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Theorem 1. Let € < 1/(6m) be a parameter to control the success probability. Assume
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where ¢, co and c3 are some universal constants. Then, with a probability at least 1 — 6me, we have
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Corollary 1. The convergence rate for A, the maximum difference between the optimal cluster centers and the estimated
ones, is O(y/(slogd)/n) before reaching the optimal difference A,.

1. Proof of Corollary 1

According to the assumption of A! in (2), we know that % o ¥£. Since the value of T is dominated by the last term in

the right side of (3), we have T" Zlff’idl , which implies

slogd

noc?mTo<2mA1'A1.
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Combining with the conclusion A, 11 \/Aﬁ, we have
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Lemma 1. Let A be the maximum difference between the optimal cluster centers and the ones estimated from iteration t,
and € € (0, 1) be the failure probability. Assume
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for some constants c1, co and c3. Then with a probability 1 — 6¢, we have

At+1 < 2\/§>\t

2. Proof of Lemma 1

For the simplicity of analysis, we will drop the superscript ¢ through this analysis.

2.1. Preliminaries

We denote by Cj, the support of c; and Ci, = [d] \ C. For any vector z, z(C) is defined as [z(C)]; = z; if i € C and zero,
otherwise.

For any x; € S, we use k; to denote the index of the true cluster, and EZ to denote index of the cluster assigned by the
nearest neighbor search, i.e.,

Xi =Ck; +8i and g ~ N(O7 021)7

~
A~

k; = arg max chxi.

JelK]
Then, we can partition data points in S based on either the ground truth or the assigned cluster. Let Sy, be the subset of
data points in S that belong to the k-th cluster, i.e.,

Sp={x; €S:x; =c,+g;andg; ~ N(0,0°I)} (7
Let §k be the subset of data points that are assigned to the k-th cluster based on the nearest neighbor search, i.e.,
Sk = {x;, €S:k=arg maxé\;-rxi} (8)
jelK]

2.2. The Main Analysis

Let £ (c) be the objective function in Step 11 of Algorithm 1. We expand L (c) as

Ek(c)
2 1 2 2 T
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Let c; be the optimal solution that minimizes L(c), and define f;, = ¢} — c;. We have

Ly(ck) — Li(ck)
=Ml + cxll + (1€l — 26 Ay, — 26 By, — Mllex s
>Alleklly = Al (Cr)lln + AIEk(Cr)llr + [IFell* — 26 Ax — 26 B — Allex s
> = A (Co)llr + M Co)ll + 1€:11* = 201 xll1l| Aklloo — 20111 1| Bl
= — (A + 2] Ak lloe + 211 Blloo) Ik (Ci)ll1 + (A = 2] Aklloe — 211 Blloo) [1£x (Ci) 11 + £l
> — V/ICkl (A + 2/ Akloo + 211 Blloo) 1fi (Ci) | + (A — 21| Aklloo — 2l Brlloo) I (Ci) ll1 + 151>
Thus, if
A 2> 2[|Agloo + 2[| Bi |l oo

we have

£ (Co 1 < 1ell* < (A + 20| Aklloe + 201 Billoo) V/ICk 1€ (Ci) | < 22/ [Ck 1€ (Ci) | = 11 (Ci) | < 224/[Cxi],

and thus
€117 < 22/ [Cr[1fx (Cr) | < 4NZ(Ch| = [If]] < 2AV/|Chl.

In summary, if
A > 2| Agllco + 2[|Biloo, Vk € [K]

we have

g <2 .
(max ek —exll < 2vsA

In the following, we discuss how to bound || A || oo and || Bk || oo-

2.3. Bound for || Az
From the definition of Ay in (9), we have

[Aklloe < 2m0—%—-

2.3.1. LOWER BOUND OF |Sj|

First, we show that the size of S, is lower-bounded, which means a significant amount of data points in .S belong to the k-th

cluster. Recall that pq, ..., ux are the weight of the Gaussian mixtures, and pg = ) £n1<nK ;. According to the Chernoff

bound (Angluin & Valiant, 1979) provided in Appendix A, we have, with a probability at least 1 — €

2 K

> 1oy —m ™
|Sk| _Mk5|< s

5 2
> g,uk|‘s|7 Vk € [K]. (10

Next, we prove that a larger amount of data points in Sy belong to §k. We begin by analyzing the probability that the

assigned cluster k; of x; is the true cluster k;. The similarity between x; and the estimated cluster centers can be bounded
by
AT AT ~ T AT
¢y, xi =€, (cr, + &) = llek, I + [C, —cx,] "cr, + €4,
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Hence, x; will be assigned to cluster k; if

,-\

8 =
A

,-\

1—A—(1+A) Vi # ki,

’>p+A+(1+A)

g
[ yll

which leads to the following sufficient condition
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It is easy to verify that for any fixed direction € with |[€|| = 1, g, ¢ is a Gaussian random variable with mean 0 and variance
o2. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B, we have

T 6j ’ < ] S1-K ( 93 )
g — | <g|=>21—-Kexp|— ).
* lesll 202

I max
1<j<K

Define 2\ 01
6 = K exp (—2002) <3 (12)
In summary, we have proved the following lemma.
Lemma 2. Under the condition in (4), with a probability at least 1 — 6, x; = ¢y, + g; € S, C S satisfies
C;
%8 | <

and is assigned to the correct cluster k; based on the nearest neighbor search (i.e., ’k\:i =k;).
Define —~

Sk = {x € S+ max g/ A_”‘ < go} C 8 NSk (13)

Since each data point in Sy, has a probability at least 1 — § to be assigned to set S}, using the Chernoff bound again, we
have, with a probability at least 1 — €,

~ ~ 2 K
Skl > 1Sk NSk| > |ISH>E[ISH] |1 - | = In —
2 K
> 1-6)|S 1—y/————In—
a2y 2 3 K (5), (10) 1

2.3.2. UPPER BOUND OF |5}, \ S|

Define o R
O=UK Sl cSand® = UK | (Sk\s,i) —S\0CS.

From Lemma 2, we know that with a probability at least 1 — §, each x; € Sy belongs to the set S} C O. Thus, with
probability at least 1 — §, each x; € S belongs to O. In other words, with probability at most J, each x; € S belongs to O.
Based on the Chernoff bound, we have, with a probability at least 1 — ¢,
_ — 1 1
|O] <2E[|O]] +2In= < 26|S|+2In—. 15)
€ €

Since S,% C S, we have §k \ Sk C §k \ S,% C O. Therefore, with a probability at least 1 — ¢, we have

18k \ Skl < 26|S] —|—2111%,Vk € [K]. (16)



A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Combining (10), (14) and (16), we have, with probability at least 1 — 3¢

25|S|+2Int 18 1
|2| e _ 1970 <5+
51| S| o

1
[ Axloe < 210 1n6>::cx&m)+c)<ﬁ;),Vke{Ky (17)

2.4. Bound for || B oo

Notice that {g; : x; € §k}, determined by the estimated centers 1, . . ., Cx, is a specific subset of {g; : x; € S}. Although
g; is drawn from the Gaussian distribution N (0, 02I), the distribution of elements in {g; : x; € §k} is unknown. As a
result, we cannot direct apply concentration inequality of Gaussian random vectors to bound || B||«o. Let U; € R¥*X be
a matrix whose columns are basis vectors of the subspace spanned by ¢1,...,Cx, and U € R4*(d=K) pe g matrix whose
columns are basis vectors of the complementary subspace. We then divide each g; as

g =gl +8,
where g! = U, U] g;, and g = U,U; g;.
First, we upper bound || By || as
1 Sk\S} 1 Si 1
1Bl < 1= S gt o+ |53|’“| TRV > gl +||§’“|| T glll - (18)
x; €8k 00 k A9k xiegk\S; o k k x; €5} oo
B} B2 B?

In the following, we discuss how to bound each term in the right hand side of (18).
2.4.1. UPPER BOUND OF B}
Following the property of Gaussian random vector, > = Uy gi/ (O’\/ S |> can be treated as a (d — K')-dimensional

Gaussian random vector. As a result, each element of Uy > _ 3 Uy gi/ (0\/ |§;C ) is a Gaussian random variable with

variance smaller than 1. Based on the tail bound for the Gaussian distribution (Chang et al., 2011) provided in Appendix B
and the union bound, with a probability at least 1 — ¢, we have

}:gi/Gqﬁ$> = U2§:(gg4<a¢ﬁk> gvgméywkemm

Xz‘€§k ) Xi€§k

Bl < 21n £4 (10), (14 21n £d O nd) K] (19)
<o = < o\ —== = o\l — 1, .
g 1Sy 20k|S1/9 S|

2.4.2. UPPER BOUND OF B2

oo

which implies

First, we have

1 1 1
= 2 8| =|lag X e <= X Us (20)
| k\ k|x7:6§k\8,i | k\ k|x7~,€§k\5,§ | k\ k|x71€§k\5,i

Since U, g;/o can be treated as a K-dimensional Gaussian random vector, based on the tail bound for the x? distribu-
tion (Laurent & Massart, 2000), we have with a probability at least 1 — ¢,

1
U &l <o <\/?+ \/21og 6)
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Applying the union bound again, with a probability at least 1 — €, we have

1<i<|S|

max ||U1 gl <o (\FJr 2log |f|> (21)

Combining (20) and (21), we have

B< 2 (5 o )<@+ 21og'f>=o<aa¢m*8|>+o<a¢g|i5'>,wem @)

k

2.4.3. UPPER BOUND OF B?

First, we have

! I
5 2 8| < \Sll > Uls| < \81| > Ule| = (23)

k x, €S} o x, €S} o x, €S}

Recall the definition of S} in (13). Due to the fact that the domain is symmetric, we have E [U;' g;] = 0. Under the
condition in (21), we can invoke the following lemma to bound uy.

Lemma 3. (Lemma 2 from (Smale & Zhou, 2007)) Let H be a Hilbert space and & be a random variable on (Z, p) with
values in H. Assume ||£]| < M < oo almost surely. Denote 02(&) = E(||€]|?). Let {2;}™, be independent random
drawers of p. For any 0 < § < 1, with confidence 1 — 6,

‘17”

o > (& - El&)

: m m
i=1

‘ L 2MIe/8) | [20%(6) In(2/9)

From Lemma 3 and the union bound, with a probability at least 1 — €, we have

|S| 21n(2K /¢) 21n(2K /¢)
u;éa(fﬂ/ E)( st 5 >,Vke[K]. (24)

Combining (23) and (24), we have

=~ S 2 2K 2 2K?2
k

10), (14) (5) 2K |
VE +4/2log 2! |S| o ]2 2K _ o (oMLY vk e 1. (25)
1k |S| S|

In summary, under the condition that (10), (14) and (15) are true, with a probability at least 1 — 3e,

|| Brllso < O(60+y/In|S]) + O (th‘f/% M) Yk € [K]. (26)

A. Chernoff Bound

Theorem 2 (Multiplicative Chernoff Bound (Angluin & Valiant, 1979)). Let X1, Xo,...,X,, be independent binary
random variables with Pr[X; = 1] = p;. Denote S =Y | X; and jp = E[S] = 3", p;. We have

2
Pri[S <(1—e€)u] <exp <—€2u) , for0 <e <1,

62

24¢

Pri[S > (14 €)u] <exp < u),fore>0.
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Pr [SS (1,/21111);1] <4, for exp<2> <6 <1,
w0 %

> (14— 2| 4| <6 for0<d<1.

Therefore,

Pr|{S>2u+2In

B. Tail bounds for the Gaussian distribution

Theorem 3 (Chernoff-type upper bound for the Q-function (Chang et al., 2011)). The Q-function defined as

Q) = \/%7 /:o exp (-i) dt

is the tail probability of the standard Gaussian distribution. When x > 0, we have

Qz) < %exp <—x;> :

Let X ~ A(0,1) be a Gaussian random variable. According to Theorem 3, we have

2
Pr{|X| > ¢ <exp (—Z) ,or

IX] > ,/2111(15] <4,

Pr
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