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Abstract
Hard Thresholding Pursuit (HTP) is an iterative
greedy selection procedure for finding sparse so-
lutions of underdetermined linear systems. This
method has been shown to have strong theoreti-
cal guarantees and impressive numerical perfor-
mance. In this paper, we generalize HTP from
compressed sensing to a generic problem setup
of sparsity-constrained convex optimization. The
proposed algorithm iterates between a standard
gradient descent step and a hard truncation step
with or without debiasing. We prove that our
method enjoys the strong guarantees analogous
to HTP in terms of rate of convergence and
parameter estimation accuracy. Numerical evi-
dences show that our method is superior to the
state-of-the-art greedy selection methods when
applied to learning tasks of sparse logistic regres-
sion and sparse support vector machines.

1. Introduction
In this paper, we focus on the following generic sparsity-
constrained optimization problem

min
x∈Rp

f(x), s.t. ∥x∥0 ≤ k, (1)

where f : Rp 7→ R is a smooth and convex cost func-
tion. Among others, several examples falling into this
model include: (i) Sparsity-constrained linear regression
model (Tropp & Gilbert, 2007) where the residual error is
used to measure data reconstruction error; (ii) Sparsity-
constrained logistic regression model (Bahmani et al.,
2013) where the sigmoid loss is used to measure pre-
diction error; (iii) Sparsity-constrained graphical models
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learning (Jalali et al., 2011) where the likelihood of sam-
ples drawn from an underlying probabilistic model is used
to measure data fidelity.

However, due to the non-convex cardinality constraint,
the problem (1) is generally NP-hard even for quadratic
cost functions (Natarajan, 1995). Thus, one must in-
stead seek approximate solutions. In particular, the spe-
cial case of (1) in least square regression models has
gained significant attention in the area of compressed sens-
ing (Donoho, 2006). A vast body of greedy selection
algorithms for compressing sensing have been proposed
including matching pursuit (Mallat & Zhang, 1993), or-
thogonal matching pursuit (Pati et al., 1993), compressive
sampling matching pursuit (Needell & Tropp, 2009), hard
thresholding pursuit (Foucart, 2011), iterative hard thresh-
olding (Blumensath & Davies., 2009) and subspace pur-
suit (Dai & Milenkovic, 2009). Those methods succes-
sively select the locations of nonzero entries and estimate
their values via exploring the residual error from the previ-
ous iteration. Comparing to first-order convex optimiza-
tion methods developed for ℓ1-regularized sparse learn-
ing (Beck & Teboulle, 2009; Langford et al., 2009), those
greedy selection algorithms often exhibit similar accuracy
guarantees but more attractive computational efficiency.

The least square error used in compressed sensing, how-
ever, is not an appropriate measure of discrepancy in a vari-
ety of applications beyond signal processing. For example,
in statistical machine learning the log-likelihood function
is commonly used in logistic regression problems (Bishop,
2006) and graphical models learning (Jalali et al., 2011;
Ravikumar et al., 2011). It is thus desirable to investi-
gate theory and algorithms applicable to a broader class
of sparsity-constrained learning problems as given in (1).
To this end, several forward selection algorithms have
been proposed to select nonzero entries in a sequential
fashion (Kim & Kim, 2004; Shalev-Shwartz et al., 2010;
Yuan & Yan, 2013). This category of methods date back



Gradient Hard Thresholding Pursuit

to the Frank-Wolfe method (Frank & Wolfe, 1956). The
forward greedy selection method has also been general-
ized to minimize a convex objective over the linear hull
of a collection of atoms (Yuan & Yan, 2013). To make the
greedy selection procedure more adaptive, Zhang (2008)
proposed a forward-backward algorithm which takes back-
ward steps adaptively whenever beneficial. Jalali et al.
(2011) applied this forward-backward selection algorithm
to learn the structure of a sparse graphical model. More
recently, Bahmani et al. (2013) proposed a gradient hard-
thresholding method which generalizes compressive sam-
pling matching pursuit (Needell & Tropp, 2009) from com-
pressed sensing to general sparsity-constrained optimiza-
tion problems. The hard-threshholding-type methods
have also been shown to be statistically and computa-
tionally efficient for sparse principal component analy-
sis (Yuan & Zhang, 2013; Ma, 2013).

1.1. Our contribution

In this paper, inspired by the success of Hard Threshold-
ing Pursuit (HTP) (Foucart, 2011; 2012) in compressed
sensing, we propose the Gradient Hard Thresholding Pur-
suit (GraHTP) method to encompass the sparse estimation
problems arising from applications with general nonlin-
ear models. At each iteration, GraHTP performs standard
gradient descent followed by a hard truncation operation
which first selects the top k (in magnitude) entries of the re-
sultant vector and then (optionally) conducts debiasing on
the selected entries. We prove that under mild conditions
GraHTP (with or without debiasing) has strong theoreti-
cal guarantees analogous to HTP in terms of convergence
rate and parameter estimation accuracy. We have applied
GraHTP to two popular machine learning models, sparse
logistic regression and sparse support vector machines, ver-
ifying that the guarantees of HTP are valid for these mod-
els. Empirically we demonstrate that GraHTP is compara-
ble or superior to the state-of-the-art greedy selection meth-
ods in these two sparse learning models.

1.2. Notation and outline

Notation: In the following, x ∈ Rp is a vector and F is an
index set. We denote [x]i its i-th entry, xF the restriction of
x to index set F , and xk the restriction of x to the top k (in
modulus) entries, supp(x) the index set of non-zero entries
of x, supp(x, k) the index set of its top k (in modulus) en-
tries, ∥x∥ =

√
x⊤x the Euclidean norm, ∥x∥1 =

∑d
i=1 |xi|

the ℓ1-norm, and ∥x∥0 the number of nonzero of vector x.

Outline: We present in §2 the GraHTP algorithm. The con-
vergence guarantees of GraHTP are provided in §3. The
specializations of GraHTP in logistic regression and sup-
port vector machines are investigated in §4. Monte-Carlo
simulations and experimental results on real data are pre-

sented in §5. Finally, we conclude the paper in §6.

2. Gradient Hard Thresholding Pursuit
GraHTP is an iterative greedy selection procedure for ap-
proximately optimizing the non-convex problem (1). A
high level summary of GraHTP is described in the top panel
of Algorithm 1. The procedure generates a sequence of
intermediate k-sparse vectors x(0), x(1), . . . from an initial
sparse approximation x(0) (typically x(0) = 0). At the t-th
iteration, the first step (S1), x̃(t) = x(t−1) − η∇f(x(t−1)),
computes the gradient descent at the point x(t−1) with step-
size η. Then in the second step (S2), the k coordinates
of the vector x̃(t) that have the largest magnitude are cho-
sen as the support in which pursuing the minimization will
be most effective. In the third step (S3), we find a vec-
tor with this support that minimizes the objective func-
tion, which becomes x(t) for the next iteration. This last
step, often referred to as debiasing, has been shown to im-
prove the performance in other algorithms too (see, e.g.,
Shalev-Shwartz et al., 2010). The iterations continue un-
til the algorithm reaches a terminating condition, e.g., on
the change of the cost function or the change of the es-
timated minimum from the previous iteration. A natural
criterion here is F (t) = F (t−1) (see S2 for the definition of
F (t)), since then x(τ) = x(t) for all τ ≥ t, although there
is no guarantee that this should occur. It will be assumed
throughout the paper that the cardinality k is known. In
practice this quantity may be regarded as a tuning parame-
ter of the algorithm via, for example, cross-validations.

In the standard form of GraHTP, the debiasing step S3 re-
quires to minimize f(x) over the support F (t). If this step
is judged too costly, we may consider instead a fast vari-
ant of GraHTP, where the debiasing is replaced by a simple
truncation operation x(t) = x̃

(t)
k . This leads to the Fast

GraHTP (FGraHTP) described in the bottom panel of Al-
gorithm 1. It is interesting to note that FGraHTP can be
regarded as a projected gradient descent procedure for op-
timizing the non-convex problem (1). Its per-iteration com-
putational overload is almost equal to that of the standard
gradient descent procedure. While in this paper we only
study the Fast GraHTP outlined in Algorithm 1, we should
mention that other fast variants of GraHTP can also be con-
sidered. For instance, to reduce the computational cost of
S3, we can take a restricted Newton step or a restricted gra-
dient descent step to calculate x(t).

We close this section by pointing out that, in the special
case where the cost function is the squared error f(x) =
1
2∥y − Ax∥2, GraHTP reduces to HTP (Foucart, 2011).
Specifically, the gradient descent step S1 reduces to x̃(t) =
x(t−1) + ηA⊤(y − Ax(t−1)) and the debiasing step S3 re-
duces to the orthogonal projection x(t) = argmin{∥y −
Ax∥, supp(x) ⊆ F (t)}. In the meanwhile, FGraHTP re-
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duces to IHT (Blumensath & Davies., 2009) in which the
iteration becomes x(t) = (x(t−1) + ηA⊤(y −Ax(t−1)))k.

Algorithm 1: Gradient Hard Thresholding Pursuit
(GraHTP).

Initialization: x(0) with ∥x(0)∥0 ≤ k (typically
x(0) = 0), t = 1.
Output: x(t).
repeat

(S1) Compute x̃(t) = x(t−1) − η∇f(x(t−1));
(S2) Let F (t) = supp(x̃(t), k) be the indices of
x̃(t) with the largest k absolute values;
(S3) Compute
x(t) = argmin{f(x), supp(x) ⊆ F (t)};
t = t+ 1;

until halting condition holds;
——————–⋆ Fast GraHTP ⋆——————–
repeat

Compute x̃(t) = x(t−1) − η∇f(x(t−1));
Compute x(t) = x̃

(t)
k as the truncation of x̃(t)

with top k (in magnitude) entries preserved;
t = t+ 1;

until halting condition holds;

3. Theoretical Analysis
In this section, we analyze the theoretical properties of
GraHTP and FGraHTP. We first study the convergence of
these two algorithms. Then we investigate their sparse re-
covery performance in terms of convergence rate and pa-
rameter estimation accuracy. The technical proofs of the
main theoretical results can be found in an extended ver-
sion of this paper online available at arxiv:1311.5750.

We require the following key technical condition under
which the convergence and parameter estimation accuracy
of GraHTP/FGraHTP can be guaranteed. To simplify the
notation in the following analysis, we abbreviate ∇F f =
(∇f)F and ∇sf = (∇f)s (Recall the definition of xF and
xs of a vector x in §1.2).

Definition 1 (Condition C(s, ζ, ρs)). For any integer s >
0, we say f satisfies Condition C(s, ζ, ρs) if for any index
set F with cardinality |F | ≤ s and any x, y with supp(x)∪
supp(y) ⊆ F , the following inequality holds for some ζ >
0 and 0 < ρs < 1:

∥x− y − ζ∇F f(x) + ζ∇F f(y)∥ ≤ ρs∥x− y∥.

Remark 1. In the special case where f(x) is least square
loss function and ζ = 1, Condition C(s, ζ, ρs) reduces to
the well-known Restricted Isometry Property (RIP) condi-
tion in compressed sensing.

We may establish the connections between condition

C(s, ζ, ρs) and the conditions of restricted strong con-
vexity/smoothness which are extensively used in the
analysis of previous greedy selection methods (Zhang,
2008; Shalev-Shwartz et al., 2010; Yuan & Yan, 2013;
Bahmani et al., 2013).
Definition 2 (Restricted Strong Convexity/Smoothness).
For any integer s > 0, we say f(x) is restricted ms-
strongly convex and Ms-strongly smooth if there exist
∃ms,Ms > 0 such that for all ∥x− y∥0 ≤ s,

ms

2
∥x− y∥2 ≤ ∆f(x, y) ≤ Ms

2
∥x− y∥2, (2)

where ∆f(x, y) := f(x) − f(y) − ⟨∇f(y), x − y⟩ is the
Bregman divergence associated with f for x, y.

The following proposition connects condition C(s, ζ, ρs)
to the restricted strong convexity/smoothness conditions.
Proposition 1. Assume that f is a differentiable function.

(a) If f satisfies Condition C(s, ζ, ρs), then for all ∥x −
y∥0 ≤ s the following two inequalities hold:

1− ρs
ζ

∥x−y∥ ≤ ∥∇F f(x)−∇F f(y)∥ ≤ 1 + ρs
ζ

∥x−y∥,

∆f(x, y) ≤ 1 + ρs
2ζ

∥x− y∥2.

(b) If f is ms-strongly convex and Ms-strongly smooth,
then f satisfies condition C(s, ζ, ρs) with any

ζ < 2ms/M
2
s , ρs =

√
1− 2ζms + ζ2M2

s .

Remark 2. Part (a) of Proposition 1 indicates that if
Condition C(s, ζ, ρs) holds, then f is strongly smooth.
Part (b) of Proposition 1 shows that the strong smooth-
ness/convexity conditions imply Condition C(s, ζ, ρs).
Therefore, Condition C(s, ζ, ρs) is no stronger than the
strong smoothness/conveixy conditions.

3.1. Convergence

We now analyze the convergence properties of GraHTP and
FGraHTP. First and foremost, we make a simple obser-
vation about GraHTP: since there is only a finite number
of subsets of {1, ..., p} of size k, the sequence defined by
GraHTP is eventually periodic. The importance of this ob-
servation lies in the fact that, as soon as the convergence
of GraHTP is established, then we can certify that the limit
is exactly achieved after a finite number of iterations. We
establish below the convergence of GraHTP and FGraHTP
under proper conditions.
Theorem 1. Assume f satisfies Condition C(2k, ζ, ρ2k)
and the step-size η < ζ/(1 + ρ2k). Then the sequence
{x(t)} defined by GraHTP terminates after a finite number
of iterations. Moreover, the sequence {f(x(t))} defined by
FGraHTP converges.
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Remark 3. Since ρ2k ∈ (0, 1), we have that the conver-
gence results in Theorem 1 hold whenever the step-size
η < ζ/2. If f is m2k-strongly convex and M2k-strongly
smooth, then from Part(b) of Proposition 1, we know that
Theorem 1 holds if we choose the step-size η < m2k/M

2
2k.

3.2. Sparse recovery performance

The following theorem is our main result on the parameter
estimation accuracy of GraHTP and FGraHTP when the
target solution is sparse.

Theorem 2. Let x̄ be an arbitrary k̄-sparse vector and k ≥
k̄. Let s = 2k+k̄. Assume f satisfies Condition C(s, ζ, ρs)
and the step size η < ζ.

(a) If µ1 =
√
2(1−η/ζ+(2−η/ζ)ρs)/(1−ρs) < 1, then

at iteration t, GraHTP will recover an approximation x(t)

satisfying

∥x(t)− x̄∥ ≤ µt
1∥x(0)− x̄∥+ 2η + ζ

(1− µ1)(1− ρs)
∥∇kf(x̄)∥.

(b) If µ2 = 2(1−η/ζ+(2−η/ζ)ρs) < 1, then at iteration
t, FGraHTP will recover an approximation x(t) satisfying

∥x(t) − x̄∥ ≤ µt
2∥x(0) − x̄∥+ 2η

1− µ2
∥∇sf(x̄)∥.

Note that we did not make any attempt to optimize the con-
stants (µ1, µ2) in Theorem 2, which are relatively loose. In
the following discussion, we ignore the constants and focus
on the main message Theorem 2 conveys.

Part (a) of Theorem 2 indicates that under proper condi-
tions, the estimation error of GraHTP to a target sparse vec-
tor x̄ is determined by the multiple of ∥∇kf(x̄)∥, and the
rate of convergence before reaching this error level is ge-
ometric. Particularly, if the sparse vector x̄ is sufficiently
close to an unconstrained minimum of f then the estima-
tion error floor is negligible because ∇kf(x̄) has small
magnitude. In the ideal case where ∇f(x̄) = 0 (i.e., the
sparse vector x̄ is an unconstrained minimum of f ), this re-
sult guarantees that we can recover x̄ to arbitrary precision.
In this case, if we further assume that η satisfies the condi-
tions in Theorem 1, then exact recovery is guaranteed in a
finite number of iterations which is at most

T =

⌈
ln
(
mini |[x̄]i|/∥x(0) − x̄∥

)
lnµ1

⌉
.

Indeed, we have ∥x(T ) − x̄∥ ≤ mini |[x̄]i| and together
with k ≥ k̄ we know that supp(x̄) ⊆ supp(x(T )), and thus
x(T ) = x̄ due to the global optimality of x̄.

Part (b) of Theorem 2 shows that FGraHTP enjoys a similar
geometric rate of convergence and the estimation error is
determined by the multiple of ∥∇sf(x̄)∥ with s = 2k + k̄.

The shrinkage rates µ1 < 1 (see Part (a)) and µ2 < 1
(see Part (b)) respectively control the convergence rate of
GraHTP and FGraHTP. For GraHTP, the condition µ1 < 1
implies

η >
((2

√
2 + 1)ρs +

√
2− 1)ζ√

2 +
√
2ρs

. (3)

By combining this condition with η < ζ, we can see
that ρs < 1/(

√
2 + 1) is a necessary condition to guar-

antee µ1 < 1. On the other side, if ρs < 1/(
√
2 +

1), then we can always find a step-size η < ζ satis-
fying (3) such that µ1 < 1. This condition of ρs is
analogous to the RIP condition for estimation from noisy
measurements in compressed sensing (Candès et al., 2006;
Needell & Tropp, 2009; Foucart, 2011). Indeed, in this
setup our GraHTP algorithm reduces to HTP which re-
quires weaker RIP condition than prior compressed sens-
ing algorithms. The guarantees of GraHTP and HTP for
compressed sensing are almost identical, although we did
not make any attempt to optimize the RIP sufficient con-
stants, which are 1/(

√
2 + 1) (for GraHTP) versus 1/

√
3

(for HTP). We would like to emphasize that the condition
ρs < 1/(

√
2 + 1) derived for GraHTP also holds in fairly

general setups beyond compressed sensing. For FGraHTP
we have very similar discussions.

For the general sparsity-constrained optimization prob-
lem, we note that a similar estimation error bound has
been established for the GraSP (Gradient Support Pur-
suit) method (Bahmani et al., 2013) which is another hard-
thresholding-type method. At time stamp t, GraSP first
conducts debiasing over the union of the top k entries of
x(t−1) and the top 2k entries of ∇f(x(t−1)), then it selects
the top k entries of the resultant vector and updates their
values via debiasing, which becomes x(t). Our GraHTP
is connected to GraSP in the sense that the k largest ab-
solute elements after the gradient descent step (see S1 and
S2 of Algorithm 1) will come from some combination of
the largest elements in x(t−1) and the largest elements in
the gradient ∇f(x(t−1)). Although the convergence rate
are of the same order, the per-iteration cost of GraHTP is
cheaper than GraSP: at each debiasing step, GraSP mini-
mizes the objective over a support of size 3k while that size
for GraHTP is k. FGraHTP is even cheaper for iteration as
it does not need any debiasing operation. We will com-
pare the actual numerical performance of these methods in
our empirical study. We also point out that our FGraHTP
algorithm is identical 1 to the nonlinear-IHT investigated
in (Blumensath, 2013). The estimation error bound there,
however, is different from ours in the sense that the bound
there is dependent on the objective value at the target solu-

1Our work was initially submitted in May 2013, which was
later posted online at arxiv:1311.5750. We appreciate Blumen-
sath for pointing out to us that FGraHTP in arxiv:1311.5750 is
closely related to the new work (Blumensath, 2013).
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tion; whereas ours is dependent on the restricted norm of
gradient at the target solution. As we will show in the next
section, our bound is especially useful when applied to an-
alyze the statistical efficiency of sparse learning problems.
Also, the results in (Blumensath, 2013) are obtained under
a stronger condition of restricted strict convexity property
which implies the C(s, ζ, ρs) condition in our analysis.

Last but not least, the bounds in Theorem 2 are relying on
the values of ζ and ρs. Also, the step-size η is required
to satisfy certain conditions relying on (ζ, ρs) to guarantee
the convergence. As we will show in the next section, the
values of ζ and ρs can be estimated from data, and thus is
η, for several popular machine learning models.

4. Applications to Sparsity-Constrained
M-estimation

In this section, we will specialize GraHTP/FGraHTP to M-
estimation (maximum likelihood type estimator) which is a
poplar class of statistical learning models. Given a set of n
independently drawn data samples {x(i)}ni=1, the essential
form of the M-estimation problem is defined as to minimize
the following risk function averaged over the samples:

f(w) =
1

n

n∑
i=1

ϕ(x(i) | w),

where and ϕ is a cost function and w is a set of adjustable
parameters. The sparsity-constrained M-estimation prob-
lem is then given by:

min
w

f(w), subject to ∥w∥0 ≤ k. (4)

In the subsequent subsections, we will consider two in-
stances of this model: sparse logistic regression and sparse
support vector machines (SVMs).

4.1. Sparsity-constrained ℓ2-regularized logistic
regression

Logistic regression is one of the most popular models in
statistics and machine learning (Bishop, 2006). In this
model the relation between the random feature vector u ∈
Rp and its associated random binary label v ∈ {−1,+1} is
determined by the conditional probability

P(v|u; w̄) = exp(2vw̄⊤u)

1 + exp(2vw̄⊤u)
, (5)

where w̄ ∈ Rp denotes a parameter vector. Given a set of
n independently drawn data samples {(u(i), v(i))}ni=1, lo-
gistic regression learns the parameters w so as to minimize
the logistic loss given by

l(w) :=
1

n

n∑
i=1

log(1 + exp(−2v(i)w⊤u(i))).

It is well-known that l(w) is convex. Unfortunately,
in high-dimensional setting, i.e., n < p, the problem
can be underdetermined and thus its minimum is not
unique. A conventional way to avoid singularity is to im-
pose ℓ2-regularization, resulting in the following sparsity-
constrained ℓ2-regularized logistic regression problem:

min
w

f(w) = l(w) +
λ

2
∥w∥2, subject to ∥w∥0 ≤ k, (6)

where λ > 0 is the regularization strength parameter. Obvi-
ously f(w) is λ-strongly convex and hence it has a unique
minimum. The presence of the cardinality constraint en-
forces the solution to be sparse.

4.1.1. VERIFYING CONDITION C(s, ζ, ρs)

Let U = [u(1), ..., u(n)] ∈ Rp×n be the design matrix and
σ(z) = 1/(1 + exp(−z)) be the sigmoid function. In the
case of ℓ2-regularized logistic loss, we have

∇f(w) = Ua(w)/n+ λw,

where the vector a(w) ∈ Rn is given by [a(w)]i =
−2v(i)(1− σ(2v(i)w⊤u(i))). The following result verifies
f(w) satisfies Condition C(s, ζ, ρs) under mild conditions.

Proposition 2. Given an integer s, let Rs :=
maxi ∥(u(i))s∥. Then the ℓ2-regularized logistic loss sat-
isfies Condition C(s, ζ, ρs) with any

ζ <
2λ

(4
√
sR2

s + λ)2
, ρs =

√
1− 2ζλ+ ζ2(4

√
sR2

s + λ)2.

Remark 4. Since Rs is known for a given data and λ is
fixed in the model, Proposition 2 indicates that the values of
ζ and ρs can be explicitly calculated in a data-driven way.
For example, we may set ζ = λ/(4

√
sR2

s + λ)2 and ρs =√
1− λ2/(4

√
sR2

s + λ)2 to guarantee the C(s, ζ, ρs) con-
dition. By Theorem 2, these two values further guide us to
select the step-size η = O(λ/(4

√
sR2

s + λ)2).

4.1.2. BOUNDING THE ESTIMATION ERROR

We are going to bound ∥∇sf(w̄)∥ which we obtain from
Theorem 2 that controls the estimation error bounds of
GraHTP (with s = k) and FGraHTP (with s = 2k + k̄). In
the following deviation, we assume that the joint density of
the random vector (u, v) ∈ Rp+1 is given by the following
exponential family distribution:

P(u, v; w̄) = exp
(
vw̄⊤u+B(u)−A(w̄)

)
,

where A(w̄) is the log-partition function. The term B(u)
characterizes the marginal behavior of u. Obviously, the
conditional distribution of v given u, P(v | u; w̄), is
given by the logistical model (5). By trivial algebra
we can obtain the following standard result which shows
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that the first derivative of the logistic loss l(w) yields
the cumulants of the random variables v[u]j (see, e.g.,
Wainwright & Jordan, 2008):

∂l

∂[w]j
=

1

n

n∑
i=1

{
−v(i)[u(i)]j + Ev[v[u

(i)]j | u(i)]
}
.

Here the expectation Ev[· | u] is taken over the conditional
distribution (5). We introduce the following sub-Gaussian
condition on the random variate v[u]j .
Assumption 1. For all j, we assume that there exists
constant σ > 0 such that for all η, E[exp(ηv[u]j)] ≤
exp

(
σ2η2/2

)
.

This assumption holds when [u]j are sub-Gaussian (e.g.,
Gaussian or bounded) random variables. The following
result establishes the bound of ∥∇sf(w̄)∥.

Proposition 3. If Assumption 1 holds, then with probability
at least 1− 4p−1,

∥∇sf(w̄)∥ ≤ 4σ
√
s ln p/n+ λ∥w̄s∥.

Remark 5. If we choose λ = O(
√

ln p/n), then with over-
whelming probability, the term ∥∇sf(w̄)∥ vanishes at the
rate of O(

√
s ln p/n). This bound is superior to the bound

provided by Bahmani et al. (2013, Section 4.2) which is
non-vanishing.

4.2. Sparsity-constrained SVMs

We now consider applying our algorithms to fast and scal-
able parameter learning of linear SVMs with sparsity con-
straint. SVMs usually map instance vectors into a high-
dimensional (even infinite-dimensional) space, and solve
the dual problem with a nonlinear kernel. However, dual
approaches may face trouble dealing with explosion of
variables when datasets scale up. Moreover in practical do-
mains such as document analysis, data come intrinsically
with high dimensions (e.g., bag of words), so that SVMs
with/without nonlinear mappings often yield similar per-
formance. As concluded in (Chappelle, 2007), when the
goal is to find an approximate solution, primal linear op-
timizations are superior. Henceforth we focus on linear
SVMs in the primal form. Particularly, we are interested
in the following sparsity-constrained L2-SVMs:

min
w

f(w) = h(w)+
λ

2
∥w∥2, subject to ∥w∥0 ≤ k, (7)

where

h(w) :=
1

2n

n∑
i=1

(
max

{
0, 1− v(i)w⊤u(i)

})2

is the L2-hinge loss. For this class of SVMs, the objective
f(w) is smooth and λ-strongly convex, and the cardinal-
ity constraint enforces the solution to be sparse. We refer

the f(w) defined in (7) as regularized L2-hinge loss in the
remaining text.

4.2.1. VERIFYING CONDITION C(s, ζ, ρs)

It is easy to verify that

∇f(w) = − 1

n

n∑
i=1

max
{
0, 1− v(i)w⊤u(i)

}
v(i)u(i)

+λw.

Similar to Proposition 2, we can prove the following result
which confirms that L2-hinge loss f(w) satisfies Condition
C(s, ζ, ρs) under mild conditions.

Proposition 4. Given an integer s, let Rs :=
maxi ∥(u(i))s∥. Then the L2-hinge loss satisfies Condition
C(s, ζ, ρs) with any

ζ <
2λ

(Rs + λ)2
, ρs =

√
1− 2ζλ+ ζ2(Rs + λ)2.

Similar to the arguments in Remark 4, this proposition sug-
gests that the values of ζ and ρs can be selected in a data-
driven way and these values in turn guide us to select the
step-size η = O(λ/(Rs + λ)2).

4.2.2. BOUNDING THE ESTIMATION ERROR

Recall that ∀i, ∥(u(i))s∥ ≤ Rs. For any k̄-sparse vector
w̄, it is known from Theorem 2 that the estimation error is
controlled by

∥∇sf(w̄)∥ ≤ 1

n

n∑
i=1

max
{
0, 1− v(i)w̄⊤u(i)

}
Rs

+λ∥w̄s∥.

If the samples can be well separated by w̄, then ∥∇sf(w̄)∥
tends to be small. More preciously, let U(n) be the number
of points in {(u(i), v(i))}ni=1 with margin v(i)w̄⊤u(i) < 1,
then we have ∥∇sf(w̄)∥ ≤ (U(n)R2

s/n + λ)∥w̄s∥ +
U(n)Rs/n. By choosing λ = O(U(n)/n), we will
have ∥∇sf(w̄)∥ = O(U(n)/n) which vanishes as long as
U(n)/n vanishes with respect to n.

5. Experimental Results
This section is devoted to evaluating the empirical perfor-
mance of GraHTP and FGraHTP when these two meth-
ods are applied to sparse logistic regression and sparse L2-
SVMs learning tasks. All the considered algorithms are
implemented in Matlab 7.12 running on a desktop with In-
tel Core i7 3.2G CPU and 16G RAM.
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5.1. Sparsity-constrained logistic regression

5.1.1. MONTE-CARLO SIMULATION

We consider a synthetic data model in which the sparse
parameter w̄ is a p = 1000 dimensional vector that has
k̄ = 100 nonzero entries drawn independently from the
standard Gaussian distribution. Each data sample u is a
normally distributed vector. The data labels, v ∈ {−1, 1},
are then generated randomly according to the Bernoulli dis-
tribution P(v = 1|u; w̄) = exp(2w̄⊤u)/(1+ exp(2w̄⊤u)).
We fix the regularization parameter λ = 10−4 in the objec-
tive of (6). We are interested in the following two cases:

1. Case 1: Cardinality k is fixed and sample size
n is varying: we test with k = 100 and n ∈
{100, 200, ..., 1000}.

2. Case 2: Sample size n is fixed and cardinality k
is varying: we test with n = 1000 and k ∈
{100, 150, ..., 500}.

For each case, we compare GraHTP and FGraHTP
with three state-of-the-art greedy selection methods:
GraSP (Bahmani et al., 2013) as a hard-thresholding-type
method, FBS (Forward Basis Selection) (Yuan & Yan,
2013) as a forward-selection-type method, and
FoBa (Zhang, 2008) as an adaptive forward back-
ward selection method. Note that all these considered
algorithms have geometric rate of convergence. We will
compare the computational efficiency of these methods in
this study. Theorem 2 suggests that under proper condi-
tions GraHTP/FGraHTP are insensitive to initialization.
Therefore, we simply initialize w(0) = 0 and set the
stopping criterion as ∥w(t) − w(t−1)∥/∥w(t−1)∥ ≤ 10−4.

Results. Figure 1(a) presents the estimation errors of the
considered algorithms. From the left panel of Figure 1(a)
(for Case 1) we observe that: (i) when cardinality k is fixed,
the estimation errors of all the considered algorithms tend
to decrease as sample size n increases; and (ii) in this case,
GraHTP and FGraHTP are comparable and they signifi-
cantly outperform the other considered algorithms. From
the right panel of Figure 1(a) (for Case 2) we observe that:
(i) when n is fixed, the estimation errors of all the con-
sidered algorithms tend to increase as k increases; and (ii)
in this case, GraHTP and FGraHTP are comparable and
they are significantly superior to the other considered algo-
rithms. Figure 1(b) shows the execution time of the consid-
ered algorithms. From this group of results we observe that
in most cases, GraHTP/FGraHTP and GraSP are compara-
ble and they are faster than FBS and FoBa. Also, the over-
all computational time of GraHTP/FGraHTP and GraSP is
relatively insensitive to k. This is potentially because as k
increases, fewer iterations are needed to converge.
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Figure 1. Logistic regression on simulated data: estimation error
and CPU time of the considered algorithms.

5.1.2. REAL DATA

The algorithms are also compared on two real datasets:
rcv1.binary (p = 47, 236) and news20.binary (p =
1, 355, 191). For rcv1.binary, a training subset of size
20,242 and a testing subset of size 20,000 are used. For
news20.binary, a training subset of size 10,000 and a test-
ing subset of size 9,996 are used. We test with sparsity
parameters k ∈ {100, 200, ..., 1000} and fix the regular-
ization parameter λ = 10−5. All the considered algo-
rithms are initialized with w(0) = 0 and terminated when
∥w(t) − w(t−1)∥/∥w(t−1)∥ ≤ 10−4 or t > k.

Figure 2 shows the evolving curves of empirical logistic
loss for k ∈ {200, 1000}. It can be observed that on both
datasets, GraHTP and GraSP converge much sharper than
FGraHTP/FBS/FoBa. The testing classification errors and
CPU running time of the considered algorithms are pro-
vided in Figure 3: (i) in terms of accuracy, all the consid-
ered methods are comparable, although GraSP is slightly
more favorable; and (ii) in terms of overall execution time,
FGraHTP and GraHTP are the top two ones and their com-
putational advantage becomes significant on the relatively
larger data news20.binary. To summarize, GraHTP and
FGraHTP achieve favorable trade-offs between accuracy
and efficiency on the considered data.

5.2. Sparsity-constrained L2-SVMs

For this empirical study, we consider the same two real
datasets and experimental protocols as used in the previous
experiment. We fix the regularization parameter λ = 10−4
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Figure 2. Logistic regression on real data: ℓ2-regularized logistic
loss versus number of iterations.
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Figure 3. Logistic regression on real data: Classification error and
CPU running time of the considered algorithms.

and set the initial vector w(0) = 0 for all the considered
algorithms. The testing classification errors and CPU run-
ning time of the considered algorithms are provided in Fig-
ure 4. From these figures, we make very similar observa-
tions as from the previous experiment: GraHTP/FGraHTP
make better trade-off between computational efficiency and
classification accuracy on the used datasets.
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Figure 4. L2-SVMs on real data: Classification error and CPU
running time of the considered algorithms.

6. Conclusions
In this paper, we have proposed GraHTP as a generaliza-
tion of HTP from compressed sensing to a generic setup
of sparsity-constrained minimization. The main idea is to
force the gradient descent iteration to be sparse via hard
truncation. Theoretically, we have proved that under mild
conditions, GraHTP converges geometrically in finite steps
of iteration and its estimation error is controlled by the re-
stricted norm of gradient at the target sparse solution. We
have also proposed and analyzed the FGraHTP algorithm
as a fast variant of GraHTP without the debiasing step. Em-
pirically, we compared GraHTP and FGraHTP with several
representative greedy selection methods when applied to
sparse logistic regression and sparse SVMs learning tasks.
Our theoretical results and empirical evidences show that
simply combing gradient descent with a truncation opera-
tion, with or without debiasing, leads to efficient and ac-
curate computational procedures for estimating sparsity-
constrained models.
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