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A. Unregularized LEML with Squared L2 Loss Recovers CPLST
Claim 1. If `(y, f(x;Z)) = ‖y − ZTx‖22 and λ = 0, then

VXΣ−1
X Mk = arg min

Z:rank(Z)≤k
‖Y −XZ‖2F ,

where X = UXΣXV
T
X is the thin SVD decomposition of X , and Mk is the rank-k truncated SVD of M ≡ UTXY .

Proof of Claim 1. Let X = UXΣXV
T
X be the thin SVD decomposition of X , and Mk be the rank-k truncated SVD

approximation of UTXY . We have

arg min
Z:rank(Z)≤k

‖Y −XZ‖F = arg min
Z:rank(Z)≤k

‖(UXU>X )(Y −XZ) + (I − UXU>X )(Y −XZ)‖F

= arg min
Z:rank(Z)≤k

‖(UXU>X )(Y −XZ) + (I − UXU>X )(Y −XZ)‖2F

= arg min
Z:rank(Z)≤k

‖UXU>X (Y −XZ)‖2F + ‖(I − UXU>X )(Y −XZ)‖2F

= arg min
Z:rank(Z)≤k

‖U>X (Y −XZ)‖2F

= arg min
Z:rank(Z)≤k

‖U>X (Y −XZ)‖F

= arg min
Z:rank(Z)≤k

‖U>XY − ΣXV
>
X Z‖F

= VXΣ−1
X Mk.

The second and the fifth inequalities follow from the fact that the (·)2 is an increasing function. The third equality follows
from the Pythagorean theorem since UXU>X constitutes an orthonormal projection. Since UXU>XX = X as U>XUX = Ir,
where r is the rank of X , we have (I − UXU>X )(Y − XZ) = (I − UXU>X )Y . Since the last term does not depend on
the variable Z, it can be removed from consideration and the fourth equality follows. The sixth equality follows due to the
same reason as U>XX = IrΣXV

>
X = ΣXV

>
X .

For the last equality, first of all note that Z = VXΣ−1
X Mk is a feasible solution to the problem since rank(VXΣ−1

X Mk) ≤
rank(Mk) ≤ k by definition of Mk. Next, notice that for any feasible Z ′, since rank(ΣXV

>
X Z

′) ≤ rank(Z ′) ≤ k, we
have ‖U>XY − ΣXV

>
X Z

′‖F ≥ ‖U>XY −Mk‖F , again by the definition of Mk. The result follows since by V >X VX = Ir,
we have ΣXV

>
X (VXΣ−1

X Mk) = Mk.

Claim 2. The solution to (3) is equivalent to ZCPLST = WCPLSTH
T
CPLST which is the closed form solution for the CPLST

scheme, i.e.,

(WCPLST , HCPLST ) = arg min
W∈Rd×k
H∈RL×k

‖XW − Y H‖2F + ‖Y − Y HHT ‖2F ,

s.t. HTH = Ik. (13)

Proof of Claim 2. Let Uk[A]Σk[A]Vk[A] be the rank-k truncated SVD approximation of a matrix A. In (Chen & Lin,
2012), the authors show that the closed form solution to (13) is

HC = Vk[Y TXX†Y ],

WC = X†Y HC ,

where X† is the pseudo inverse of X . It follows from X† = VXΣ−1
X UTX that Y TXX†Y = Y TUXU

T
XY = MTM and

Vk[Y TXX†Y ] = Vk[M ]. Thus, we have

ZCPLST = WCH
T
C

= X†Y HCH
T
C

= V TXΣ−1
X UTXY Vk[M ]Vk[M ]T

= V TXΣ−1
X MVk[M ]Vk[M ]T

= V TXΣ−1
X Mk
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B. Algorithm Details
B.1. Derivative Computations for Various Losses

Note that for the logistic and L2-hinge loss in Table 5, Yij is assumed to be −1,+1 instead of {0, 1}. Note that although
L2-hinge loss is not twice-differentiable, the sub-differential of ∂

∂b`(a, b) still can be used for TRON to solve (6).

Table 5. Computation of `′(a, b) and `′′(a, b) for different loss functions.
`(a, b) ∂

∂b`(a, b)
∂2

∂b2 `(a, b)
Squared loss 1

2 (a− b)2 b− a 1

Logistic loss log
(
1 + e−ab

) −a
1+e−ab

−a2e−ab
(1+e−ab)2

L2-hinge loss (max(0, 1− ab))2 −2amax(0, 1− ab) 2 · I[ab < 1]

B.2. Conjugate Gradient for Squared Loss

In Algorithm 3, we show the detailed conjugate gradient procedure used to solve (6) when the squared loss is used. Note
that ∇2g(w) is invariant to w as (6) is a quadratic problem due to the squared loss function.

Algorithm 3 Conjugate gradient for solving (6) with the squared loss
• Set initial w0, r0 = −∇g(w0), d0 = r0.
• For t = 0, 1, 2, . . .

– If ‖rt‖ is small enough, then stop the procedure and return wt.

– αt =
rTt rt

dTt ∇2g(w0)dt
– wt+1 = wt + αtdt
– rt+1 = rt − αt∇2g(w0)dt

– βt =
rTt+1rt+1

rTt rt
– dt+1 = rt+1 + βtdt
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C. Analyzing Trace Norm-bounded Predictors
In this section, we shall provide a proof of Theorems 3 and 4. Our proof shall proceed by demonstrating a uniform
convergence style bound for the empirical losses. More precisely, we shall show, for both trace norm as well as Frobenius
regularizations, that with high probability, we have

L(Ẑ) ≤ L̂(Ẑ) + ε.

Suppose Z∗ ∈ arg min
r(Z)≤λ

L(Z), then a similar analysis will allow us to show, again with high probability,

L̂(Z∗) ≤ L(Z∗) + ε.

Combining the two along with the fact that Ẑ is the empirical risk minimizer i.e. L̂(Ẑ) ≤ L̂(Z∗) will yield the announced
claim in the following form:

L(Ẑ) ≤ L(Z∗) + 2ε.

Thus, in the sequel, we shall only concentrate on proving the aforementioned uniform convergence bound. We shall denote
the regularized class of predictors as Z =

{
Z ∈ Rd×L, r(Z) ≤ λ

}
, where r(Z) = ‖Z‖tr or r(Z) = ‖Z‖F . We shall also

use the following shorthand for the loss incurred by the predictor on a specific label l ∈ [L]: `(yli, Zl,x) := `(yli, f
l(x;Z)),

where Zl denotes the lth column of the matrix Z.

We shall perform our analysis in several steps outlined below:

1. Step 1: In this step we shall show, by an application of McDiarmid’s inequality, that with high probability, the excess
risk of the learned predictor can be bounded by bounding the expected suprēmus deviation of empirical risks from
population risks over the set of predictors in the class Z .

2. Step 2: In this step we shall show that the expected suprēmus deviation can be bounded by a Rademacher average
term.

3. Step 3: In this step we shall reduce the estimation of the Rademacher average term to the estimation of the spectral
norm of a random matrix that we shall describe.

4. Step 4: Finally, we shall use tools from random matrix theory to bound the spectral norm of the random matrix.

We now give details of each of the steps in the following subsections:

C.1. Step 1: Bounding Excess Risk by Expected Suprēmus Deviation

We will first analyze the case s = 1 and will later show how to extend the analysis to s > 1. In this case, we receive n
training points (xi,yi) and for each training point xi, we get to see the value of a random label li ∈ [L] i.e. we get to see
the true value of ylii . Thus, for any predictor Z ∈ Z , the observed training loss is given by

L̂(Z) =
1

n

n∑
i=1

`(ylii , Zli ,xi).

The population risk functional is given by

L(Z) = E
(x,y,l)

q
`l(y

l, f l(x;Z))
y

= E
(x,y,l)

q
`l(y

l, Zl,x)
y

We note here that our subsequent analysis shall hold even for non uniform distributions for sampling the labels. The
definition of the population risk functional incorporates this. In case we have a uniform distribution over the labels, the
above definition reduces to

L(Z) = E
(x,y,l)

q
`l(y

l, Zl,x)
y

= E
(x̃i,ỹi,l̃i)

t
1

n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|
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Given the above, we now analyze the excess risk i.e. the difference between the observed training loss L̂(Ẑ) and the
population risk L(Ẑ).

L(Ẑ)− L̂(Ẑ) ≤ sup
Z∈Z

{
L(Z)− L̂(Z)

}
= sup

Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1

n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1

n

n∑
i=1

`(ylii , Zli ,xi)

}
︸ ︷︷ ︸

g((x1,y1,l1),...,(xn,yn,ln))

Since all the label-wise loss functions are bounded, an arbitrary change in any (xi,yi) or any li should not perturb the
expression g((x1,y1, l1), . . . , (xn,yn, ln)) by more than O

(
1
n

)
. Thus, by an application of McDiarmid’s inequality, we

have, with probability at least 1− δ,

L(Ẑ)− L̂(Ẑ) ≤ E
(xi,yi),li

Jg((x1,y1, l1), . . . , (xn,yn, ln))K +O

√ log 1
δ

n


Thus, we conclude that the excess risk of the learned predictor can be bounded by calculating the expected suprēmus
deviation of empirical risks from population risks.

C.2. Step 2: Bounding Expected Suprēmus Deviation by a Rademacher Average

We now analyze the expected suprēmus deviation. We have

E
(xi,yi),li

Jg((x1,y1, l1), . . . , (xn,yn, ln))K

= E
(xi,yi),li

t

sup
Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1

n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1

n

n∑
i=1

`(ylii , Zli ,xi)

}|

≤ E
(xi,yi),li

t

sup
Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1

n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1

n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ E
(xi,yi),li

t

sup
Z∈Z

{
1

n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z
− 1

n

n∑
i=1

`(ylii , Zli ,xi)

}|

= E
li

t

sup
Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1

n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1

n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ E
(xi,yi),li

t

sup
Z∈Z

{
1

n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z
− 1

n

n∑
i=1

`(ylii , Zli ,xi)

}|

≤ E
(li,l̃i)

t

sup
Z∈Z

{
1

n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹl̃ii , Zl̃i , x̃i)

z
− 1

n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ E
(xi,yi),li,(x̃i,ỹi)

t

sup
Z∈Z

{
1

n

n∑
i=1

`(ỹlii , Zli , x̃i)−
1

n

n∑
i=1

`(ylii , Zli ,xi)

}|

= E
(li,l̃i),εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi

(
E

(x̃i,ỹi)

r
`(ỹl̃ii , Zl̃i , x̃i)

z
− E

(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z)}|

+ E
(xi,yi),li,(x̃i,ỹi),εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi

(
`(ỹlii , Zli , x̃i)− `(y

li
i , Zli ,xi)

)}|

≤ 2 E
li,εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ 2 E
(xi,yi),li,εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi`(y
li
i , Zli ,xi)

}|
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≤ 2 E
(x̃i,ỹi),li,εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi`(ỹ
li
i , Zli , x̃i)

}|

+ 2 E
(xi,yi),li,εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi`(y
li
i , Zli ,xi)

}|

≤ 4 E
(xi,yi),li,εi

t

sup
Z∈Z

{
1

n

n∑
i=1

εi`(y
li
i , Zli ,xi)

}|

≤ 4C

n
E

(xi,yi),li,εi

t

sup
Z∈Z

{
n∑
i=1

εi〈Zli , xi〉

}|

=
4C

n
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{
,

where for any x1, . . . ,xn ∈ X , l ∈ [L]n and ε ∈ {−1,+1}n, we define the matrix X l
ε as follows:

X l
ε :=

[∑
i∈I1

εixi
∑
i∈I2

εixi . . .
∑
i∈IL

εixi

]

where for any l ∈ [L], we define Il := {i : li = l}. Note that in the last second last inequality we have used the contraction
inequality for Rademacher averages (see Ledoux & Talagrand, 2002, proof of Theorem 4.12) We also note that the above
analysis also allows for separate label-wise loss functions, so long as they are all bounded and C-Lipschitz. For any matrix
predictor class Z , we define its Rademacher complexity as follows:

Rn (Z) :=
1

n
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

We have thus established that with high probability,

L(Ẑ)− L̂(Ẑ) ≤ 4CRn (Z) +O

√ log 1
δ

n

 .

We now establish that the same analysis also extends to situations wherein, for each training point we observe values of s
labels instead. Thus, for each xi, we observe values for labels l1i , . . . , l

s
i . In this case the empirical loss is given by

L̂(Z) =
1

n

n∑
i=1

s∑
j=1

`(y
lji
i , Zlji

,xi)

The change in any xi leads to a perturbation of at most O
(
s
n

)
whereas the change in any lji leads to a perturbation of

O
(

1
n

)
. Thus the sum of squared perturbations is bounded by 2s2

n . Thus on application of the McDiarmid’s inequality, we
will be able to bound the excess risk by the following expected suprēmus deviation term

E
(xi,yi,l

j
i )

u

v sup
Z∈Z

s E
(x,y,l)

q
`l(y

l, Zl,x)
y
− 1

n

n∑
i=1

s∑
j=1

`(y
lji
i , Zlji

,xi)


}

~

plus a quantity that behaves like O
(
s

√
log 1

δ

n

)
. We analyze the expected suprēmus deviation term below:

E
(xi,yi,l

j
i )

u

v sup
Z∈Z

s E
(x,y,l)

q
`l(y

l, Zl,x)
y
− 1

n

n∑
i=1

s∑
j=1

`(y
lji
i , Zlji

,xi)


}

~

= E
(xi,yi,l

j
i )

u

v sup
Z∈Z


s∑
j=1

(
E

(x,y,l)

q
`l(y

l, Zl,x)
y
− 1

n

n∑
i=1

`(y
lji
i , Zlji

,xi)

)
}

~

≤
s∑
j=1

E
(xi,yi,l

j
i )

t

sup
Z∈Z

{
E

(x,y,l)

q
`l(y

l, Zl,x)
y
− 1

n

n∑
i=1

`(y
lji
i , Zlji

,xi)

}|

≤
s∑
j=1

4C

n
E

X,lj ,ε

s
sup
Z∈Z
〈Z,X lj

ε 〉
{

=
4Cs

n
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

= 4CsRn (Z)
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and thus, it just suffices to prove bounds for the case where a single label is observed per point. As an aside, we note
that the case s = 1 resembles that of multi-task learning. However, multi-task learning is typically studied in a different
learning model and mostly uses group regularization that is distinct from ours.

C.3. Step 3: Estimating the Rademacher Average

We will now bound the following quantity:

Rn(Z) =
1

n
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

where X l
ε is as defined above. Approaches to bounding such Rademacher average terms usually resort to Martingale

techniques (Kakade et al., 2008) or use of tools from convex analysis (Kakade et al., 2012) and decompose the Rademacher
average term. However, such decompositions shall yield suboptimal results in our case. Our proposed approach will,
instead involve an application of Hölder’s inequality followed by an application from results from random matrix theory to
bound the spectral norm of a random matrix.

For simplicity of notation, for any l ∈ [L], we denote Vl =
∑
i∈Il εixi and V := X l

ε = [V1 V2 . . . VL]. Also, for any l ∈ [L],
let nl = |Il| denote the number of training points for which values of the lth label was observed i.e. nl =

∑n
i=1 1li=l.

C.3.1. DISTRIBUTION INDEPENDENT BOUND

We apply Hölder’s inequality to get the following result:

1

n
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{
≤ 1

n
E

X,l,ε

s
sup
Z∈Z
‖Z‖tr

∥∥X l
ε

∥∥
F

{
≤ 1

n
E

X,l,ε

q
λ
∥∥X l

ε

∥∥
2

y
≤ λ

n

√
E

X,l,ε

r
‖X l

ε‖
2
2

z

Then the following bound can be derived in a straightforward manner:

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
≤ E

X,l,ε

r∥∥X l
ε

∥∥2

F

z
= E
X,l,ε

t
L∑
l=1

‖Vl‖22

|

= E
X,l,ε

u

v
L∑
l=1

∥∥∥∥∥∑
i∈Il

εixi

∥∥∥∥∥
2

2

}

~

= E
X,l,ε

u

v
L∑
l=1

∑
i∈Il

‖xi‖22 +
∑
i 6=j∈Il

εiεj〈xi,xj〉

}

~

≤ E
l

t
L∑
l=1

nlE
r
‖x‖22

z|

≤ E
l

t
L∑
l=1

nl

|

= n

where we have assumed, without loss of generality that E
x∼D

r
‖x‖22

z
≤ 1. This proves

Rn(Z) ≤ λ√
n
,

which establishes Theorem 3. Note that the same analysis holds if Z is Frobenius norm regularized since we can apply the
Hölder’s inequality for Frobenius norm instead and still get the same Rademacher average bound.

C.3.2. TIGHTER BOUNDS FOR TRACE NORM REGULARIZATION

Notice that in the above analysis, we did not exploit the fact that the top singular value of the matrix X l
ε could be much

smaller than its Frobenius norm. However, there exist distributions where trace norm regularization enjoys better perfor-
mance guarantees over Frobenius norm regularization. In order to better present our bounds, we model the data distribution
D on X (or rather its marginal) more carefully. Let X := E

q
xx>

y
and suppose the distribution D satisfies the following

conditions:

1. The top singular value of X is ‖X‖2 = σ1

2. The matrix X has trace tr (X) = Σ
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3. The distribution on X is sub-Gaussian i.e. for some η > 0, we have, for all v ∈ Rd,

E
q
exp

(
x>v

)y
≤ exp

(
‖v‖22 η

2/2
)

In order to be consistent with previous results, we shall normalize the vectors x so that they are unit-norm on expectation.
Since E

r
‖x‖22

z
= tr (X) = Σ, we wish to bound the Rademacher average as

Rn (Z) ≤ 1

n
√

Σ
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

In this case, it is possible to apply the Hölder’s inequality as

1

n
√

Σ
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{
≤ 1

n
√

Σ
E

X,l,ε

s
sup
Z∈Z
‖Z‖tr

∥∥X l
ε

∥∥
2

{
≤ 1

n
√

Σ
E

X,l,ε

q
λ
∥∥X l

ε

∥∥
2

y
≤ λ

n
√

Σ

√
E

X,l,ε

r
‖X l

ε‖
2
2

z

Thus, in order to boundRn(Z), it suffices to bound E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
. In this case, since our object of interest is the spectral

norm of the matrix X l
ε, we expect to get much better guarantees, for instance, in case the training points x ∈ X are

being sampled from some (near) isotropic distribution. We note that Frobenius norm regularization will not be able to gain
any advantage in these situations since it would involve the Frobenius norm of the matrix X l

ε (as shown in the previous
subsubsection) and thus, cannot exploit the fact that the spectral norm of this matrix is much smaller than its Frobenius
norm.

C.4. Step 4: Calculating the Spectral norm of a Random Matrix

To bound E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
, we first make some simplifications (we will take care of the normalizations later). For any

l ∈ [L], let the probability of the value for label l being observed be pl ∈ (0, 1] such that
∑
l pl = 1. Also let P = max

l∈[L]
pl

and p = min
l∈[L]

pt. Call the event Emax as the event when nl ≤ 2P · n for all l ∈ [L] i.e. every label will have at most 2P · n

training points for which its value is seen. The following result shows that this is a high probability event:

Lemma 1. For any δ > 0, if n ≥ 1
2p2 log L

δ , then with probability 1− δ, we have

P [Emax] ≥ 1− δ

Proof. For any l ∈ [L], an application of Chernoff’s bound for Boolean random variables tells us that with probability at
least 1− exp

(
−2np2

l

)
, we have nl ≤ 2pl · n ≤ 2P · n. Taking a union bound and using pl ≥ p finishes the proof.

Conditioning on the event Emax shall allow us to get a control over the spectral norm of the matrix X l
ε by getting a

bound on the sub-Gaussian norm of the individual columns of X l
ε. We show below, that conditioning on this event does

not affect the Rademacher average calculations. A simple calculation shows that E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ lz ≤ nΣ. If we have

n > 1
2p2 log LΣ

Pd(η2+σ1) , we have P [¬Emax] < Pd(η2+σ1)
Σ . This gives us the following bound:

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
= E

X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
P [Emin] + E

X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣¬Emin

z
(1− P [Emax])

= E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
(1− δ) + E

X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣¬Emax

z
δ

≤ E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
+ nΣ

(
Pd(η2 + σ1)

Σ

)
≤ O

(
E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z)
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where the last step follows since our subsequent calculations will show that E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
= O

(
nPd(η2 + σ1)

)
.

Thus, it suffices to bound E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
= E

X,ε

r
‖V ‖22

∣∣∣ Emax

z
. For sake of brevity we will omit the conditioning

term from now on.

For simplicity let Al = Vl
c where c = η ·

√
2P · n and A = [A1A2 . . . AL]. Thus

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
= c2 · E

X,l,ε

r
‖A‖22

z

We first bound the sub-Gaussian norm of the column vectors Al. For any vector v ∈ Rd, we have:

E
q
exp

(
A>l v

)y
= E

t

exp

(
1

c

∑
i∈Il

εi〈xi,v〉

)|

=

(
E

s
exp

(
〈x, 1

c
εv〉
){)nl

≤

(
exp

(∥∥∥∥1

c
εv

∥∥∥∥2

2

η2/2

))nl
= exp

(
nl

2η2P · n
‖v‖22 η

2/2

)
≤ exp

(
‖v‖22 /2

)
where, in the second step, we have used the fact that xi,xj and εi, εj are independent for i 6= j, in the third step we have
used the sub-Gaussian properties of x and in the fourth step, we have use the fact that the event Emax holds. This shows us
that the sub-Gaussian norm of the column vector Al is bounded i.e. ‖Al‖ψ2

≤ 1.

We now proceed to bound E
X,ε

r
‖A‖22

z
= E

X,ε

r∥∥A>∥∥2

2

z
. Our proof proceeds by an application of a Bernstein-type in-

equality followed by a covering number argument and finishing off by bounding the expectation in terms of the cumulative
distribution function. The first two parts of the proof proceed on the lines of the proof of Theorem 5.39 in (Vershynin,
2012) For any fixed vector v ∈ Sd−1, the set of unit norm vectors in d dimensions, we have:

‖Av‖22 =

L∑
l=1

〈Al,v〉2 =:

L∑
l=1

Z2
l

Now observe that conditioned on l, It ∩ It′ = ϕ if t 6= t′ and thus, conditioned on l, the variables Zt, Zt′ are independent
for t 6= t′. This will allow us to apply the following Bernstein-type inequality

Theorem 5 ((Vershynin, 2012), Corollary 5.17). Let X1, . . . , XN be independent centered sub-exponential variables with
bounded sub-exponential norm i.e. for all i, we have ‖Xi‖ψ1

≤ B for some B > 0. Then for some absolute constant
c1 > 0, we have for any ε > 0,

P

[
N∑
i=1

Xi ≥ εN

]
≤ exp

(
−c1 min

{
ε2

B2
,
ε

B

}
N

)
.

To apply the above result, we will first bound expectation of the random variables Z2
l .

E
q
Z2
l

y
= E

q
〈Al,v〉2

y
= E

u

v
(

1

c

∑
i∈Il

εi〈xi,v〉

)2
}

~ =
nl
c2

E
q
〈x,v〉2

y
≤ nlσ1

c2
≤ σ1

η2

where the fourth inequality follows from definition of the top singular norm σ1 of X := E
q
xx>

y
and the last inequality

follows from the event Emax. The above calculation gives us a bound on the expectation of Z2
l which will be used to center

it. Since we have already established ‖Al‖ψ2
≤ 1, we automatically get ‖Zl‖ψ2

≤ 1. Using standard inequalities between
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the sub-exponential norm ‖·‖ψ1
and the sub-Gaussian norm ‖·‖ψ2

of random variables (for instance, see Vershynin, 2012,
Lemma 5.14) we also have ∥∥Z2

l − E
q
Z2
l

y∥∥
ψ1
≤ 2

∥∥Z2
l

∥∥
ψ1
≤ 4 ‖Zl‖2ψ2

≤ 4.

Applying Theorem 5 to the variables Xl = Z2
l − E

q
Z2
l

y
, we get

P

[
L∑
l=1

Z2
l − L

σ1

η2
≥ εL

]
≤ exp

(
−c1Lmin

{
ε2, ε

})
where c1 > 0 is an absolute constant. Thus with probability at least 1 − exp

(
−c1Lmin

{
ε2, ε

})
, for a fixed vector

v ∈ Sd−1, we have the inequality

‖Av‖22 ≤
(
σ1

η2
+ ε

)
L

Applying a union bound over a 1
4 -net N1/4 over Sd−1 (which can be of size at most 9d), we get that with probability at

most 1 − 9d exp
(
−c1Lmin

{
ε2, ε

})
, we have the above inequality for every vector v ∈ N1/4 as well. We note that this

implies a bound on the spectral norm of the matrix A (see Vershynin, 2012, Lemma 5.4) and get the following bound

‖A‖22 ≤ 2

(
σ1

η2
+ ε

)
L

Put ε = c2 · dL + ε′

L where c2 = max
{

1, ln 9
c1

}
and suppose d ≥ L. Since c2 ≥ 1, we have ε ≥ 1 which gives

min
{
ε, ε2

}
= ε. This gives us with probability at least 1− exp (−c1ε′),

‖A‖22 ≤ 2

(
L
σ1

η2
+ c2d+ ε′

)
Consider the random variable Y =

‖A‖22
2 − Lσ1

η2 − c2d. Then we have P [Y > ε] ≤ exp (−c1ε). Thus we have

E JY K =

∫ ∞
0

P [Y > ε] dε ≤
∫ ∞

0

exp (−c1ε) dε =
1

c1

This gives us

E
r
‖A‖22

z
≤ 2

(
L
σ1

η2
+ c2d+

1

c1

)
and consequently,

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
= c2 · E

X,l,ε

r
‖A‖22

z
≤ 4η2P · n

(
L
σ1

η2
+ c2d+

1

c1

)
≤ O

(
nη2P

(
d+ L

σ1

η2

))
≤ O

(
nPd(η2 + σ1)

)
where the last step holds when d ≥ L. Thus, we are able to bound the Rademacher averages, for some absolute constant
c3 as

Rn (Z) ≤ λ

n
√

Σ

√∥∥∥∥ E
X,l,ε

r
‖X l

ε‖
2
2

z∥∥∥∥ ≤ c3λ
√
Pd(η2 + σ1)

nΣ
,

which allows us to make the following claim:

Theorem 6. Suppose we learn a predictor using the trace norm regularized formulation Ẑ = arg inf
‖Z‖tr≤λ

L̂(Z) over a set of

n training points. Further suppose that, for any l ∈ [L], the probability of observing the value of label l is given by pl and
let P = max

l∈[L]
pl. Then with probability at least 1− δ, we have

L(Ẑ) ≤ arg inf
‖Z‖tr≤λ

L(Z) +O

(
sλ

√
dP (η2 + σ1)

nΣ

)
+O

s
√

log 1
δ

n

 ,

where the terms η, σ1,Σ are defined by the data distribution as before.
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Essentially, the above result indicates that if some label is observed too often, as would be the case when P = Ω (1), we
get no benefit from trace norm regularization since this is akin to a situation with fully observed labels. However, if the
distribution on the labels is close to uniform i.e. P = O

(
1
L

)
, the above calculation lets us bound the Rademacher average,

and consequently, the excess risk as

Rn (Z) ≤ c3λ
√
d(η2 + σ1)

nLΣ
,

thus proving the first part of Theorem 4.

We now notice that However, in case our data distribution is near isotropic, i.e. Σ � σ1, then this result gives us superior
bounds. For instance, if the data points are generated from a standard normal distribution, then we have σ1 = 1, Σ = d
and η = 1 using which we can bound the Rademacher average term as

Rn (Z) ≤ c3λ
√

2

nL
,

which gives us the second part of Theorem 4.

D. Lower Bounds for Uniform Convergence-based Proofs
In this section, we show that our analysis for Theorems 3 and 4 are essentially tight. In particular, we show for each case,
a data distribution such that the deviation of the empirical losses from the population risks is, up to a constant factor, the
same as predicted by the results. We state these lower bounds in two separate subsections below:

D.1. Lower Bound for Trace Norm Regularization

In this section we shall show that for general distribution, Theorem 3 is tight. Recall that Theorem 3 predicts that for a
predictor Ẑ learned using a trace norm regularized formulation satisfies, with constant probability (i.e. δ = Ω (1)),

L(Ẑ) ≤ L̂(Ẑ) +O

(
λ

√
1

n

)
,

where, for simplicity as well as w.l.o.g., we have assumed s = 1. We shall show that this result is tight by demonstrating
the following lower bound:

Claim 7. There exists a data-label distribution and a loss function such that the empirical risk minimizer learned as
Ẑ = arg inf

‖Z‖tr≤λ
L̂(Z) has, with constant probability, its population risk lower bounded by

L(Ẑ) ≥ L̂(Ẑ) + Ω

(
λ

√
1

n

)
,

thus establishing the tightness claim. Our proof will essentially demonstrate this by considering a non-isotropic data
distribution (since, for isotropic distributions, Theorem 4 shows that a tighter upper bound is actually possible). For
simplicity, and w.l.o.g., we will prove the result for λ = 1. Let µ ∈ Rd be a fixed unit vector and consider the following
data distribution

xi = ζiµ,

where ζi are independent Rademacher variables and a trivial label distribution

yi = 1,

where 1 ∈ RL is the all-ones vector. Note that the data distribution satisfies E
r
‖x‖22

z
= 1 and thus, satisfies the

assumptions of Theorem 3. Let ωli = 1 iff the label l is observed for the ith training point. Note that for any i, we have∑L
l=1 ω

l
i = 1 and that for any l ∈ [L], ωli = 1 with probability 1/L. Also consider the following loss function

`(yl, f l(x;Z)) = 〈Zl,ylx〉
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Let
Ẑ = arg inf

‖Z‖tr≤1

L̂(Z) = arg inf
‖Z‖tr≤1

1

n
〈Z,µv>〉

where v is the vector

v =

[
n∑
i=1

ζiω
1
i

n∑
i=1

ζiω
2
i . . .

n∑
i=1

ζiω
L
i

]
Clearly, since x is a centered distribution and ` is a linear loss function, L(Ẑ) = 0. However, by Hölder’s inequality, we
also have

Ẑ = −µv
>

‖v‖2
,

and thus, L̂(Ẑ) = − 1
n ‖v‖2 since ‖µ‖2 = 1. The following lemma shows that with constant probability, ‖v‖2 ≥

√
n/2

which shows that L(Ẑ) ≥ L̂(Ẑ) + Ω
(√

1
n

)
, thus proving the lower bound.

Lemma 2. With probability at least 3/4, we have ‖v‖22 ≥ n/2.

Proof. We have

‖v‖22 =

L∑
l=1

(
n∑
i=1

ζiω
l
i

)2

=

L∑
l=1

n∑
i=1

ωli +
L∑
l=1

∑
i 6=j

ζiω
l
iζjω

l
j

= n+
∑
i 6=j

ζiζj〈ωi,ωj〉 = n+W,

where ωi = [ω1
i , ω

2
i , . . . , ω

L
i ]. Now clearly E JW K = 0 and as the following calculation shows, E

q
W 2

y
≤ 2n2/L

which, by an application of Tchebysheff’s inequality, gives us, for L > 32, with probability at least 3/4, |W | ≤ n/2 and
consequently ‖v‖22 ≥ n/2. We give an estimation of the variance of Z below.

E
q
W 2

y
= E

u

v
∑

i1 6=j1,i2 6=j2

ζi1ζj1〈ωi1 ,ωj1〉ζi2ζj2〈ωi2 ,ωj2〉

}

~

= 2E

u

v
∑
i 6=j

〈ωi,ωj〉2
}

~ = 2n(n− 1)E J〈ω1,ω2〉K ≤
2n2

L
,

where we have used the fact that 〈ωi,ωj〉2 = 〈ωi,ωj〉 since 〈ωi,ωj〉 = 0 or 1, and that E J〈ω1,ω2〉K = 1
L since that is

the probability of the same label getting observed for x1 and x2.

D.2. Lower Bound for Frobenius Norm Regularization

In this section, we shall prove that even for isotropic distributions, Frobenius norm regularization cannot offer O
(

1√
nL

)
-

style bounds as offered by trace norm regularization.
Claim 8. There exists an isotropic, sub-Gaussian data distribution and a loss function such that the empirical risk mini-
mizer learned as Ẑ = arg inf

‖Z‖F≤λ
L̂(Z) has, with constant probability, its population risk lower bounded by

L(Ẑ) ≥ L̂(Ẑ) + Ω

(
λ

√
1

n

)
,

whereas an empirical risk minimizer learned as Ẑ = arg inf
‖Z‖tr≤λ

L̂(Z) over the same distribution has, with probability at

least 1− δ, its population risk bounded by

L(Ẑ) ≤ L̂(Ẑ) +O

(
λ

√
1

nL

)
+O

√ log 1
δ

n

 .
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We shall again prove this result for λ = 1. We shall retain the distribution over labels as well as the loss function from our
previous discussion in Appendix D.1. We shall also reuse ωli to denote the label observation pattern. We shall however use
Rademacher vectors to define the data distribution i.e. each of the d coordinates of the vector x obeys the law

r ∼ 1

2
(1{r=1} + 1{r=−1}).

Thus we sample xi as

xi =
1√
d

[
r1
i , r

2
i , . . . , r

d
i

]
,

where each coordinate is independently sampled. We now show that this distribution satisfies the assumptions of Theo-
rem 4. We have E

q
xx>

y
= 1

d · I where I is the d × d identity matrix. Thus σ1 = 1
d and Σ = 1. We also have, for any

v ∈ Rd,

E
q
exp

(
x>v

)y
= E

u

vexp

 d∑
j=1

xjvj

}

~ =

d∏
j=1

E
q
exp

(
xjvj

)y
=

d∏
j=1

1

2

(
exp

(
1√
d
vj
)

+ exp

(
− 1√

d
vj
))

=

d∏
j=1

cosh

(
1√
d
vj
)
≤

d∏
j=1

exp

(
1

d
(vj)2

)

= exp

 d∑
j=1

1

d
(vj)2

 = exp

(
1

d
‖v‖22

)
,

where the second equality uses the independence of the coordinates of x. Thus we have η2 = 2
d . Thus, this distribution ful-

fills all the preconditions of Theorem 4. Note that had trace norm regularization been applied, then by applying Theorem 4,
we would have gotten an excess error of

O

(√
d(η2 + σ1)

nLΣ

)
= O

(√
d(2/d+ 1/d)

nL · 1

)
= O

(√
1

nL

)

whereas, as the calculation given below shows, Frobenius norm regularization cannot guarantee an excess risk better than

O
(√

1
n

)
. Suppose we do perform Frobenius norm regularization in this case. Then we have

Ẑ = arg inf
‖Z‖F≤1

L̂(Z) = arg inf
‖Z‖F≤1

1

n
〈Z,X〉,

where X is the matrix

X =

[
L∑
i=1

ω1
i xi

L∑
i=1

ω2
i xi . . .

L∑
i=1

ωLi xi

]
.

As before, L(Ẑ) = 0 since the data distribution is centered and the loss function is linear. By a similar application of
Hölder’s inequality, we can also get

Ẑ = − X

‖X‖F
,

and thus, L̂(Ẑ) = − 1
n ‖X‖F . The following lemma shows that with constant probability, ‖X‖F ≥

√
n/2 which shows

that L(Ẑ) ≥ L̂(Ẑ)+Ω
(√

1
n

)
, thus proving the claimed inability of Frobenius norm regularization to giveO

(
1√
nL

)
-style

bounds even for isotropic distributions.

Lemma 3. With probability at least 3/4, we have ‖X‖2F ≥ n/2.
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Proof. We have

‖X‖2F =

L∑
l=1

∥∥∥∥∥
n∑
i=1

ωlixi

∥∥∥∥∥
2

2

=

L∑
l=1

n∑
i=1

ωli ‖xi‖
2
2 +

L∑
l=1

∑
i6=j

ωliω
l
j〈xi,xj〉

=

n∑
i=1

‖xi‖22 +
∑
i 6=j

〈xi,xj〉〈ωi,ωj〉 = n+W

where as before, ωi = [ω1
i , ω

2
i , . . . , ω

L
i ]. We will, in the sequel prove that |W | ≤ n/2, thus establishing the claim.

Clearly E JW K = 0 and as the following calculation shows, E
q
W 2

y
≤ 2n2/Ld which, by an application of Tchebysheff’s

inequality, gives us, for Ld > 32, with probability at least 3/4, |W | ≤ n/2 and consequently ‖X‖2F ≥ n/2. We give an
estimation of the variance of W below.

E
q
W 2

y
= E

u

v
∑

i1 6=j1,i2 6=j2

〈xi1 ,xj1〉〈ωi1 ,ωj1〉〈xi2 ,xj2〉〈ωi2 ,ωj2〉

}

~

= 2E

u

v
∑
i 6=j

〈xi,xj〉2〈ωi,ωj〉2
}

~ = 2n(n− 1)E
q
〈x1,x2〉2〈ω1,ω2〉

y

= 2n(n− 1)E
q
〈x1,x2〉2

y
E J〈ω1,ω2〉K ≤

2n2

Ld
,

where we have used the fact that data points and label patterns are sampled independently.

E. More Experimental Results
E.1. Evaluation Criteria

Given a test set {xi,yi : i = 1, . . . , n}, three criteria are used to evaluate the performance for an real-valued predictor
f(x) : Rd → R:

• Top-K accuracy: for each instance, we select theK labels with the largest decision values for prediction. The average
accuracy among all instances are reported as the top-K accuracy.

• Hamming-loss: for each pair of instance x and label index j, we round the decision value f j(x) to 0 or 1.

Hamming Loss =
1

nL

n∑
i=1

L∑
j=1

I[round
(
f j(x)

)
6= yj ]

• Average AUC: we follow (Bucak et al., 2009) to calculate area under ROC curve for each instance and report the
average AUC among all test instances.
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E.2. Speedup Results Due to Multi-core Computation

(a) ∇g(w) (b) ∇2g(w)s

Figure 3. Speedup results for our proposed fast gradient calculation and Hessian-vector multiplication.

E.3. Detailed Results with Full Labels

• Table 6 shows the top-1 accuracy results for the case with fully observed labels.

• Table 7 shows the top-3 accuracy results for the case with fully observed labels.

• Table 8 shows the top-5 accuracy results for the case with fully observed labels.

• Table 9 shows the Hamming loss results for the case with fully observed labels.

• Table 10 shows the average AUC results for the case with fully observed labels.

E.4. Detailed Results with Missing Labels

• Table 11 shows the top-1 accuracy results for the case with various missing ratios and dimension reduction rates.

• Table 12 shows the top-3 accuracy results for the case with various missing ratios and dimension reduction rates.

• Table 13 shows the top-5 accuracy results for the case with various missing ratios and dimension reduction rates.

• Table 14 shows the Hamming loss results for the case with various missing ratios and dimension reduction rates.

• Table 15 shows the average AUC results for the case with various missing ratios and dimension reduction rates.
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Table 6. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-1 Accuracy
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 58.33 46.20 46.52 41.43 55.55 48.51
40% 60.99 50.78 40.68 54.63 58.73 52.37
60% 61.99 51.37 39.24 57.53 60.36 51.45
80% 63.38 52.64 39.96 59.76 62.31 53.04

100% 63.94 53.76 38.41 60.24 63.02 53.24

autofood

20% 86.84 84.21 89.47 68.42 52.63 47.37
40% 92.11 89.47 92.11 28.95 55.26 86.84
60% 73.68 89.47 86.84 71.05 52.63 65.79
80% 94.74 89.47 89.47 81.58 57.89 78.95

100% 81.58 89.47 86.84 84.21 57.89 60.53

compphys

20% 92.50 87.50 97.50 70.00 52.50 65.00
40% 95.00 92.50 95.00 65.00 50.00 47.50
60% 95.00 92.50 95.00 72.50 47.50 70.00
80% 95.00 87.50 97.50 75.00 50.00 45.00

100% 95.00 97.50 97.50 67.50 50.00 52.50

delicious

20% 67.16 57.39 61.07 59.50 66.53 48.35
40% 66.66 51.62 56.20 61.16 66.25 47.25
60% 66.28 50.96 51.59 63.08 66.22 47.38
80% 66.25 51.55 49.11 62.10 66.22 45.59

100% 66.28 50.83 46.53 63.45 66.22 46.25

Table 7. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-3 Accuracy
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 34.16 25.65 27.37 21.74 31.99 28.77
40% 36.53 28.20 24.81 28.95 34.53 30.05
60% 38.00 28.68 23.26 32.25 36.01 31.11
80% 38.58 29.42 23.04 34.09 36.75 31.21

100% 38.41 30.25 22.36 34.87 36.91 31.24

autofood

20% 81.58 80.70 81.58 53.51 42.98 66.67
40% 76.32 80.70 78.95 50.88 42.11 70.18
60% 70.18 80.70 81.58 64.91 41.23 60.53
80% 80.70 80.70 85.09 73.68 42.98 72.81

100% 75.44 80.70 82.46 65.79 42.98 64.04

compphys

20% 80.00 80.00 80.00 42.50 40.83 49.17
40% 80.00 78.33 79.17 60.00 37.50 39.17
60% 80.00 80.00 80.00 51.67 39.17 49.17
80% 80.00 78.33 80.83 53.33 39.17 52.50

100% 80.00 79.17 81.67 62.50 39.17 56.67

delicious

20% 61.20 53.68 57.27 53.01 61.13 42.87
40% 61.23 49.13 52.95 56.20 61.08 42.05
60% 61.15 46.76 49.58 57.07 61.09 42.22
80% 61.13 48.06 47.34 57.09 61.09 42.01

100% 61.12 46.11 45.92 57.91 61.09 41.34
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Table 8. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-5 Accuracy
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 24.49 19.24 20.33 15.39 23.11 21.92
40% 26.84 20.61 18.54 19.95 24.96 22.47
60% 27.66 20.99 17.61 22.43 26.07 23.33
80% 28.20 21.48 17.46 24.07 26.47 23.44

100% 28.01 22.03 16.83 24.48 26.47 23.44

autofood

20% 81.05 80.00 75.79 44.21 36.84 66.32
40% 73.68 78.42 76.84 51.05 36.32 66.84
60% 69.47 78.95 78.42 57.37 36.32 60.53
80% 74.74 78.95 80.53 68.95 36.84 66.84

100% 72.63 78.42 83.16 62.11 36.84 61.58

compphys

20% 72.00 73.50 72.50 32.50 37.50 46.00
40% 73.00 74.00 74.50 54.50 35.50 41.00
60% 73.00 74.00 74.00 43.50 34.50 44.00
80% 73.00 73.00 74.00 47.50 36.00 46.50

100% 72.50 72.50 73.00 54.50 36.00 49.50

delicious

20% 56.46 49.46 52.94 47.91 56.30 39.79
40% 56.39 45.66 49.54 51.61 56.28 39.27
60% 56.28 43.22 46.93 52.85 56.23 38.97
80% 56.27 44.03 45.43 52.92 56.23 39.27

100% 56.27 42.11 44.24 53.28 56.23 38.41

Table 9. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Hamming Loss
LEML BCS CPLST

k/L SQ LR SH SQ SQ

bibtex

20% 0.0126 0.0211 0.0231 0.0150 0.0127
40% 0.0124 0.0240 0.0285 0.0140 0.0126
60% 0.0123 0.0233 0.0320 0.0132 0.0126
80% 0.0123 0.0242 0.0343 0.0130 0.0125

100% 0.0122 0.0236 0.0375 0.0129 0.0125

autofood

20% 0.0547 0.0621 0.0588 0.0846 0.0996
40% 0.0590 0.0608 0.0578 0.0846 0.0975
60% 0.0593 0.0611 0.0586 0.0838 0.0945
80% 0.0572 0.0611 0.0569 1.0000 0.0944

100% 0.0603 0.0617 0.0586 1.0000 0.0944

compphys

20% 0.0457 0.0470 0.0456 0.0569 0.0530
40% 0.0454 0.0466 0.0456 0.0569 0.0526
60% 0.0454 0.0469 0.0460 0.0569 0.0530
80% 0.0464 0.0484 0.0456 0.0569 0.0755

100% 0.0453 0.0469 0.0450 0.0569 0.0755

delicious

20% 0.0181 0.0196 0.0187 0.0189 0.0182
40% 0.0181 0.0221 0.0198 0.0186 0.0182
60% 0.0182 0.0239 0.0207 0.0187 0.0182
80% 0.0182 0.0253 0.0212 0.0186 0.0182

100% 0.0182 0.0260 0.0216 0.0186 0.0182



Large-scale Multi-label Learning with Missing Labels

Table 10. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for
logistic loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Average AUC
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 0.8910 0.8677 0.8541 0.7875 0.8657 0.9055
40% 0.9015 0.8809 0.8467 0.8263 0.8802 0.9092
60% 0.9040 0.8861 0.8505 0.8468 0.8854 0.9089
80% 0.9035 0.8875 0.8491 0.8560 0.8882 0.9164

100% 0.9024 0.8915 0.8419 0.8614 0.8878 0.9182

autofood

20% 0.9565 0.9598 0.9424 0.7599 0.7599 0.8779
40% 0.9277 0.9590 0.9485 0.7994 0.7501 0.8806
60% 0.8815 0.9582 0.9513 0.8282 0.7552 0.8518
80% 0.9280 0.9588 0.9573 0.8611 0.7538 0.8520

100% 0.9361 0.9581 0.9561 0.8718 0.7539 0.8471

compphys

20% 0.9163 0.9223 0.9274 0.6972 0.7692 0.8212
40% 0.9199 0.9157 0.9191 0.7881 0.7742 0.8066
60% 0.9179 0.9143 0.9098 0.7705 0.7705 0.8040
80% 0.9187 0.9003 0.9220 0.7820 0.7806 0.7742

100% 0.9205 0.9040 0.8977 0.7884 0.7804 0.7951

delicious

20% 0.8854 0.8588 0.8894 0.7308 0.8833 0.8561
40% 0.8827 0.8534 0.8868 0.7635 0.8814 0.8553
60% 0.8814 0.8517 0.8852 0.7842 0.8834 0.8523
80% 0.8814 0.8468 0.8845 0.7941 0.8834 0.8558

100% 0.8814 0.8404 0.8836 0.8000 0.8834 0.8557

Table 11. Comparison for Y with missing labels
Top-1 Accuracy

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 30.30 30.22 42.90 41.51 46.68 30.42 44.97
10% 39.84 33.56 44.53 41.99 51.09 33.44 48.55
20% 48.35 40.12 46.08 43.06 55.94 37.22 52.84
40% 52.37 41.79 43.82 42.27 58.57 40.24 55.39

40%

5% 34.35 39.17 42.90 43.42 46.68 31.13 44.97
10% 42.11 39.96 44.53 46.00 51.09 29.03 48.55
20% 51.97 45.49 46.08 47.40 55.94 32.05 52.84
40% 56.38 50.10 43.82 49.70 58.57 38.17 55.39

60%

5% 36.58 41.87 42.90 43.54 46.68 42.54 44.97
10% 45.53 45.13 44.53 39.36 51.09 31.37 48.55
20% 53.52 49.54 46.08 46.12 55.94 33.28 52.84
40% 57.18 54.19 43.82 48.83 58.57 32.13 55.39

autofood

20%

5% 7.89 0.00 7.89 7.89 7.89 7.89 7.89
10% 44.74 2.63 50.00 55.26 44.74 50.00 50.00
20% 63.16 0.00 57.89 73.68 47.37 68.42 57.89
40% 60.53 15.79 78.95 81.58 68.42 86.84 78.95

40%

5% 10.53 10.53 7.89 7.89 7.89 13.16 7.89
10% 57.89 7.89 50.00 60.53 44.74 55.26 50.00
20% 76.32 31.58 57.89 78.95 47.37 76.32 57.89
40% 60.53 5.26 78.95 84.21 68.42 84.21 78.95

60%

5% 7.89 10.53 7.89 7.89 7.89 7.89 7.89
10% 57.89 23.68 50.00 57.89 44.74 55.26 50.00
20% 73.68 57.89 57.89 78.95 47.37 76.32 57.89
40% 63.16 36.84 78.95 81.58 68.42 89.47 78.95

compphys

20%

5% 62.50 35.00 42.50 45.00 45.00 67.50 42.50
10% 75.00 10.00 52.50 67.50 52.50 55.00 52.50
20% 72.50 7.50 52.50 72.50 52.50 70.00 52.50
40% 87.50 5.00 52.50 77.50 52.50 80.00 52.50

40%

5% 65.00 60.00 42.50 45.00 45.00 65.00 42.50
10% 70.00 17.50 52.50 65.00 52.50 72.50 52.50
20% 72.50 52.50 52.50 70.00 52.50 75.00 52.50
40% 80.00 42.50 52.50 80.00 52.50 80.00 52.50

60%

5% 67.50 52.50 42.50 45.00 45.00 65.00 42.50
10% 70.00 52.50 52.50 67.50 52.50 67.50 52.50
20% 77.50 52.50 52.50 80.00 52.50 80.00 52.50
40% 82.50 52.50 52.50 80.00 52.50 80.00 52.50
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Table 12. Comparison for Y with missing labels
Top-3 Accuracy

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 16.06 14.29 22.19 21.74 24.47 16.10 23.29
10% 20.95 16.29 24.10 22.88 28.43 17.64 26.69
20% 26.34 18.78 25.78 23.21 31.92 21.06 29.56
40% 30.17 21.55 26.26 23.61 34.50 23.05 31.99

40%

5% 18.73 18.99 22.19 22.84 24.47 17.03 23.29
10% 22.49 20.16 24.10 25.18 28.43 16.62 26.69
20% 28.50 23.84 25.78 25.79 31.92 18.97 29.56
40% 32.74 27.58 26.26 27.18 34.50 21.18 31.99

60%

5% 18.81 21.09 22.19 22.62 24.47 22.48 23.29
10% 23.96 24.06 24.10 19.84 28.43 17.28 26.69
20% 29.07 27.05 25.78 25.13 31.92 19.14 29.56
40% 33.55 31.13 26.26 27.66 34.50 19.46 31.99

autofood

20%

5% 30.70 11.40 19.30 29.82 17.54 38.60 19.30
10% 52.63 5.26 33.33 50.88 23.68 57.02 33.33
20% 59.65 10.53 62.28 70.18 53.51 66.67 61.40
40% 57.89 20.18 71.93 76.32 63.16 75.44 71.93

40%

5% 26.32 15.79 19.30 29.82 17.54 31.58 19.30
10% 59.65 12.28 33.33 51.75 23.68 53.51 33.33
20% 67.54 35.09 62.28 71.05 53.51 64.04 61.40
40% 55.26 33.33 71.93 78.07 63.16 77.19 71.93

60%

5% 25.44 8.77 19.30 28.95 17.54 22.81 19.30
10% 52.63 35.09 33.33 50.00 23.68 61.40 33.33
20% 68.42 35.09 62.28 73.68 53.51 71.05 61.40
40% 57.02 23.68 71.93 75.44 63.16 74.56 71.93

compphys

20%

5% 46.67 32.50 28.33 40.00 28.33 40.00 28.33
10% 53.33 9.17 37.50 59.17 29.17 40.83 37.50
20% 62.50 10.83 31.67 60.83 28.33 61.67 31.67
40% 69.17 26.67 43.33 73.33 33.33 70.83 43.33

40%

5% 45.83 27.50 28.33 37.50 28.33 41.67 28.33
10% 57.50 20.83 37.50 60.00 29.17 55.83 37.50
20% 65.00 35.83 31.67 60.00 28.33 61.67 31.67
40% 68.33 32.50 43.33 70.83 33.33 73.33 43.33

60%

5% 45.00 30.83 28.33 35.83 28.33 45.00 28.33
10% 59.17 26.67 37.50 61.67 29.17 56.67 37.50
20% 65.00 29.17 31.67 60.83 28.33 64.17 31.67
40% 71.67 30.00 43.33 65.83 33.33 70.83 43.33

Table 13. Comparison for Y with missing labels
Top-5 Accuracy

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 11.71 10.32 16.14 16.34 17.74 12.07 17.32
10% 15.42 11.55 17.77 16.91 20.80 13.11 19.65
20% 19.51 13.26 18.81 17.07 23.95 15.52 22.12
40% 22.05 15.32 19.13 17.55 25.57 17.57 23.30

40%

5% 13.53 13.25 16.14 17.02 17.74 12.70 17.32
10% 16.25 14.30 17.77 18.78 20.80 12.24 19.65
20% 20.56 17.36 18.81 19.05 23.95 14.46 22.12
40% 23.75 19.73 19.13 19.67 25.57 15.86 23.30

60%

5% 13.61 14.78 16.14 16.62 17.74 16.56 17.32
10% 16.99 17.31 17.77 14.41 20.80 12.91 19.65
20% 21.10 19.51 18.81 18.23 23.95 14.17 22.12
40% 24.50 22.31 19.13 20.38 25.57 14.95 23.30

autofood

20%

5% 35.26 8.42 25.26 34.21 21.58 36.84 25.26
10% 46.84 6.84 35.79 51.05 32.11 48.95 35.79
20% 50.53 10.53 57.89 66.84 52.11 60.53 57.89
40% 52.11 16.84 68.42 73.16 56.32 72.11 68.42

40%

5% 32.11 17.89 25.26 31.58 21.58 30.00 25.26
10% 49.47 10.00 35.79 50.53 32.11 45.26 35.79
20% 64.74 32.11 57.89 66.32 52.11 60.53 57.89
40% 50.53 28.95 68.42 73.16 56.32 74.74 68.42

60%

5% 31.58 17.37 25.26 31.05 21.58 30.00 25.26
10% 50.53 31.58 35.79 52.63 32.11 53.68 35.79
20% 64.74 28.95 57.89 68.42 52.11 67.89 57.89
40% 58.95 20.00 68.42 71.58 56.32 69.47 68.42

compphys

20%

5% 34.50 23.00 25.00 28.50 26.00 34.50 25.00
10% 50.50 13.50 28.50 51.50 24.00 41.50 29.00
20% 52.00 11.50 36.50 55.00 30.00 53.00 36.50
40% 60.50 24.00 38.00 64.50 31.00 64.00 38.50

40%

5% 34.50 22.00 25.00 29.50 26.00 33.50 25.00
10% 53.50 29.00 28.50 51.50 24.00 46.00 29.00
20% 56.50 31.00 36.50 55.50 30.00 52.50 36.50
40% 59.50 26.00 38.00 61.50 31.00 62.50 38.50

60%

5% 36.00 22.00 25.00 27.50 26.00 33.50 25.00
10% 53.00 24.50 28.50 50.50 24.00 50.50 29.00
20% 56.50 29.00 36.50 54.00 30.00 55.50 36.50
40% 61.00 32.00 38.00 61.50 31.00 63.50 38.50
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Table 14. Comparison for Y with missing labels
Hamming Loss

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 0.0158 0.1480 0.0144 0.0143 0.0138 0.0180 0.0137
10% 0.0146 0.1360 0.0156 0.0144 0.0134 0.0187 0.0135
20% 0.0136 0.1179 0.0193 0.0156 0.0132 0.0210 0.0136
40% 0.0131 0.0994 0.0251 0.0174 0.0128 0.0242 0.0141

40%

5% 0.0152 0.2837 0.0144 0.0141 0.0138 0.0175 0.0137
10% 0.0149 0.2716 0.0156 0.0141 0.0134 0.0211 0.0135
20% 0.0136 0.2496 0.0193 0.0150 0.0132 0.0226 0.0136
40% 0.0128 0.2271 0.0251 0.0160 0.0128 0.0269 0.0141

60%

5% 0.0154 0.4082 0.0144 0.0145 0.0138 0.0154 0.0137
10% 0.0147 0.3978 0.0156 0.0163 0.0134 0.0215 0.0135
20% 0.0138 0.3726 0.0193 0.0157 0.0132 0.0252 0.0136
40% 0.0129 0.3638 0.0251 0.0172 0.0128 0.0312 0.0141

autofood

20%

5% 0.0924 0.1727 0.0942 0.0918 0.0991 0.0884 0.0942
10% 0.0807 0.1449 0.0837 0.0832 0.0854 0.0811 0.0837
20% 0.0750 0.1436 0.0760 0.0686 0.0843 0.0697 0.0760
40% 0.0780 0.1399 0.0752 0.0655 0.0838 0.0629 0.0750

40%

5% 0.0919 0.2887 0.0942 0.0919 0.0991 0.0941 0.0942
10% 0.0801 0.2264 0.0837 0.0812 0.0854 0.0814 0.0837
20% 0.0671 0.2445 0.0760 0.0681 0.0843 0.0697 0.0760
40% 0.0903 0.2042 0.0752 0.0647 0.0838 0.0648 0.0750

60%

5% 0.0932 0.4189 0.0942 0.0921 0.0991 0.0937 0.0942
10% 0.0840 0.4144 0.0837 0.0817 0.0854 0.0817 0.0837
20% 0.0689 0.3596 0.0760 0.0676 0.0843 0.0692 0.0760
40% 0.0724 0.3384 0.0752 0.0650 0.0838 0.0645 0.0750

compphys

20%

5% 0.0555 0.1391 0.0556 0.0554 0.0555 0.0567 0.0556
10% 0.0536 0.1446 0.0565 0.0542 0.0569 0.0554 0.0565
20% 0.0524 0.1431 0.0566 0.0518 0.0566 0.0518 0.0566
40% 0.0484 0.1048 0.0543 0.0489 0.0561 0.0488 0.0543

40%

5% 0.0567 0.2924 0.0556 0.0555 0.0555 0.0566 0.0556
10% 0.0532 0.2532 0.0565 0.0535 0.0569 0.0532 0.0565
20% 0.0518 0.2569 0.0566 0.0513 0.0566 0.0518 0.0566
40% 0.0505 0.1766 0.0543 0.0495 0.0561 0.0484 0.0543

60%

5% 0.0558 0.4394 0.0556 0.0556 0.0555 0.0555 0.0556
10% 0.0532 0.4148 0.0565 0.0532 0.0569 0.0544 0.0565
20% 0.0516 0.3797 0.0566 0.0519 0.0566 0.0517 0.0566
40% 0.0486 0.3563 0.0543 0.0495 0.0561 0.0480 0.0543

Table 15. Comparison for Y with missing labels
Average AUC

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 0.7115 0.6529 0.7789 0.8066 0.8123 0.7363 0.7998
10% 0.7665 0.6756 0.7954 0.8208 0.8561 0.7371 0.8210
20% 0.8269 0.7111 0.8087 0.8205 0.8941 0.7859 0.8378
40% 0.8674 0.7375 0.8104 0.8347 0.9153 0.8167 0.8530

40%

5% 0.7379 0.7182 0.7789 0.8164 0.8123 0.7396 0.7998
10% 0.7730 0.7353 0.7954 0.8370 0.8561 0.7351 0.8210
20% 0.8332 0.7817 0.8087 0.8392 0.8941 0.7813 0.8378
40% 0.8724 0.8097 0.8104 0.8639 0.9153 0.8038 0.8530

60%

5% 0.7376 0.7445 0.7789 0.8132 0.8123 0.8051 0.7998
10% 0.7778 0.7831 0.7954 0.7639 0.8561 0.7444 0.8210
20% 0.8367 0.8264 0.8087 0.8251 0.8941 0.7755 0.8378
40% 0.8753 0.8504 0.8104 0.8716 0.9153 0.7899 0.8530

autofood

20%

5% 0.7170 0.5198 0.6451 0.7070 0.6356 0.7235 0.6450
10% 0.8083 0.5578 0.7576 0.8194 0.7259 0.8131 0.7576
20% 0.8043 0.5804 0.8178 0.8797 0.7712 0.8665 0.8178
40% 0.8007 0.5807 0.8860 0.9317 0.8087 0.9237 0.8857

40%

5% 0.7129 0.6299 0.6451 0.7029 0.6356 0.7157 0.6450
10% 0.8218 0.6517 0.7576 0.8198 0.7259 0.8175 0.7576
20% 0.8634 0.6322 0.8178 0.8796 0.7712 0.8644 0.8178
40% 0.8131 0.6848 0.8860 0.9319 0.8087 0.9260 0.8857

60%

5% 0.7175 0.6013 0.6451 0.7045 0.6356 0.7128 0.6450
10% 0.8206 0.6316 0.7576 0.8196 0.7259 0.8213 0.7576
20% 0.8725 0.6758 0.8178 0.8800 0.7712 0.8781 0.8178
40% 0.8141 0.6351 0.8860 0.9315 0.8087 0.9255 0.8857

compphys

20%

5% 0.6486 0.5727 0.6457 0.6479 0.6424 0.6488 0.6457
10% 0.7478 0.5691 0.7235 0.7473 0.7147 0.7556 0.7235
20% 0.7908 0.5729 0.7459 0.7921 0.7297 0.8101 0.7459
40% 0.8172 0.6788 0.7728 0.8416 0.7413 0.8718 0.7730

40%

5% 0.6474 0.6049 0.6457 0.6478 0.6424 0.6480 0.6457
10% 0.7509 0.6295 0.7235 0.7481 0.7147 0.7437 0.7235
20% 0.7964 0.6442 0.7459 0.7913 0.7297 0.7849 0.7459
40% 0.8192 0.6651 0.7728 0.8371 0.7413 0.8561 0.7730

60%

5% 0.6443 0.6089 0.6457 0.6468 0.6424 0.6601 0.6457
10% 0.7504 0.6505 0.7235 0.7489 0.7147 0.7421 0.7235
20% 0.7991 0.6687 0.7459 0.7854 0.7297 0.8064 0.7459
40% 0.8269 0.7240 0.7728 0.8378 0.7413 0.8659 0.7730


