Large-scale Multi-label Learning with Missing Labels

A. Unregularized LEML with Squared L, Loss Recovers CPLST
Claim 1. Ifl(y, f(z; 2)) = ||ly — ZTz|% and \ = 0, then

VxS My, = i Y - XZ|%,
xEx My argz:wfﬁl}%)gkﬂ 7

where X = Ux X x VL is the thin SVD decomposition of X, and My, is the rank-k truncated SVD of M = ULY .

Proof of Claim 1. Let X = UxXx V)? be the thin SVD decomposition of X, and My, be the rank-k truncated SVD
approximation of U%Y . We have

. . _ . T . . T .
arg | min |V - XZ|e = mg ) min JUNUDY - XZ)+ (- UsURY - X2)|r

=argmin _ |[(UxUx)(Y = XZ) + (I - UxUx)(Y = XZ)|[3

Z:rank(Z)<k
. T 9 - )
= Y - XZ . Y- X7
are Z:ragllil(%)gk ”UXUX( )”F + ||( UXUX)( )HF
. T 2
= Y -XZ
are Z:ragllil(%)gk”UX( )”F

= i Us(Y - XZ
arthragil(g)gkll x( N r

=arg min IURY — SxVy Z||F

= VxS M.
The second and the fifth inequalities follow from the fact that the ()2 is an increasing function. The third equality follows
from the Pythagorean theorem since Ux U)}r constitutes an orthonormal projection. Since Ux U;X =X as U; Ux =1,
where 7 is the rank of X, we have (I — UxUy)(Y — XZ) = (I — UxUy)Y. Since the last term does not depend on

the variable Z, it can be removed from consideration and the fourth equality follows. The sixth equality follows due to the
same reason as Uy X = I, Xx V] = Sx V.

For the last equality, first of all note that Z = Vx Z)_(l M, is a feasible solution to the problem since rank(Vy E)—(l M) <
rank(M}) < k by definition of M. Next, notice that for any feasible Z’, since rank(X x V; 7'y <rank(Z') < k, we
have |[UyY — SxVy Z'||r > ||[ULY — My, again by the definition of M. The result follows since by Vy Vx = I,.,
we have Y x Vi (Vx X' My) = M. 0O

Claim 2. The solution to (3) is equivalent to ZP*ST = Weprsr HE p1 g which is the closed form solution for the CPLST
scheme, i.e.,

(Weprst, Hoprsr) = argmin | XW — YH||%2 + |Y - YHHT||%,

st. HTH =1I,. (13)
Proof of Claim 2. Let Uy[A]Xk[A]Vi[A] be the rank-k truncated SVD approximation of a matrix A. In (Chen & Lin,
2012), the authors show that the closed form solution to (13) is

He = Vi [YTXXTY],

We = XY He,
where X1 is the pseudo inverse of X. It follows from Xt = VxS UL that YT X XY = YTUxULY = MTM and
Vi[YTXXTY] = Vj[M]. Thus, we have

ZCPLST _ 7, Hg

= X'YHcoHL

= VXS UXY Vi [M]Vi [M]"

= VR S5 MV [M]Vi[M]"

= VX Sx' My O
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B. Algorithm Details

B.1. Derivative Computations for Various Losses

Note that for the logistic and Lo-hinge loss in Table 5, Y;; is assumed to be —1, +1 instead of {0, 1}. Note that although
L>-hinge loss is not twice-differentiable, the sub-differential of %é (a, b) still can be used for TRON to solve (6).

Table 5. Computation of ¢'(a, b) and £’ (a, b) for different loss functions.

0(a, b) 2-4(a,b) 2 (a,b)
Squaredloss  3(a — b)? b—a 1
Logistic loss  log (1 +e~") Tresar %

Ly-hinge loss  (max(0,1 — ab))>  —2amax(0,1—ab) 2-Z[ab < 1]

B.2. Conjugate Gradient for Squared Loss

In Algorithm 3, we show the detailed conjugate gradient procedure used to solve (6) when the squared loss is used. Note
that V2g(w) is invariant to w as (6) is a quadratic problem due to the squared loss function.

Algorithm 3 Conjugate gradient for solving (6) with the squared loss

e Set initial wyp, ro = —Vg(wy), dp = 7.
e Fort=0,1,2,...
— If ||r¢|| is small enough, then stop the procedure and return ws.
rir,
T T T2 (o
di V2g(wo)dy

- Wiy = we + atcgt
- Tyl =T — oV g(wo)dt
T
8, = Tir1Ti+1
, = Lt
rir
= diy1 =711+ Pids
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C. Analyzing Trace Norm-bounded Predictors

In this section, we shall provide a proof of Theorems 3 and 4. Our proof shall proceed by demonstrating a uniform
convergence style bound for the empirical losses. More precisely, we shall show, for both trace norm as well as Frobenius
regularizations, that with high probability, we have

L(Z) < L(Z)+e
Suppose Z* € argmin £(Z), then a similar analysis will allow us to show, again with high probability,
r(Z)<\

L(Z°) < L(Z%) + e

Combining the two along with the fact that Z is the empirical risk minimizer i.e. £(Z) < £(Z*) will yield the announced
claim in the following form:

L(Z) < L(Z*) + 2.

Thus, in the sequel, we shall only concentrate on proving the aforementioned uniform convergence bound. We shall denote
the regularized class of predictors as Z = {Z € R**F r(Z) < A}, where 7(Z) = || Z||,, or 7(Z) = || Z|| jp. We shall also

use the following shorthand for the loss incurred by the predictor on a specific label I € [L]: £(y!, Z;, x) = ((y!, fi(z; 2)),
where Z; denotes the ! column of the matrix Z.

We shall perform our analysis in several steps outlined below:
1. Step 1: In this step we shall show, by an application of McDiarmid’s inequality, that with high probability, the excess

risk of the learned predictor can be bounded by bounding the expected suprémus deviation of empirical risks from
population risks over the set of predictors in the class Z.

2. Step 2: In this step we shall show that the expected suprémus deviation can be bounded by a Rademacher average
term.

3. Step 3: In this step we shall reduce the estimation of the Rademacher average term to the estimation of the spectral
norm of a random matrix that we shall describe.

4. Step 4: Finally, we shall use tools from random matrix theory to bound the spectral norm of the random matrix.

We now give details of each of the steps in the following subsections:

C.1. Step 1: Bounding Excess Risk by Expected Supremus Deviation

We will first analyze the case s = 1 and will later show how to extend the analysis to s > 1. In this case, we receive n
training points (x;, y;) and for each training point x;, we get to see the value of a random label I; € [L] i.e. we get to see

the true value of yf Thus, for any predictor Z € Z, the observed training loss is given by

n

1 .

i=1

The population risk functional is given by

L(Z)y= E [aW' fi(=:2)]= E [t Z,z)]

B (z,y,0) (z,y,0)

We note here that our subsequent analysis shall hold even for non uniform distributions for sampling the labels. The
definition of the population risk functional incorporates this. In case we have a uniform distribution over the labels, the
above definition reduces to

=1

(z,y,0) (®4,9:.0)
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Given the above, we now analyze the excess risk i.e. the difference between the observed training loss Zf(Z ) and the
population risk £(Z).

L(Z)-L(Z) < sup {z( £z
ZeZ
1 n n
= su - 2 x| — — (i, 7,z
Zerz) { (&4, 5l Hn g yl bi H n ; (' 21, )}

g((®1,y1,01) 55 (20, Ynsln))

Since all the label-wise loss functions are bounded, an arbitrary change in any (x;,y;) or any I; should not perturb the
expression g((x1,y1,01), ..., (Tn,Yn,ln)) by more than O (1). Thus, by an application of McDiarmid’s inequality, we

have, with probability at least 1 — 4,
log %
E)l‘[[g((wlvylall)a (xnayﬂv ))]]+O T

(®i,Y1),

L(Z)-L(Z) <

Thus, we conclude that the excess risk of the learned predictor can be bounded by calculating the expected suprémus
deviation of empirical risks from population risks.

C.2. Step 2: Bounding Expected Supremus Deviation by a Rademacher Average

We now analyze the expected suprémus deviation. We have

[[g((w17y17 ll)a AR (mnvyna ln))ﬂ

(xi,yi),l:
1< T 1&
= E |sup E ¢ Z,Z,ml S DA (T
(®i,yi),Li |1Z€Z {(wl,y“l ) u ; (y t ) n ; (y )
< E |sw{ E liagl? Z; gz-)- —li [t 2. 20]
T @i [zez |@gnd [T ne @ LT
LB |aplly o [[z( Zm) 1271:5( 2, ;)
u - ) iy i - ) i L1
(®i,Yi),Li Zeg’ n— (®:,9: v 4 n_ Y ! '
— Ellsup{ E lzn:e(gl? Z; &) —lzn: [[e(gl.i 2, ;E‘)]]
li ||zez (icz,?]i,[i) n i=1 crThe n i—1 (®:,91) Lo
+ E su li: E [[E( 7 c::)]]—l nﬁ( Z1,,x;)
(i) i ZEI; n s (0,54 yz s Ly i n et yz 9y Ly Lg
n ~ 13
S E sup - H:E(yizvzi aml)]] - E [[E(yzla le:ii):”
(Ii,di) ||Zzez | ™ i @080) ‘ o (&4,9:)
su Uy, 7y, &) — — £ szwa
LT FUES SUUIRNESE D S|
1 — P
- E [swpl-Se( E [[e il 7 &, ]] — E [[e T ]D
(li,ii),é,; IlZeg {n ; ((‘iugl) (yZ ll ) (iu'gz) (yl ll )
1 n
E sup § — € (E Nﬁi,Zl,i,:ii —/ éi,Zli,xi )
(@i,9:),li,(&i,91),€: HZGZ {n ; < ) (v )
1 — 1 —
< 2FE |[su e E [[e ’Zx]] +2 E sup 4 = S el(yl, 2,
li,e; Hzeg{n ; (®:,9:) (y : ) (®i,Y4),li € Zeg n ; (y : )
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1 n 1 n

< 2 E su el(y;’, Z1,, &; + 2 E sup § — €l l-",Zi,wZ-

(@:,90).Lives HZE% {n ; @2 )}ﬂ @y lisei ILGI; {n ; W' 2 )H]
< 4 E ZyZ:c) <4C g s n(Z}

su € A < — U €2y, i

- (®i,y:),li € ZGIZ){ n ! ‘ : ! n (xi,y:).lis€i ZGIZ),’ =1 n '

4C
= —E |[sup<z, Xé>ﬂ ,

n Xle|zez

where for any 1, ..., @, € X,1€ [L]" and € € {—1,+1}", we define the matrix X} as follows:
= lz €;L; Z €L ... Z 6&8;|
i€l i€l i€l

where for any [ € [L], we define I; := {3 : [; = [}. Note that in the last second last inequality we have used the contraction
inequality for Rademacher averages (see Ledoux & Talagrand, 2002, proof of Theorem 4.12) We also note that the above
analysis also allows for separate label-wise loss functions, so long as they are all bounded and C'-Lipschitz. For any matrix
predictor class Z, we define its Rademacher complexity as follows:

Rul2) = 1 % s X

We have thus established that with high probability,

L(Z)—L(Z) <4CR, (2)+ O [/ %

We now establish that the same analysis also extends to situations wherein, for each training point we observe values of s

labels instead. Thus, for each x;, we observe values for labels I}, . .., [$. In this case the empirical loss is given by
1 n S Z_Z
LSl 2w
i=1 j=1

The change in any x; leads to a perturbation of at most O (S) whereas the change in any lf leads to a perturbation of

@) (n ) Thus the sum of squared perturbations is bounded by . Thus on application of the McDiarmid’s inequality, we
will be able to bound the excess risk by the following expected suprémus deviation term

SRR ;
E ) sup s E [[gly Zlv )ﬂ_ﬁzzg(yflvzlszz)

(®iyi,ld) |[zez | (=90 =1 =1

plus a quantity that behaves like O (S\/ bi3*> . We analyze the expected suprémus deviation term below:

1 n S
E |sup<s E [[&(yl,Zl,:c)ﬂ—EZZK(y?,Zlg,wi)

(wi,yi,lf) zZezZ (z,y,0) i=1 j=1

= E | sup Z( E [[Ely Z,x ]_*Zf%v l],wz)>

(wivyialZ) ZeZ j=1 i=1

s 1 n %
< E su E [ay', 2, ——= > Uy, Zji,x;
< ;(mi,yi,zz) ﬂz&{(wyl) ey, Z1,2)] n; (Y 2y )}H
< XX E fwzat) = E L] o, 2

n XV |zecz n Xle|zez

j=1
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and thus, it just suffices to prove bounds for the case where a single label is observed per point. As an aside, we note
that the case s = 1 resembles that of multi-task learning. However, multi-task learning is typically studied in a different
learning model and mostly uses group regularization that is distinct from ours.

C.3. Step 3: Estimating the Rademacher Average

We will now bound the following quantity:

1
ZY=~-E Z, X!
Ru(2) = B ﬂ;gj : Jﬂ

where X! is as defined above. Approaches to bounding such Rademacher average terms usually resort to Martingale
techniques (Kakade et al., 2008) or use of tools from convex analysis (Kakade et al., 2012) and decompose the Rademacher
average term. However, such decompositions shall yield suboptimal results in our case. Our proposed approach will,
instead involve an application of Hoélder’s inequality followed by an application from results from random matrix theory to
bound the spectral norm of a random matrix.

For simplicity of notation, forany [ € [L], wedenote Vi =3, €;z;and V := X! =[Vy Vo...Vi]. Also, forany € [L],
let n; = |I;| denote the number of training points for which values of the ! label was observed i.e. n; = Z:L: 1 L=
C.3.1. DISTRIBUTION INDEPENDENT BOUND
We apply Holder’s inequality to get the following result:

Lg lswzxh| <t E [swizi, 1%, <2 E PIx2] < 2 g [[||X1||2]]

nXle |zcz e T nXle|zez tr CNFN — nxle ezl = n\ xle ell2

Then the following bound can be derived in a straightforward manner:

2

L L
2 2
E D] < E Q1] - &, ﬂ;nwéﬂ:ge > | e
= =15,
L
= E D lmill+ Y e (i)
2= ier i#jel;
<

L L
2
E HZ niE [[m]]ﬂ <E ﬂzmu —n
=1 =1
where we have assumed, without loss of generality that IED [[HacH;]] < 1. This proves
A~

<X
_\/7717

which establishes Theorem 3. Note that the same analysis holds if Z is Frobenius norm regularized since we can apply the
Holder’s inequality for Frobenius norm instead and still get the same Rademacher average bound.

Rn(2)

C.3.2. TIGHTER BOUNDS FOR TRACE NORM REGULARIZATION

Notice that in the above analysis, we did not exploit the fact that the top singular value of the matrix X could be much
smaller than its Frobenius norm. However, there exist distributions where trace norm regularization enjoys better perfor-
mance guarantees over Frobenius norm regularization. In order to better present our bounds, we model the data distribution
D on X (or rather its marginal) more carefully. Let X := [ [@z "] and suppose the distribution D satisfies the following
conditions:

1. The top singular value of X is || X||, = o1

2. The matrix X has trace tr (X) =X
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3. The distribution on X is sub-Gaussian i.e. for some 1 > 0, we have, for all v € R4,
E [exp (2 7)] < exp (Jlvll;n/2)

In order to be consistent with previous results, we shall normalize the vectors x so that they are unit-norm on expectation.

Since E [[||a:||§]] = tr (X) = X, we wish to bound the Rademacher average as

1
Rp(Z2)< —= E |su Z,X;ﬂ
( ) B n EXJ?G |]:Z€I;‘:< >

In this case, it is possible to apply the Holder’s inequality as

1 1 1 A
— E Z.xh| < —_ E Z|l. || x2 H<E Al x! <71/E[[X12ﬂ
n\/fX,l,e |]:223< e>]] — n\/iX,l,e |]:21613| Htr H e”2 — n\/iX,l,e[[ || eHg]] — n\/f X Le ” e||2

Thus, in order to bound R, (Z), it suffices to bound XI[*% [[HX é ||§]] . In this case, since our object of interest is the spectral

norm of the matrix X_, we expect to get much better guarantees, for instance, in case the training points = € X are
being sampled from some (near) isotropic distribution. We note that Frobenius norm regularization will not be able to gain
any advantage in these situations since it would involve the Frobenius norm of the matrix X! (as shown in the previous
subsubsection) and thus, cannot exploit the fact that the spectral norm of this matrix is much smaller than its Frobenius
norm.

C.4. Step 4: Calculating the Spectral norm of a Random Matrix

To bound XI’[?€ [[HX ;H;H , we first make some simplifications (we will take care of the normalizations later). For any
[ € [L], let the probability of the value for label [ being observed be p; € (0,1] such that }°, p; = 1. Also let P = gfﬁ D
and p = lI(IC_l[lil] p¢. Call the event Eyyax as the event when n; < 2P -n foralll € [L] i.e. every label will have at most 2P - n
training points for which its value is seen. The following result shows that this is a high probability event:

Lemma 1. Forany 6 > 0, ifn > ﬁ log %, then with probability 1 — 0, we have

P [Emax] =10

Proof. For any [ € [L], an application of Chernoff’s bound for Boolean random variables tells us that with probability at
least 1 — exp (—anf), we have n; < 2p; - n < 2P - n. Taking a union bound and using p; > p finishes the proof. O]

Conditioning on the event &, shall allow us to get a control over the spectral norm of the matrix X! by getting a
bound on the sub-Gaussian norm of the individual columns of X é We show below, that conditioning on this event does

not affect the Rademacher average calculations. A simple calculation shows that )I(E [[HX é”g‘ l]] < nX. If we have

n > % log %, we have P [~&ax] < %. This gives us the following bound:

\
=

O [[HXQHE]] = X,E[[HXle‘Emax P[fmin]+)§€[[IleHz‘ﬂSmm]] (1= P [Ema])
(1=8)+ B [I1x5] ~Emes]

= E [IX2;] ] -0 +
2 ] + (Pd(nzw)

A
<
—

g

b

A
S
VRS
el
—
ke
s
"
&
I=—]
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where the last step follows since our subsequent calculations will show that )I(E [[HX éHz‘ Emax]] =0 (nPd(n2 + 01)).

Thus, it suffices to bound )I(E [[HX ! Hz‘ Smaxﬂ = )I(E HHVH;’ Emax]]. For sake of brevity we will omit the conditioning
term from now on. 7 ’

For simplicity let A, = Y where ¢ = - V2P -nand A = [A; Ay ... Ay]. Thus
2
& D] = & ]

We first bound the sub-Gaussian norm of the column vectors A;. For any vector v € R4, we have:

E [exp (AT v)] = Eﬂexp (iZei@i,v))H

i€l

(& foxw (10 2e)])”

1P "
< exp He'v 772/2
c e
ny 2 9
= _ 2
e (g ol o7 2)
<

exp (|1v]3 /2)

where, in the second step, we have used the fact that «;, ; and ¢;, €; are independent for ¢ # 7, in the third step we have
used the sub-Gaussian properties of  and in the fourth step, we have use the fact that the event £,y holds. This shows us
that the sub-Gaussian norm of the column vector A; is bounded i.e. [| 4[|, < 1.

We now proceed to bound E [[||A||§]] = E [[HAT ||;H . Our proof proceeds by an application of a Bernstein-type in-

equality followed by a covering number argument and finishing off by bounding the expectation in terms of the cumulative
distribution function. The first two parts of the proof proceed on the lines of the proof of Theorem 5.39 in (Vershynin,
2012) For any fixed vector v € S d=1 the set of unit norm vectors in d dimensions, we have:

L

L
lAvl3 = (Av)* =) 7
=1

=1
Now observe that conditioned on 1, I; N Iy = o if ¢ # ¢’ and thus, conditioned on 1, the variables Z;, Z; are independent
for ¢t # t'. This will allow us to apply the following Bernstein-type inequality

Theorem 5 ((Vershynin, 2012), Corollary 5.17). Let X1, ..., X be independent centered sub-exponential variables with
bounded sub-exponential norm i.e. for all i, we have || X;|| b, < B for some B > 0. Then for some absolute constant
c1 > 0, we have for any € > 0,

=1

N 2
P [in > GN] < exp (—cl min {;2, ;} N) .
To apply the above result, we will first bound expectation of the random variables Z7.

E [Z?H =K [[<Alvv>2]] =E <i ZQ‘(:&‘,U)) = %E [[(:B7v>2ﬂ < nl<271 < U—;

i€l

where the fourth inequality follows from definition of the top singular norm o1 of X := E [[xxT]] and the last inequality
follows from the event £,,,. The above calculation gives us a bound on the expectation of Z 12 which will be used to center
it. Since we have already established [ A;[|,,, < 1, we automatically get | Z;|[,,, < 1. Using standard inequalities between
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the sub-exponential norm ||||,,, and the sub-Gaussian norm ||-|,, of random variables (for instance, see Vershynin, 2012,
Lemma 5.14) we also have

1zt =2 12200, < 20122]l,, < 4025, < 4.

Iy,
Applying Theorem 5 to the variables X; = Z7 — E [Z}], we get

P < exp (*Clein{EQ,E})

L
SNozp 1% el
=1 n

where ¢; > 0 is an absolute constant. Thus with probability at least 1 — exp (—c1 L min {€2,€}), for a fixed vector

v € 81, we have the inequality
2 o1
4ol < (% +e) 2
1_

Applying a union bound over a 3-net Ny /4 over S9=1 (which can be of size at most 99), we get that with probability at
most 1 — 9% exp (—c; L min {€2, €}), we have the above inequality for every vector v € N7 /4 as well. We note that this
implies a bound on the spectral norm of the matrix A (see Vershynin, 2012, Lemma 5.4) and get the following bound

2 01
A<z (%)

Put ¢ = ¢y - % + % where ¢, = max{l, %} and suppose d > L. Since co > 1, we have ¢ > 1 which gives

min {¢,€?} = e. This gives us with probability at least 1 — exp (—c1€’),
2 g1 /
A5 <2 <L772 +cad+e )

Al

Consider the random variable Y = *52 — L7} — cad. Then we have P'[Y" > €] < exp (—c1€). Thus we have
o oo 1
E[[Yﬂ:/ P[Y>e]de§/ exp (—ci1€) de = —
0 0 €1

This gives us

1
E[Il413] <2 <L;; +ead + )

C1

and consequently,

1
XIEE [[||X§||§]] =2 .X]E’e [[||A||§]] <4n*P-n (LZ; + cod + 61) <0 (my2P (d + L?)) <O (nPd(n* + a1))

where the last step holds when d > L. Thus, we are able to bound the Rademacher averages, for some absolute constant

C3 as
2
‘ < 3\ Pl +01) Ul),
ny

Theorem 6. Suppose we learn a predictor using the trace norm regularized formulation Z = arginf ﬁ(Z ) over a set of
1211, <A

n training points. Further suppose that, for any | € [L], the probability of observing the value of label [ is given by p; and
let P = max p;. Then with probability at least 1 — §, we have

le[L]
N P(n2 log L
L(Z) < arginf L(Z)+ O [ s\ w + 0 3\/36 7
1Z]l <A nd n

where the terms 1, 01, % are defined by the data distribution as before.

A 2
< 1
Rn (Z) — n\/i HXI,E},e |[||Xe||2:|]

which allows us to make the following claim:
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Essentially, the above result indicates that if some label is observed too often, as would be the case when P = Q) (1), we
get no benefit from trace norm regularization since this is akin to a situation with fully observed labels. However, if the
distribution on the labels is close to uniformi.e. P = O (%), the above calculation lets us bound the Rademacher average,
and consequently, the excess risk as
d(n? +o1)
Rn(Z) < ez ——=—=,
(Z)ses nLy.

thus proving the first part of Theorem 4.

We now notice that However, in case our data distribution is near isotropic, i.e. > > o071, then this result gives us superior
bounds. For instance, if the data points are generated from a standard normal distribution, then we have 04y = 1, 3 = d
and 1 = 1 using which we can bound the Rademacher average term as

[ 2
Z) < —
Rn( )_C3A nL7

D. Lower Bounds for Uniform Convergence-based Proofs

which gives us the second part of Theorem 4.

In this section, we show that our analysis for Theorems 3 and 4 are essentially tight. In particular, we show for each case,
a data distribution such that the deviation of the empirical losses from the population risks is, up to a constant factor, the
same as predicted by the results. We state these lower bounds in two separate subsections below:

D.1. Lower Bound for Trace Norm Regularization

In this section we shall show that for general distribution, Theorem 3 is tight. Recall that Theorem 3 predicts that for a
predictor Z learned using a trace norm regularized formulation satisfies, with constant probability (i.e. 6 = (1)),

L2 < B2+ 0 <)\\/:> |

where, for simplicity as well as w.l.0.g., we have assumed s = 1. We shall show that this result is tight by demonstrating
the following lower bound:
Claim 7. There exists a data-label distribution and a loss function such that the empirical risk minimizer learned as

7 = arginf ﬁ(Z ) has, with constant probability, its population risk lower bounded by
121 <A

L) > £(2)+9 ()\ 1) ,

n

thus establishing the tightness claim. Our proof will essentially demonstrate this by considering a non-isotropic data
distribution (since, for isotropic distributions, Theorem 4 shows that a tighter upper bound is actually possible). For
simplicity, and w.l.o.g., we will prove the result for A = 1. Let u € R? be a fixed unit vector and consider the following
data distribution

€T = Cll'l'a

where (; are independent Rademacher variables and a trivial label distribution
Y = ]17

where 1 € RZ is the all-ones vector. Note that the data distribution satisfies E [[||m||§]] = 1 and thus, satisfies the

assumptions of Theorem 3. Let w! = 1 iff the label [ is observed for the i training point. Note that for any i, we have
Zlel w! =1 and that for any | € [L], w! = 1 with probability 1/L. Also consider the following loss function

oy, fi(w: 2)) = (Z1, y'x)
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Let

N A 1
Z = arginf L(Z) = arginf —(Z, uv")
I1Z1l;, <1 2]l <1 ™

where v is the vector
n n n
1 2 L
V= [E Giw; E Giw; ... E Giw;
i=1 i=1 i=1

Clearly, since x is a centered distribution and £ is a linear loss function, E(Z ) = 0. However, by Holder’s inequality, we
also have -
-

NPy

and thus, £(Z) = —Ljv||, since |||, = 1. The following lemma shows that with constant probability, |v||, > /n/2
which shows that £(Z) > L(Z) + Q (\/g), thus proving the lower bound.

Lemma 2. With probability at least 3/4, we have ||VH§ >n/2

Proof. We have

L n 2 L n L
2
LI {0 SF) I 9 DD 9 SERLH
=1 \i=1 1=1 i=1 I=1 i#j
= n+ ) GGlwiws) =n+W,
i#]
where w; = [w}, w?,...,wF]. Now clearly E[W] = 0 and as the following calculation shows, E [W?] < 2n?/L
which, by an application of Tchebysheff’s inequality, gives us, for L > 32, with probability at least 3/4, |[W| < n/2 and
consequently ||VH§ > n /2. We give an estimation of the variance of Z below.

E[[WQ]] = E Z <i1Cj1 <wi1’wj1>ci2<j2<wi2’wj2>
117£]1,02F ]2
9 2n?
= 2E Z(wi,wj> =2n(n — 1E [(wy,ws2)] < <

i

where we have used the fact that (w;, wj>2 = (w;,w;) since (w;,w;) = 0 or 1, and that E [(w1,w>)] = + since that is
the probability of the same label getting observed for ; and x5. O

D.2. Lower Bound for Frobenius Norm Regularization

In this section, we shall prove that even for isotropic distributions, Frobenius norm regularization cannot offer O (ﬁ) -

style bounds as offered by trace norm regularization.

Claim 8. There exists an isotropic, sub-Gaussian data distribution and a loss function such that the empirical risk mini-

mizer learned as 7 = arginf ﬁ(Z ) has, with constant probability, its population risk lower bounded by
12l p <A

n

L) > £(2)+9 ()\ 1) ,

whereas an empirical risk minimizer learned as 7 = arginf ﬁ(Z ) over the same distribution has, with probability at
121 <A

least 1 — 0, its population risk bounded by

L(Z)<L(Z)+0 ()\\/nTL> +0 \/%
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We shall again prove this result for A = 1. We shall retain the distribution over labels as well as the loss function from our
previous discussion in Appendix D.1. We shall also reuse w! to denote the label observation pattern. We shall however use
Rademacher vectors to define the data distribution i.e. each of the d coordinates of the vector « obeys the law

1
r o~ 5(]1{7“:1} + ]1{7‘:71})'

Thus we sample x; as

r

iy s 9y

@ = — [r}, r} 4,

Vd

where each coordinate is independently sampled. We now show that this distribution satisfies the assumptions of Theo-
rem 4. We have E [[w:v—r]] = é - I where I is the d x d identity matrix. Thus o = é and X = 1. We also have, for any

v € RY,

E [exp (mT'v)]]

Il
&=
@
"
o)
8
<
>4
<
Il
.
& W
&
=l
@
"
o)
—
8
<.
>4
.
SN—
1=}

where the second equality uses the independence of the coordinates of «. Thus we have n? = %. Thus, this distribution ful-
fills all the preconditions of Theorem 4. Note that had trace norm regularization been applied, then by applying Theorem 4,
we would have gotten an excess error of

dn?+o1)\ d2/d+1/d)\ 1
O( nLY >_O< nL-1 >_0< nL>

whereas, as the calculation given below shows, Frobenius norm regularization cannot guarantee an excess risk better than

O (\/g ) . Suppose we do perform Frobenius norm regularization in this case. Then we have

N A 1
Z = arginf L£(Z) = arginf —(Z, X),

1zl <1 1Z]z<1 T
where X is the matrix

L L L
§ : 1 § 2 § L
X = W; T W; T ... W; T4
i=1 i=1 i=1

As before, E(Z ) = 0 since the data distribution is centered and the loss function is linear. By a similar application of
Holder’s inequality, we can also get

. X
Z =— ,
X1
and thus, £(Z) = —L]|X|| . The following lemma shows that with constant probability, | X|| . > \/n/2 which shows
that E(Z ) > ﬁ(Z )+Q (\/g ) , thus proving the claimed inability of Frobenius norm regularization to give O ( \/1117) -style

bounds even for isotropic distributions.

Lemma 3. With probability at least 3/4, we have ||X||?; >n/2.
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Proof. We have

L || n 2 L n L
2 2 |
IXI7 = DD whm| =D > whllail; +Y ) wiwh (@i, ;)
=1 |lé=1 2 1=1i=1 I=1 i#j
n
= > lmills + D (@i @) (wiswy) =n+ W
i=1 i#j
where as before, w; = [w},w?,...,wr]. We will, in the sequel prove that [W| < n/2, thus establishing the claim.

Clearly E [W] = 0 and as the following calculation shows, E [W?2] < 2n?/Ld which, by an application of Tchebysheff’s

inequality, gives us, for Ld > 32, with probability at least 3/4, |WW| < n/2 and consequently || X ||§; > n/2. We give an
estimation of the variance of W below.

E [[W2]] = E Z <wi17wj1><wi1awj1><wi27wj2><wi2ij2>
117#]j1,2#]2

2E Z(mi,wﬁz(wi,wj)z =2n(n — DE [(@1, 2)* (w1, w2)]

i#]
9 2n?
= 2n(n—1)E [(z1, z2)*] E [(w1,w2)] < Td
where we have used the fact that data points and label patterns are sampled independently. O
E. More Experimental Results
E.1. Evaluation Criteria
Given a test set {x;,y; : ¢ = 1,...,n}, three criteria are used to evaluate the performance for an real-valued predictor

f(z) : R = R:

e Top-K accuracy: for each instance, we select the K labels with the largest decision values for prediction. The average
accuracy among all instances are reported as the top-K accuracy.

e Hamming-loss: for each pair of instance x and label index j, we round the decision value f7(z) to 0 or 1.

n L

Hamming Loss = % Z Z I[round (f/(z)) # y’]

i=1j=1

e Average AUC: we follow (Bucak et al., 2009) to calculate area under ROC curve for each instance and report the
average AUC among all test instances.
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E.2.

E.3.

EA4.

Speedup Results Due to Multi-core Computation

14
12| | == Vg(w)
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3
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Figure 3. Speedup results for our proposed fast gradient calculation and Hessian-vector multiplication.

Detailed Results with Full Labels

Table 6 shows the top-1 accuracy results for the case with fully observed labels.

Table 7 shows the top-3 accuracy results for the case with fully observed labels.

Table 8 shows the top-5 accuracy results for the case with fully observed labels.

Table 9 shows the Hamming loss results for the case with fully observed labels.

Table 10 shows the average AUC results for the case with fully observed labels.

Detailed Results with Missing Labels

Table 11 shows the top-1 accuracy results for the case with various missing ratios and dimension reduction rates.

Table 12 shows the top-3 accuracy results for the case with various missing ratios and dimension reduction rates.

Table 13 shows the top-5 accuracy results for the case with various missing ratios and dimension reduction rates.

Table 14 shows the Hamming loss results for the case with various missing ratios and dimension reduction rates.

Table 15 shows the average AUC results for the case with various missing ratios and dimension reduction rates.
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Table 6. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-1 Accuracy
LEML BCS | CPLST | WSABIE
k/L SQ| LR | SH SQ SQ WAR
20% | 5833 [ 46.20 | 46.52 | 41.43 55.55 48.51
40% | 60.99 | 50.78 | 40.68 | 54.63 58.73 52.37
bibtex 60% | 61.99 | 51.37 | 39.24 | 57.53 60.36 51.45
80% | 63.38 | 52.64 | 39.96 | 59.76 62.31 53.04
100% | 63.94 | 53.76 | 38.41 | 60.24 63.02 53.24
20% | 86.84 | 84.21 | 89.47 | 68.42 52.63 47.37
40% | 92.11 | 89.47 | 92.11 | 28.95 55.26 86.84
autofood 60% | 73.68 | 89.47 | 86.84 | 71.05 52.63 65.79
80% | 94.74 | 89.47 | 89.47 | 81.58 57.89 78.95
100% | 81.58 | 89.47 | 86.84 | 84.21 57.89 60.53
20% | 92.50 | 87.50 | 97.50 | 70.00 52.50 65.00
40% | 95.00 | 92.50 | 95.00 | 65.00 50.00 47.50
compphys 60% | 95.00 | 92.50 | 95.00 | 72.50 47.50 70.00
80% | 95.00 | 87.50 | 97.50 | 75.00 50.00 45.00
100% | 95.00 | 97.50 | 97.50 | 67.50 50.00 52.50
20% | 67.16 | 57.39 | 61.07 | 59.50 66.53 48.35
40% | 66.66 | 51.62 | 56.20 | 61.16 66.25 47.25
delicious 60% | 66.28 | 50.96 | 51.59 | 63.08 66.22 47.38
80% | 66.25 | 51.55 | 49.11 | 62.10 66.22 45.59
100% | 66.28 | 50.83 | 46.53 | 63.45 66.22 46.25

Table 7. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-3 Accuracy
LEML BCS | CPLST | WSABIE
k/L SQ| LR | SH SQ SQ WAR
20% | 3416 | 25.65 | 27.37 | 21.74 31.99 28.77
40% | 36.53 | 28.20 | 24.81 | 28.95 34.53 30.05
bibtex 60% | 38.00 | 28.68 | 23.26 | 32.25 36.01 31.11
80% | 38.58 | 29.42 | 23.04 | 34.09 36.75 31.21
100% | 38.41 | 30.25 | 22.36 | 34.87 36.91 31.24
20% | 81.58 | 80.70 | 81.58 | 53.51 42.98 66.67
40% | 76.32 | 80.70 | 78.95 | 50.88 42.11 70.18
autofood 60% | 70.18 | 80.70 | 81.58 | 64.91 41.23 60.53
80% | 80.70 | 80.70 | 85.09 | 73.68 42.98 72.81
100% | 75.44 | 80.70 | 82.46 | 65.79 42.98 64.04
20% | 80.00 | 80.00 | 80.00 | 42.50 40.83 49.17
40% | 80.00 | 78.33 | 79.17 | 60.00 37.50 39.17
compphys 60% | 80.00 | 80.00 | 80.00 | 51.67 39.17 49.17
80% | 80.00 | 78.33 | 80.83 | 53.33 39.17 52.50
100% | 80.00 | 79.17 | 81.67 | 62.50 39.17 56.67
20% | 61.20 | 53.68 | 57.27 | 53.01 61.13 42.87
40% | 61.23 | 49.13 | 52.95 | 56.20 61.08 42.05
delicious 60% | 61.15 | 46.76 | 49.58 | 57.07 61.09 42.22
80% | 61.13 | 48.06 | 47.34 | 57.09 61.09 42.01
100% | 61.12 | 46.11 | 45.92 | 57.91 61.09 41.34
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Table 8. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-5 Accuracy
LEML BCS | CPLST | WSABIE
k/L SQ| LR | SH SQ SQ WAR
20% | 24.49 1 19.24 ] 20.33 | 15.39 23.11 21.92
40% | 26.84 | 20.61 | 18.54 | 19.95 24.96 22.47
bibtex 60% | 27.66 | 20.99 | 17.61 | 22.43 26.07 23.33
80% | 28.20 | 21.48 | 17.46 | 24.07 26.47 23.44
100% | 28.01 | 22.03 | 16.83 | 24.48 26.47 23.44
20% | 81.05 | 80.00 | 75.79 | 44.21 36.84 66.32
40% | 73.68 | 78.42 | 76.84 | 51.05 36.32 66.84
autofood 60% | 69.47 | 78.95 | 78.42 | 57.37 36.32 60.53
80% | 74.74 | 78.95 | 80.53 | 68.95 36.84 66.84
100% | 72.63 | 78.42 | 83.16 | 62.11 36.84 61.58
20% | 72.00 | 73.50 | 72.50 | 32.50 37.50 46.00
40% | 73.00 | 74.00 | 74.50 | 54.50 35.50 41.00
compphys 60% | 73.00 | 74.00 | 74.00 | 43.50 34.50 44.00
80% | 73.00 | 73.00 | 74.00 | 47.50 36.00 46.50
100% | 72.50 | 72.50 | 73.00 | 54.50 36.00 49.50
20% | 56.46 | 49.46 | 52.94 | 47.91 56.30 39.79
40% | 56.39 | 45.66 | 49.54 | 51.61 56.28 39.27
delicious 60% | 56.28 | 43.22 | 46.93 | 52.85 56.23 38.97
80% | 56.27 | 44.03 | 4543 | 52.92 56.23 39.27
100% | 56.27 | 42.11 | 44.24 | 53.28 56.23 38.41

Table 9. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss
Hamming Loss
LEML BCS | CPLST
k/L SQ | LR | SH SQ SQ
20% | 0.0126 | 0.0211 [ 0.0231 | 0.0150 | 0.0127
40% | 0.0124 | 0.0240 | 0.0285 | 0.0140 | 0.0126
bibtex 60% | 0.0123 | 0.0233 | 0.0320 | 0.0132 | 0.0126
80% | 0.0123 | 0.0242 | 0.0343 | 0.0130 | 0.0125
100% | 0.0122 | 0.0236 | 0.0375 | 0.0129 | 0.0125
20% | 0.0547 | 0.0621 | 0.0588 | 0.0846 | 0.0996
40% | 0.0590 | 0.0608 | 0.0578 | 0.0846 | 0.0975
autofood 60% | 0.0593 | 0.0611 | 0.0586 | 0.0838 | 0.0945
80% | 0.0572 | 0.0611 | 0.0569 | 1.0000 | 0.0944
100% | 0.0603 | 0.0617 | 0.0586 | 1.0000 | 0.0944
20% | 0.0457 | 0.0470 | 0.0456 | 0.0569 | 0.0530
40% | 0.0454 | 0.0466 | 0.0456 | 0.0569 | 0.0526
compphys 60% | 0.0454 | 0.0469 | 0.0460 | 0.0569 | 0.0530
80% | 0.0464 | 0.0484 | 0.0456 | 0.0569 | 0.0755
100% | 0.0453 | 0.0469 | 0.0450 | 0.0569 | 0.0755
20% | 0.0181 | 0.0196 | 0.0187 | 0.0189 | 0.0182
40% | 0.0181 | 0.0221 | 0.0198 | 0.0186 | 0.0182
delicious 60% | 0.0182 | 0.0239 | 0.0207 | 0.0187 | 0.0182
80% | 0.0182 | 0.0253 | 0.0212 | 0.0186 | 0.0182
100% | 0.0182 | 0.0260 | 0.0216 | 0.0186 | 0.0182
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Table 10. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for
logistic loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Average AUC
LEML BCS | CPLST | WSABIE
k/L SQ | LR | SH SQ SQ WAR

20% [ 0.8910 [ 0.8677 | 0.8541 | 0.7875 | 0.8657 0.9055

40% | 0.9015 | 0.8809 | 0.8467 | 0.8263 | 0.8802 0.9092

bibtex 60% | 0.9040 | 0.8861 | 0.8505 | 0.8468 | 0.8854 0.9089
80% | 0.9035 | 0.8875 | 0.8491 | 0.8560 | 0.8882 0.9164

100% | 0.9024 | 0.8915 | 0.8419 | 0.8614 | 0.8878 0.9182

20% | 0.9565 | 0.9598 | 0.9424 | 0.7599 | 0.7599 0.8779

40% | 0.9277 | 0.9590 | 0.9485 | 0.7994 | 0.7501 0.8806

autofood 60% | 0.8815 | 0.9582 | 0.9513 | 0.8282 | 0.7552 0.8518
80% | 0.9280 | 0.9588 | 0.9573 | 0.8611 | 0.7538 0.8520

100% | 0.9361 | 0.9581 | 0.9561 | 0.8718 | 0.7539 0.8471

20% | 0.9163 | 0.9223 | 0.9274 | 0.6972 | 0.7692 0.8212

40% | 0.9199 | 0.9157 | 0.9191 | 0.7881 | 0.7742 0.8066

compphys 60% | 0.9179 | 0.9143 | 0.9098 | 0.7705 | 0.7705 0.8040
80% | 0.9187 | 0.9003 | 0.9220 | 0.7820 | 0.7806 0.7742

100% | 0.9205 | 0.9040 | 0.8977 | 0.7884 | 0.7804 0.7951

20% | 0.8854 | 0.8583 | 0.8894 | 0.7308 | 0.8833 0.8561

40% | 0.8827 | 0.8534 | 0.8868 | 0.7635 | 0.8814 0.8553

delicious 60% | 0.8814 | 0.8517 | 0.8852 | 0.7842 | 0.8834 0.8523
80% | 0.8814 | 0.8468 | 0.8845 | 0.7941 | 0.8834 0.8558

100% | 0.8814 | 0.8404 | 0.8836 | 0.8000 | 0.8834 0.8557

Table 11. Comparison for Y with missing labels
Top-1 Accuracy

dataset & Q| Squared Logsitic Squared Hinge
§ L nL | LEML  BCS BR | LEML BR | LEML BR
5% 3030 3022 4290 | 4151 46.68 | 30.42 4497

20% 10% 39.84 3356 44,53 | 4199 51.09 | 3344 4855

T 20% | 4835 40.12 46.08 | 43.06 55.94 | 3722 52.84

40% | 5237 41779 4382 | 4227 5857 | 4024 5539

5% 3435 39.17 4290 | 4342 46.68 | 31.13 4497

bibtex 40% 10% | 42.11 39.96 44.53 | 46.00 51.09 | 29.03 48.55
20% | 5197 4549 46.08 | 4740 5594 | 32.05 52.84

40% | 5638 50.10 4382 | 49.70 58.57 | 38.17 55.39

5% 36.58 41.87 4290 | 4354 46.68 | 4254 4497

60% 10% | 45.53 45.13 4453 3936 51.09 | 31.37 4855

7 20% | 53.52  49.54  46.08 | 46.12 5594 | 3328 52.84

40% | 5718 5419 4382 | 48.83 58.57 | 32.13 5539

5% 789 000 7.89 789 789 789 789

20% 10% | 4474 263 50.00 | 55.26 44.74 | 50.00 50.00

20% | 6316 000 57.89 | 73.68 4737 | 6842 57.89
40% | 60.53 1579 7895 | 81.58 6842 | 86.84 78.95

5% 1053 10.53 7.89 789 789 13.16 7.89
10% | 57.89 789 50.00 | 60.53 44.74 | 5526 50.00
20% | 7632 3158 57.89 | 78.95 47.37 76.32 57.89
40% | 60.53 526 7895 | 8421 6842 | 84.21 78.95

5% 7.89  10.53 7.89 789 789 789 789
10% | 57.89 23.68 50.00 | 57.89 44.74 | 5526 50.00

autofood 40%

60% 0% | 73.68 5789 57.80 | 7895 4737 | 7632 57.89
40% | 6316 36.84 7895 | 8158 6842 | 8947 7895

5% | 6250 3500 4250 | 4500 4500 | 6750 42.50

g0y, 10% | 7500 1000 5250 | 6750 5250 | 5500 5250

20% | 7250 750 5250 | 7250 5250 | 70.00 52.50
40% | 8750 500 5250 | 77.50 5250 | 80.00 52.50
5% | 65.00 60.00 4250 | 45.00 45.00 | 65.00 4250

10% | 70.00 17.50 5250 | 65.00 5250 | 72.50 52.50
20% | 7250 5250 5250 | 70.00 5250 | 75.00 52.50
40% | 80.00 4250 52.50 | 80.00 5250 | 80.00 52.50
5% | 6750 5250 4250 | 45.00 45.00 | 65.00 4250
10% | 70.00 5250 5250 | 67.50 5250 | 67.50 52.50
20% | 7150 5250 5250 | 80.00 5250 | 80.00 52.50
40% | 8250 5250 5250 | 80.00 5250 | 80.00 52.50

compphys  40%

60%
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Table 12. Comparison for Y with missing labels

Top-3 Accuracy

dataset k 1| Squared Logsitic Squared Hinge
I wL | LEML BCS BR | LEML BR | LEML  BR
5% | 1606 1420 2219 | 21.74 2447 ] 1610 23.29
g0y, 10% | 2095 1629 2410 | 2288 2843 | 1764 26.69
20% | 2634 1878 2578 | 2321 3192 | 2106 29.56
40% | 3017 2155 2626 | 23.61 3450 | 2305 31.99
5% T 1873 1899 2209 | 2284 AT | 1703 2329
bibtex oy, 10% | 2249 2016 2410 | 2518 2843 | 1662 26.69
20% | 2850 2384 2578 | 2579 3192 | 1897 29.56
40% | 3274 2758 2626 | 27.18 3450 | 21.18 3199
5% T 1881 2100 22019 | 2260 AT | 2248 23.29
oo, 10% | 2396 2406 2410 | 1984 2843 | 1728 26.69
20% | 2907 2705 2578 | 2513 3192 | 19.14 29.56
40% | 3355 3113 2626 | 27.66 3450 | 1946 31.99
5% | 30.70 1140 1930 | 2982 1754 | 38.60 1930
gov, 10% | 5263 526 3333 | 5088 2368 | 5702 3333
* 20% | 59.65 1053 6228 | 70.18 5351 | 6667 6140
40% | 5789 2018 7193 | 7632 63.16 | 7544 71.93
5% | 2632 1579 1930 | 29.82 1754 | 3158 1930
o 10% | 59.65 1228 3333 | 5175 2368 | 5351 3333
auofood 0% 500 | 7554 3500 6228 | 7105 5351 | 6404 61.40
40% | 5526 3333 7193 | 7807 63.16 | 7719 71.93
5% | 2544 877 1930 | 2895 1754 | 2281 1930
cov, 10% | 5263 3509 3333 | 5000 2368 | 6L40 3333
* 20% | 6842 3500 6228 | 73.68 5351 | 7105 6140
40% | 5702 2368 7193 | 7544 63.16 | 7456 71.93
5% | 46.67 3250 2833 ] 4000 2833 | 4000 2833
goy, 10% | 5333 917 3750 | 5917 2917 | 4083 3750
20% | 6250 10.83 3167 | 60.83 2833 | 6167 31.67
40% | 6917 2667 4333 | 7333 3333 | 70.83 4333
5% | 45.83 2750 2833 | 3750 2833 | 4L67 2833
o, 10% | 5750 2083 37.50 | 60.00 29.17 | 5583 37.50
compphys  40% 900/ | 6500 3583 3167 | 60.00 2833 | 6167 3167
40% | 6833 3250 4333 | 7083 3333 | 7333 43.33
5% | 45.00 3083 2833 | 3583 2833 | 45.00 2833
oo, 10% | 5917 2667 3750 | 6167 2917 | 5667 3750
20% | 6500 2917 3167 | 60.83 2833 | 6417 31.67
0% | 7167 3000 4333 | 6583 3333 | 70.83 4333

Table 13. Comparison for Y with missing labels

Top-5 Accuracy

dataset k 12| Squared Logsitic Squared Hinge
I . | LEML BCS BR | LEML  BR | LEML  BR
5% | 1171 1032 1614 | 1634 1774 | 1207 1732
soy, 10% | 1542 1155 1777 | 1691 2080 | 1311 1965
20% | 1951 1326 1881 | 17.07 2395 | 1552 22.12
40% | 2205 1532 1913 | 1755 2557 | 1757 23.30
5% 1353 1325 T6d4 | 1702 T7.74 | 1270 1732
A o 10% | 1625 1430 1777 | 1878 2080 | 1224 19.65
bibtex 0% 50% | 2056 1736 1881 | 1905 2395 | 1446 22.12
40% | 2375 1973 1913 | 1967 2557 | 1586 23.30
5% | 1361 1478 1614 | 1662 T7.74 | 1656 1732
oo 10% | 1699 1731 1777 | 1441 2080 | 1291 19.65
© 20% | 2110 1951 1881 | 1823 2395 | 1417 22.12
40% | 2450 2231 1913 | 2038 2557 | 1495 23.30
5% | 3526 842 256 | 3421 2158 | 3684 25.26
gov, 10% | 4684 684 3579 | 5105 3211 | 4895 3579
20% | 5053 1053 57.89 | 6684 5211 | 60.53 57.89
40% | 5211 1684 6842 | 7316 5632 | 7211 6842
5% | 3201 1789 2526 | 3158 2158 | 3000 256
L 10% | 4947 1000 3579 | 5053 3211 | 4526 3579
awofood 0% 50/ | 6474 211 5789 | 6632 5211 | 6053 57.89
40% | 5053 2895 6842 | 73.06 5632 | 7474 6842
5% | 3158 1737 2526 | 3L05 2058 | 3000 256
cov, 10% | 3053 3158 3579 | 5263 3211 | 5368 3579
20% | 6474 2895 5789 | 6842 5211 | 67.89 57.89
40% | 5895 2000 6842 | 7158 5632 | 6947 6842
5% | 3450 2300 2500 | 2850 2600 | 3450 2500
gov, 10% | 3050 1350 28.50 | 5150 2400 | 4150 29.00
© 20% | 5200 1150 3650 | 5500 3000 | 53.00 3650
40% | 6050 2400 3800 | 6450 31.00 | 64.00 38.50
5% | 3450 2200 2500 | 2950 2600 | 3350 25.00
o 10% | 5350 2900 28.50 | 5150 24.00 | 46.00 29.00
compphys  40% 9007 | 5650 3100 3650 | 5550 3000 | 5250 3650
40% | 5950 2600 3800 | 6150 31.00 | 6250 38.50
5% [ 3600 2200 2500 | 2750 2600 | 3350 25.00
cov, 10% | 3300 2450 2850 | 5050 2400 | 5050 29.00
20% | 5650 29.00 3650 | 54.00 30.00 | 5550 36.50
40% | 6100 3200 3800 | 6150 31.00 | 63.50 38.50




Large-scale Multi-label Learning with Missing Labels

dataset

Table 14. Comparison for Y with missing labels
Hamming Loss
Logsitic

SIES

12/
nL

LEML

Squared
BCS

BR

LEML

BR

Squared Hinge

LEML

BR

bibtex

20%

5%
10%
20%
40%

0.0158
0.0146
0.0136
0.0131

0.1480
0.1360
0.1179
0.0994

0.0144
0.0156
0.0193
0.0251

0.0143
0.0144
0.0156
0.0174

0.0138
0.0134
0.0132
0.0128

0.0180
0.0187
0.0210
0.0242

0.0137
0.0135
0.0136
0.0141

40%

5%
10%
20%
40%

0.0152
0.0149
0.0136
0.0128

0.2837
0.2716
0.2496
0.2271

0.0144
0.0156
0.0193
0.0251

0.0141
0.0141
0.0150
0.0160

0.0138
0.0134
0.0132
0.0128

0.0175
0.0211
0.0226
0.0269

0.0137
0.0135
0.0136
0.0141

60%

5%
10%
20%
40%

0.0154
0.0147
0.0138
0.0129

0.4082
0.3978
0.3726
0.3638

0.0144
0.0156
0.0193
0.0251

0.0145
0.0163
0.0157
0.0172

0.0138
0.0134
0.0132
0.0128

0.0154
0.0215
0.0252
0.0312

0.0137
0.0135
0.0136
0.0141

autofood

20%

5%
10%
20%
40%

0.0924
0.0807
0.0750
0.0780

0.1727
0.1449
0.1436
0.1399

0.0942
0.0837
0.0760
0.0752

0.0918
0.0832
0.0686
0.0655

0.0991
0.0854
0.0843
0.0838

0.0884
0.0811
0.0697
0.0629

0.0942
0.0837
0.0760
0.0750

40%

5%
10%
20%
40%

0.0919
0.0801
0.0671
0.0903

0.2887
0.2264
0.2445
0.2042

0.0942
0.0837
0.0760
0.0752

0.0919
0.0812
0.0681
0.0647

0.0991
0.0854
0.0843
0.0838

0.0941
0.0814
0.0697
0.0648

0.0942
0.0837
0.0760
0.0750

60%

5%
10%
20%
40%

0.0932
0.0840
0.0689
0.0724

0.4189
0.4144
0.3596
0.3384

0.0942
0.0837
0.0760
0.0752

0.0921
0.0817
0.0676
0.0650

0.0991
0.0854
0.0843
0.0838

0.0937
0.0817
0.0692
0.0645

0.0942
0.0837
0.0760
0.0750

compphys

dataset

20%

5%
10%
20%
40%

0.0555
0.0536
0.0524
0.0484

0.1391
0.1446
0.1431
0.1048

0.0556
0.0565
0.0566
0.0543

0.0554
0.0542
0.0518
0.0489

0.0555
0.0569
0.0566
0.0561

0.0567
0.0554
0.0518
0.0488

0.0556
0.0565
0.0566
0.0543

40%

5%

10%
20%
40%

0.0567
0.0532
0.0518
0.0505

0.2924
0.2532
0.2569
0.1766

0.0556
0.0565
0.0566
0.0543

0.0555
0.0535
0.0513
0.0495

0.0555
0.0569
0.0566
0.0561

0.0566
0.0532
0.0518
0.0484

0.0556
0.0565
0.0566
0.0543

60%

10%
20%
40%

0.0558
0.0532
0.0516
0.0486

0.4394
0.4148
0.3797
0.3563

0.0556
0.0565
0.0566
0.0543

0.0556
0.0532
0.0519
0.0495

0.0555
0.0569
0.0566
0.0561

0.0555
0.0544
0.0517
0.0480

Table 15. Comparison for Y with missing labels
Average AUC
Logsitic

L3
L

2]
nL

LEML

Squared
BCS

BR

LEML

BR

0.0556
0.0565
0.0566
0.0543

quared Hinge

S
LEML

BR

bibtex

20%

5%
10%
20%
40%

T

0.7115
0.7665
0.8269
0.8674

0.6529
0.6756
0.7111
0.7375

0.7789
0.7954
0.8087
0.8104

0.8066
0.8208
0.8205
0.8347

0.8123
0.8561
0.8941
0.9153

0.7363
0.7371
0.7859
0.8167

0.7998
0.8210
0.8378
0.8530

40%

5%
10%
20%
40%

0.7379
0.7730
0.8332
0.8724

0.7182
0.7353
0.7817
0.8097

0.7789
0.7954
0.8087
0.8104

0.8164
0.8370
0.8392
0.8639

0.8123
0.8561
0.8941
0.9153

0.7396
0.7351
0.7813
0.8038

60%

5%
10%
20%
40%

0.7376
0.7778
0.8367
0.8753

0.7445
0.7831
0.8264
0.8504

0.7789
0.7954
0.8087
0.8104

0.8132
0.7639
0.8251
0.8716

0.8123
0.8561
0.8941
0.9153

0.7998
0.8210
0.8378
0.8530

0.8051 0.7998

0.7444
0.7755
0.7899

0.8210
0.8378
0.8530

autofood

20%

5%
10%
20%
40%

0.7170
0.8083
0.8043
0.8007

0.5198
0.5578
0.5804
0.5807

0.6451
0.7576
0.8178
0.8860

0.7070
0.8194
0.8797
0.9317

0.6356
0.7259
0.7712
0.8087

0.7235
0.8131
0.8665
0.9237

0.6450
0.7576
0.8178
0.8857

40%

5%
10%
20%
40%

0.7129
0.8218
0.8634
0.8131

0.6299
0.6517
0.6322
0.6848

0.6451
0.7576
0.8178
0.8860

0.7029
0.8198
0.8796
0.9319

0.6356
0.7259
0.7712
0.8087

0.7157
0.8175
0.8644
0.9260

0.6450
0.7576
0.8178
0.8857

60%

5%
10%
20%
40%

0.7175
0.8206
0.8725
0.8141

0.6013
0.6316
0.6758
0.6351

0.6451
0.7576
0.8178
0.8860

0.7045
0.8196
0.8800
0.9315

0.6356
0.7259
0.7712
0.8087

0.7128
0.8213
0.8781
0.9255

0.6450
0.7576
0.8178
0.8857

compphys

20%

5%
10%
20%
40%

0.6486
0.7478
0.7908
0.8172

0.5727
0.5691
0.5729
0.6788

0.6457
0.7235
0.7459
0.7728

0.6479
0.7473
0.7921
0.8416

0.6424
0.7147
0.7297
0.7413

0.6488
0.7556
0.8101
0.8718

0.6457
0.7235
0.7459
0.7730

40%

5%
10%
20%
40%

0.6474
0.7509
0.7964
0.8192

0.6049
0.6295
0.6442
0.6651

0.6457
0.7235
0.7459
0.7728

0.6478
0.7481
0.7913
0.8371

0.6424
0.7147
0.7297
0.7413

0.6480
0.7437
0.7849
0.8561

0.6457
0.7235
0.7459
0.7730

60%

5%
10%
20%
40%

0.6443
0.7504
0.7991
0.8269

0.6089
0.6505
0.6687
0.7240

0.6457
0.7235
0.7459
0.7728

0.6468
0.7489
0.7854
0.8378

0.6424
0.7147
0.7297
0.7413

0.6601
0.7421
0.8064
0.8659

0.6457
0.7235
0.7459
0.7730



