^{2}}+\underbrace{\frac{\left|\mathcal{S}_{k}^{1}\right|}{\left|\widehat{\mathcal{S}}_{k}\right|}\left\|\frac{1}{\left|\mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{k}^{1}} \mathbf{g}_{i}^{\|}\right\|_{\infty}}_{\widehat{B}_{k}^{3}} \tag{18}
\end{equation*}
$$

In the following, we discuss how to bound each term in the right hand side of (18).

2.4.1. UPPER BOUND OF \widehat{B}_{k}^{1}

Following the property of Gaussian random vector, $\sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}} U_{2}^{\top} \mathbf{g}_{i} /\left(\sigma \sqrt{\left|\widehat{\mathcal{S}}_{k}\right|}\right)$ can be treated as a $(d-K)$-dimensional Gaussian random vector. As a result, each element of $U_{2} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}} U_{2}^{\top} \mathbf{g}_{i} /\left(\sigma \sqrt{\left|\widehat{\mathcal{S}}_{k}\right|}\right)$ is a Gaussian random variable with variance smaller than 1. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B and the union bound, with a probability at least $1-\epsilon$, we have

$$
\left\|\sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}} \mathbf{g}_{i}^{\perp} /\left(\sigma \sqrt{\left|\widehat{\mathcal{S}}_{k}\right|}\right)\right\|_{\infty}=\left\|U_{2} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k}} U_{2}^{\top} \mathbf{g}_{i} /\left(\sigma \sqrt{\left|\widehat{\mathcal{S}}_{k}\right|}\right)\right\|_{\infty} \leq \sqrt{2 \ln \frac{K d}{\epsilon}}, \forall k \in[K]
$$

which implies

$$
\begin{equation*}
\widehat{B}_{k}^{1} \leq \sigma \sqrt{\frac{2 \ln \frac{K d}{\epsilon}}{\left|\widehat{\mathcal{S}}_{k}\right|}} \stackrel{(10),(14)}{\leq} \sigma \sqrt{\frac{2 \ln \frac{K d}{\epsilon}}{2 \mu_{k}|\mathcal{S}| / 9}}=O\left(\sigma \sqrt{\frac{\ln d}{|\mathcal{S}|}}\right), \forall k \in[K] \tag{19}
\end{equation*}
$$

2.4.2. UPPER BOUND OF \widehat{B}_{k}^{2}

First, we have

$$
\begin{equation*}
\left\|\frac{1}{\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}} \mathbf{g}_{i}^{\|}\right\|_{\infty}=\left\|\frac{1}{\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}} U_{1} U_{1}^{\top} \mathbf{g}_{i}\right\|_{\infty} \leq\left\|\frac{1}{\left|\widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \widehat{\mathcal{S}}_{k} \backslash \mathcal{S}_{k}^{1}} U_{1}^{\top} \mathbf{g}_{i}\right\| \tag{20}
\end{equation*}
$$

Since $U_{1}^{\top} \mathbf{g}_{i} / \sigma$ can be treated as a K-dimensional Gaussian random vector, based on the tail bound for the χ^{2} distribution (Laurent \& Massart, 2000), we have with a probability at least $1-\epsilon$,

$$
\left\|U_{1}^{\top} \mathbf{g}_{i}\right\| \leq \sigma\left(\sqrt{K}+\sqrt{2 \log \frac{1}{\epsilon}}\right)
$$

Applying the union bound again, with a probability at least $1-\epsilon$, we have

$$
\begin{equation*}
\max _{1 \leq i \leq|\mathcal{S}|}\left\|U_{1}^{\top} \mathbf{g}_{i}\right\| \leq \sigma\left(\sqrt{K}+\sqrt{2 \log \frac{|\mathcal{S}|}{\epsilon}}\right) \tag{21}
\end{equation*}
$$

Combining (20) and (21), we have

$$
\begin{equation*}
\widehat{B}_{k}^{2} \leq \frac{9 \sigma}{\mu_{k}}\left(\delta+\frac{1}{|\mathcal{S}|} \ln \frac{1}{\epsilon}\right)\left(\sqrt{K}+\sqrt{2 \log \frac{|\mathcal{S}|}{\epsilon}}\right)=O(\delta \sigma \sqrt{\ln |\mathcal{S}|})+O\left(\sigma \frac{\sqrt{\ln |\mathcal{S}|}}{|\mathcal{S}|}\right), \forall k \in[K] \tag{22}
\end{equation*}
$$

2.4.3. UPPER BOUND OF \widehat{B}_{k}^{3}

First, we have

$$
\begin{equation*}
\left\|\frac{1}{\left|\mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{k}^{1}} \mathbf{g}_{i}^{\|}\right\|_{\infty}=\left\|U_{1} \frac{1}{\left|\mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{k}^{1}} U_{1}^{\top} \mathbf{g}_{i}\right\|_{\infty} \leq\left\|\frac{1}{\left|\mathcal{S}_{k}^{1}\right|} \sum_{\mathbf{x}_{i} \in \mathcal{S}_{k}^{1}} U_{1}^{\top} \mathbf{g}_{i}\right\|:=u_{k} \tag{23}
\end{equation*}
$$

Recall the definition of \mathcal{S}_{k}^{1} in (13). Due to the fact that the domain is symmetric, we have $\mathrm{E}\left[U_{1}^{\top} \mathbf{g}_{i}\right]=0$. Under the condition in (21), we can invoke the following lemma to bound u_{k}.
Lemma 3. (Lemma 2 from (Smale \& Zhou, 2007)) Let \mathcal{H} be a Hilbert space and ξ be a random variable on (Z, ρ) with values in \mathcal{H}. Assume $\|\xi\| \leq M<\infty$ almost surely. Denote $\sigma^{2}(\xi)=\mathrm{E}\left(\|\xi\|^{2}\right)$. Let $\left\{z_{i}\right\}_{i=1}^{m}$ be independent random drawers of ρ. For any $0<\delta<1$, with confidence $1-\delta$,

$$
\left\|\frac{1}{m} \sum_{i=1}^{m}\left(\xi_{i}-\mathrm{E}\left[\xi_{i}\right]\right)\right\| \leq \frac{2 M \ln (2 / \delta)}{m}+\sqrt{\frac{2 \sigma^{2}(\xi) \ln (2 / \delta)}{m}}
$$

From Lemma 3 and the union bound, with a probability at least $1-\epsilon$, we have

$$
\begin{equation*}
u_{k} \leq \sigma\left(\sqrt{K}+\sqrt{2 \log \frac{|\mathcal{S}|}{\epsilon}}\right)\left(\frac{2 \ln (2 K / \epsilon)}{\left|\mathcal{S}_{k}^{1}\right|}+\sqrt{\frac{2 \ln (2 K / \epsilon)}{\left|\mathcal{S}_{k}^{1}\right|}}\right), \forall k \in[K] \tag{24}
\end{equation*}
$$

Combining (23) and (24), we have

$$
\begin{align*}
& \widehat{B}_{k}^{3} \leq \sigma\left(\sqrt{K}+\sqrt{2 \log \frac{|\mathcal{S}|}{\epsilon}}\right)\left(\frac{2}{\left|\mathcal{S}_{k}^{1}\right|} \ln \frac{2 K}{\epsilon}+\sqrt{\frac{2}{\left|\mathcal{S}_{k}^{1}\right|} \ln \frac{2 K^{2}}{\epsilon}}\right) \\
& \quad{ }^{(10),(14),(5)} \sigma\left(\sqrt{K}+\sqrt{2 \log \frac{|\mathcal{S}|}{\epsilon}}\right) 2 \sqrt{\frac{9}{\mu_{k}|\mathcal{S}|} \ln \frac{2 K}{\epsilon}}=O\left(\sigma \sqrt{\frac{\ln |\mathcal{S}|}{|\mathcal{S}|}}\right), \forall k \in[K] \tag{25}
\end{align*}
$$

In summary, under the condition that (10), (14) and (15) are true, with a probability at least $1-3 \epsilon$,

$$
\begin{equation*}
\left\|B_{k}\right\|_{\infty} \leq O(\delta \sigma \sqrt{\ln |\mathcal{S}|})+O\left(\sigma \frac{\sqrt{\ln |\mathcal{S}|}+\sqrt{\ln d}}{\sqrt{|\mathcal{S}|}}\right), \forall k \in[K] \tag{26}
\end{equation*}
$$

A. Chernoff Bound

Theorem 2 (Multiplicative Chernoff Bound (Angluin \& Valiant, 1979)). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent binary random variables with $\operatorname{Pr}\left[X_{i}=1\right]=p_{i}$. Denote $S=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathrm{E}[S]=\sum_{i=1}^{n} p_{i}$. We have

$$
\begin{aligned}
& \operatorname{Pr}[S \leq(1-\epsilon) \mu] \leq \exp \left(-\frac{\epsilon^{2}}{2} \mu\right), \text { for } 0<\epsilon<1 \\
& \operatorname{Pr}[S \geq(1+\epsilon) \mu] \leq \exp \left(-\frac{\epsilon^{2}}{2+\epsilon} \mu\right), \text { for } \epsilon>0
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\operatorname{Pr}\left[S \leq\left(1-\sqrt{\frac{2}{\mu} \ln \frac{1}{\delta}}\right) \mu\right] \leq \delta, \text { for } \exp \left(-\frac{2}{\mu}\right)<\delta<1 \\
\operatorname{Pr}\left[S \geq 2 \mu+2 \ln \frac{1}{\delta} \geq\left(1+\frac{\ln \frac{1}{\delta}+\sqrt{2 \mu \ln \frac{1}{\delta}}}{\mu}\right) \mu\right] \leq \delta, \text { for } 0<\delta<1
\end{gathered}
$$

B. Tail bounds for the Gaussian distribution

Theorem 3 (Chernoff-type upper bound for the Q-function (Chang et al., 2011)). The Q-function defined as

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left(-\frac{t^{2}}{2}\right) d t
$$

is the tail probability of the standard Gaussian distribution. When $x>0$, we have

$$
Q(x) \leq \frac{1}{2} \exp \left(-\frac{x^{2}}{2}\right)
$$

Let $X \sim \mathcal{N}(0,1)$ be a Gaussian random variable. According to Theorem 3, we have

$$
\begin{aligned}
& \operatorname{Pr}[|X| \geq \epsilon] \leq \exp \left(-\frac{\epsilon^{2}}{2}\right), \text { or } \\
& \operatorname{Pr}\left[|X| \geq \sqrt{2 \ln \frac{1}{\delta}}\right] \leq \delta
\end{aligned}
$$

References

Angluin, D. and Valiant, L.G. Fast probabilistic algorithms for hamiltonian circuits and matchings. Journal of Computer and System Sciences, 18(2):155-193, 1979.

Chang, Seok-Ho, Cosman, Pamela C., and Milstein, Laurence B. Chernoff-type bounds for the gaussian error function. IEEE Transactions on Communications, 59(11):2939-2944, 2011.

Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. The Annals of Statistics, 28 (5):1302-1338, 2000.

Smale, Steve and Zhou, Ding-Xuan. Learning theory estimates via integral operators and their approximations. Constructive Approximation, 26(2):153-172, 2007.

