
Appendix: Saddle Points and Accelerated Perceptron Algorithms

Adams Wei Yu† WEIYU@CS.CMU.EDU
Fatma Kılınç-Karzan‡ FKILINC@ANDREW.CMU.EDU
Jaime G. Carbonell† JGC@CS.CMU.EDU
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
‡Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

This appendix provides the omitted proofs from the main
text, detailed descriptions and derivations for mirror prox
framework, and supplement for numerical experiments.

9. Proofs Omitted from the Main Text
Proof of Lemma 1.

Proof. (a) Definition of ρ(A) and the fact min
j=1,...,n

yTAj =

min
x∈∆n

yTAx implies ρ(A)= max
‖y‖2=1

min
x∈∆n

yTAx.

(b) Let f(y) := min
x∈∆n

yTAx, and note that f(y) is concave

in y. Using (a), ρ(A)= max
‖y‖2=1

f(y), i.e., ∃ y∗ s.t. ‖y∗‖2 =1

and ρ(A)=f(y∗) = max
‖y‖2=1

f(y) ≤ max
‖y‖2≤1

f(y) where the

last inequality follows from the obvious relaxation. When-
ever ρ(A) > 0, we claim that this relaxation is tight. If
not, then ∃ ȳ s.t. ‖ȳ‖2 < 1, and f(ȳ) > f(y∗) = ρ(A) >
0 = f(0), and thus ȳ 6= 0. Now consider ŷ := ȳ

‖ȳ‖2 . Note
that ‖ŷ‖2 = 1 and f(ŷ) = 1

‖ȳ‖2 f(ȳ) > f(ȳ) > f(y∗),
where the first inequality is due to ‖ȳ‖2 < 1. But this
contradicts to the optimality of y∗, and hence we conclude
ρ(A) = max

‖y‖2≤1
f(y) = Opt. �

Proof of Theorem 2.

Proof. (a) 0 < φ(yt) = min
x∈∆n

yTt Ax ≤ yTt Ae
i = (AT yt)i

for all i = 1, . . . , n, and hence AT yt>0.

(b) In this case, φ(yt)≤ 0 and εsad(zt)= φ(xt)−φ(yt)≤ ε
implying φ(xt) ≤ φ(yt) + ε ≤ ε. Moreover, φ(xt) =

max
‖y‖2≤1

yTAx = ‖Axt‖2, and hence we have ‖Axt‖2 ≤ ε.

�

Proof of Theorem 3.

Proof. From the definition of Opt, φ(·), and φ(·), for any
x ∈ X and y ∈ Y , we have φ(y) ≤ Opt ≤ φ(x).

(a) If ρ(A) > 0, by Lemma 1, we have ρ(A) = Opt. Com-
bining the above relations with Theorem 1, for every itera-
tion t ≥ 1, we obtain

φ(xt)−
ΩL
t
≤ φ(yt) ≤ ρ(A) ≤ φ(xt) ≤ φ(yt) +

ΩL
t
.

Note that by rearranging terms in this inequality, we get

ρ(A)− ΩL
t
≤ φ(yt) ≤ ρ(A),

By settingN = ΩL
ρ(A) +1, we get φ(yN ) ≥ ρ(A)− ΩL

N > 0.
By Theorem 2, we know yN is a feasible solution of LDFP.

(b) If ρ(A) < 0, then φ(yt) < 0. Let N = ΩL
ε + 1. By

Theorem 1, εsad(zN ) ≤ ΩL
N < ε. Then by Theorem 2, xN

is an ε-solution of LAP. �

10. Mirror Prox Setup for Feasibility
Problems

Let Z = X × Y where X, Y are two given domains with
respective norms ‖ · ‖x and ‖ · ‖y , their dual norms ‖ ·
‖(x,∗) and ‖ · ‖(y,∗), and d.g.f.’s ωx(·) and ωy(·). Given
two scalars αx, αy > 0, we build the setup for the Mirror
Prox algorithm, i.e., ‖ · ‖ and d.g.f. ω(·) for the domain Z,
where z = [x; y], as follows:

‖z‖ =
√
αx‖x‖2x + αy‖y‖2y

with the dual norm

‖ζ‖∗ =

√
1

αx
‖ζx‖2(x,∗) +

1

αy
‖ζy‖2(y,∗)

and corresponding d.g.f. given by

ω(z) = αxωx(x) + αyωy(y).



Saddle Points and Accelerated Perceptron Algorithms

With these choices, we arrive at Ω = Ωz ≤ αxΩx + αyΩy
where Ωx := max

x∈X
Vxω (x) ≤ max

x∈X
ω(x) − min

x∈X
ω(x)

and Ωy is defined similarly. Moreover, our prox map-
ping Proxz(ξ) becomes decomposable, i.e., by letting ξ =
[ξx; ξy], we have

Proxωz (ξ)

= argmin
w∈Z

{〈ξ, w〉+ Vz(w)}

= argmin
w∈Z

{〈ξ, w〉+ (ω(w)− ω(z)− 〈ω′(z), w − z〉)}

= argmin
(wx;wy)∈Z

{〈ξx, wx〉+ 〈ξy, wy〉+ αxωx(wx) + αyωy(wy)

− αx〈ω′x(x), wx − x〉 − αy〈ω′y(y), wy − y〉}
= argmin

(wx;wy)∈Z
{〈ξx, wx〉+ 〈ξy, wy〉+ αxωx(wx) + αyωy(wy)

− αx〈ω′x(x), wx〉 − αy〈ω′y(y), wy〉}

=

[
argmin
wx∈X

{〈ξx − αxω′x(x), wx〉+ αxωx(wx)} ;

argmin
wy∈Y

{〈ξy − αyω′y(y), wy〉+ αyωy(wy)}

]

=

[
Proxωxx

(
ξx
αx

)
; Proxωyy

(
ξy
αy

)]
.

Furthermore for bilinear saddle point problems, we have

‖F (z)− F (z′)‖∗ = ‖(AT (y − y′);A(x− x′))‖∗

=

√
1

αx
‖AT (y − y′)‖2(x,∗) +

1

αy
‖A(x− x′)‖2(y,∗)

≤ L‖z − z′‖

with L :=
√

1
αx
L2
xy + 1

αy
L2
yx where

Lxy ≥ max
y

{
‖AT y‖(x,∗) : ‖y‖y ≤ 1

}
and

Lyx ≥ max
x

{
‖Ax‖(y,∗) : ‖x‖x ≤ 1

}
.

Hence we arrive at

ΩL ≤ (αxΩx + αyΩy)

√
1

αx
L2
xy +

1

αy
L2
yx.

By minimizing this upper bound in terms of αx, αy , we get

αx =
Lxy√

Ωx(Lxy
√

Ωx + Lyx
√

Ωy)
and

αy =
Lyx√

Ωy(Lxy
√

Ωx + Lyx
√

Ωy)
,

which leads to

L = Lxy
√

Ωx + Lyx
√

Ωy,

and
Ω ≤ αxΩx + αyΩy ≤ 1.

Setup for Linear Feasibility Problems

In the particular case of LDFP, taking into account the setup
X×Y = ∆n×Bm, we select ‖·‖x = ‖·‖1 and ‖·‖y = ‖·‖2
with d.g.f.’s ωx(x) = Entr(x) :=

∑n
i=1 xi ln(xi), i.e., the

Entropy d.g.f., and ωy(y) = 1
2y
T y Euclidean d.g.f. with

Proxωz (ξ) =

[
Proxωxx

(
ξx
αx

)
; Proxωyy

(
ξy
αy

)]
.

By considering the form of the d.g.f.s and the associated
domains, we can utilize the closed form expressions for the
corresponding optimal solutions in the above optimization
problems for prox mapping computations and hence arrive
at, for i = 1, . . . , n,

[Proxωxx (ξx)]i =
xi exp{−[ξx]i}∑n
j=1 xj exp{−[ξx]j}

and

[Proxωyy (ξy)]i =

{
yi − [ξy]i, if ‖y − ξy‖2 ≤ 1
yi−[ξy ]i
‖y−ξy‖2 , otherwise .

Moreover by selecting zω =
[

1
n1;0m

]
, where 1 stands for

the vector in Rn with all coordinates equal to 1 and 0m
denotes the zero vector in Rm, we get

Ωx = log(n), and Ωy =
1

2
(9)

Also, L =
√

1
αx
L2
xy + 1

αy
L2
yx with Lxy ≥

maxy{‖AT y‖∞ : ‖y‖2 ≤ 1} and Lyx ≥ maxx{‖Ax‖2 :
‖x‖1 ≤ 1}. In fact in this current setup, one can pick

Lxy = Lyx = max
j
‖Aj‖2 = 1

due to our normalization. Hence by considering Ω ≤
αxΩx + αyΩy , we arrive at

ΩL ≤ (αxΩx + αyΩy)

√
1

αx
L2
xy +

1

αy
L2
yx.

The minimization of this upper bound in αx, αy , as dis-
cussed above, leads to the corresponding parameters as-
sociated with Mirror Prox algorithm with Ω ≤ 1 and
L = Lxy

√
Ωx +Lyx

√
Ωy . Therefore, in the case of linear

feasibility problems LDFP and LAP, we have

L = Lxy
√

Ωx + Lyx
√

Ωy =
√

log(n) +
√

1/2

and hence
ΩL ≤

√
log(n) +

√
1/2.



Saddle Points and Accelerated Perceptron Algorithms

Setup for Kernelized and Conic Feasibility Problems

The kernelized case is the same as the linear case. For
the conic case, as mentioned before, ΩL determines the
convergence rate of the MPFP framework. As mentioned
in the previous section, the domains involved X,Y deter-
mine both ΩL and the prox mappings. For conic feasibility
problems, in all cases Y domain is Bm, always resulting
in Ωy = 1

2 , yet Ωx is case dependent, for K = Rn+ and
K = Sn+, we have Ωx = O(log(n)) and for K = Ln, we
have Ωx = 1

2 , which leads to the resulting rate of conver-

gences which is no worse than O(

√
log(n)

ε ) for Mirror Prox
algorithm.

11. Supplement for Numerical Experiments
In this section, we supplement our real data results and
present our synthetic data generation procedures and the
additional experimental results on the synthetic data, which
could not have been incorporated to the main text because
of space limitation. Recall that, in the following tables,
‘TO’ means ‘Timeout’ and ‘Fail’ means the algorithm fail-
s due to running into numerical issues or falling into dead
loop.

Synthetic Data for LDFP Instances. As for the LDFP
instance generation, we follow the scheme suggested by
(Soheili & Peña, 2012) to construct the matrix A: we gen-
erate random vectors ȳ ∈ Rm, v ∈ Rn where ȳ is drawn
from a uniform distribution on the unit sphere {y ∈ Rm :
‖y‖2 = 1} and each vi is i.i.d. from Uniform[0, 1]. We
set Ā = B + ȳ(κvT − ȳTB) where κ ≥ 0 is a parame-
ter and B ∈ Rm×n is a randomly generated matrix, with
each entry independently drawn from the standard normal
distribution. Note that ĀT ȳ = κv; hence, if κ > 0, LDF-
P is feasible with ȳ as a solution. Further, κ serves as a
proxy for the condition number ρ(Ā), i.e., a larger κ corre-
sponds to a larger ρ(Ā) in (3). Since normalization does not
change feasibility status of LDFP or ρ(A), our A matrix is
obtained by normalizing Ā such that all columns have their
Euclidean norms equal to 1. Nevertheless, we observed
that normalization drastically alters the computational be-
havior of two algorithms, SPCT and ISPVN. In particular,
we observed that in all of the normalized instances, IS-
PVN algorithm failed by falling into a deadloop. There-
fore we compared our algorithms against SPCT, PCT, and
VN for normalized instances. On the other hand, we also
performed a number of tests with unnormalized data, e.g.,
with the matrix Ā described above, and observed that in
these cases, SPCT algorithm failed while we were able to
run the ISPVN algorithm. We discuss the corresponding
comparisons below.

Iterations of the LDFP. We present results on the number
of iterations for algorithms tested in the LDFP experiments
(normalized instances with A) in Table 3. This comple-
ments the corresponding runtime results, i.e., Table 2 in
the LDFP section of the main text. From Table 3, we ob-
serve that the MPLFP outperforms competing algorithms in
terms of number of iterations, under any (m,n) combina-
tion. This behavior also supports the superior performance
of MPLFP in terms of its solution time given in Table 3.

We also present the results on the unnormalized data ma-
trix Ā, in Tables 3 and 4, which also support the superior
performance of MPLFP.

With column-normalized matrix, A
(m,n) MPLFP SPCT PCT VN

(102, 5× 103) 204.6 605.3 92413.4 91450.1
(103, 5× 103) 146.0 338.9 15009.3 14864.0
(102, 5× 104) 1692.2 5144.2 TO TO
(103, 5× 104) 730.8 2409.9 TO TO
(102, 5× 105) 11580 Fail TO TO
(103, 5× 105) 6970 Fail TO TO

With unnormalized matrix, Ā
(m,n) MPLFP ISPVN PCT VN

(102, 5× 103) 203.2 1601.1 90649 90841
(103, 5× 103) 30.9 68.0 14869 14909
(102, 5× 104) 2210.4 Fail TO TO
(103, 5× 104) 283.4 2525.8 TO TO
(102, 5× 105) 18149 Fail TO TO
(103, 5× 105) 3415.4 Fail TO TO

Table 3. Number of iterations of all methods for LDFP (κ = 1).
Iteration limit is 106 and runtime limit is 5× 104s.

With unnormalized matrix, Ā
(m,n) MPLFP ISPVN PCT VN

(102, 5× 103) 1.2 19.1 98.3 110.8
(103, 5× 103) 1.4 4.9 171.3 181.2
(102, 5× 104) 90.4 Fail TO TO
(103, 5× 104) 136.7 1963.6 TO TO
(102, 5× 105) 43748 Fail TO TO
(103, 5× 105) 22753 Fail TO TO

Table 4. Runtime (second) of all methods for LDFP (κ = 1). It-
eration limit is 106 and runtime limit is 5× 104s.

Iterations as κ (ρ(A)) changes. As a complementary of
experiment on the effect of ρ(A) (on normalized instances
of A), we include Figure 3 here to show the corresponding
number of iterations needed for different algorithms under
different ρ(A). Again, MPLFP is faster than the nearest
competitor by at least one order of magnitude.

We also test the effect of ρ(Ā) on the unnormalized in-
stances with Ā matrix. The corresponding runtime and
number of iteration figures are given in Figures 4 and 5.

Synthetic Data for LAP Instances. We generated difficult
LAP instances as follows: Given an integer r ≥ 3, and



Saddle Points and Accelerated Perceptron Algorithms

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

κ

N
um

be
r 

of
 It

er
at

io
ns

 

 

MPLFP
SPCT
PCT
VN

Figure 3. κ (ρ(A)) vs iteration with normalized matrix, A.

2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3



R
un

tim
e(

s)

 

 

MPLFP
ISPVN
PCT
VN

Figure 4. κ (ρ(Ā)) vs runtime with unnormalized matrix, Ā.

2 4 6 8 10
10

1

10
2

10
3

10
4

10
5



N
um

be
r 

of
 It

er
at

io
ns

 

 

MPLFP
ISPVN
Perceptron
Von-Neumann

Figure 5. κ (ρ(Ā)) vs iteration with unnormalized matrix, Ā.

number θ > 1, we let n = 2r and generate a square n ×
n matrix for A. We control the difficulty of the instance
with θ. We first generate q = b (n−1)

2 c points given by

S =
{

cos(π k
(q−1) ) : 0 ≤ k ≤ q − 1

}
:= {s0, . . . , sq−1}

and then translate and scale these points to obtain pi =
1
θ + (si − minj sj)

1− 1
θ

maxj sj−minj sj
for i = 0, . . . , q − 1,

and the set P = {p0, . . . , pq−1}. With this construction we
have min{p : p ∈ P} = 1

θ and max{p : p ∈ P} = 1.
We define (n − 1) × (n − 1) diagonal matrix B with 2q
diagonal entries {±√p : p ∈ P}, and set the remaining
n − 1 − 2q diagonal entries to 1. Then we let H be a
Hadamard matrix of size n×nwhich is normalized to have
all column norms equal to 1. We then generate a random x̄
such that x̄ ∈ ∆n = {x ∈ Rn :

∑
i xi = 1, xi ≥ 0 ∀i}.

Then we construct Ā matrix of the following form

Ā = HT

[
c fT

f B

]
H,

where we select c, f to ensure that Āx̄ = 0. In particular,
this leads to a square system of linear equations in c, f as
a result of the special structure of B and H . Our A matrix
is then obtained by normalizing Ā to have all Euclidean
norms of the columns equal to 1. Note that by normalizing
x̄, we will also obtain x ∈ ∆n such that Ax = 0. In all of
our instances for LAP, we work with the normalized ma-
trix A. In all of the generated instances, ISPVN algorithm
failed, therefore the comparison is done against only VN
algorithm.

Performance on LAP. We first test the performance of d-
ifferent methods to find an ε-solution for LAP by setting
θ = 5 and ε = 10−3. We report the performance compar-
ison of MPLFP and VN in Tables 5 and 6. As suggested
by our theoretical convergence rates, MPLFP algorithm is
orders of magnitude faster than VN algorithm on the LAP
instances.

ε-solution of LAP (θ = 5)
(m,n) MPLFP VN

(1024, 1024) 2.5 21.6
(2048, 2048) 10.6 125.8
(4096, 4096) 69.2 948.6
(8192, 8192) 284.5 5465.9

(16384, 16384) 1014.0 25426

Table 5. Runtime (second) of all methods for LAP. Iteration limit
is 106 and runtime limit is 5× 104s.

The Effect of θ. We also test the effect of θ by varying
θ from the set 5, 10, 100, 1000, 10000 on instances of size
n = m = 2048. The results on runtime and iteration num-
bers are provided in Tables 7 and 8.

Real Data: CIFAR-10 Image Classification. We com-
plement the performance of the algorithms on the test data



Saddle Points and Accelerated Perceptron Algorithms

ε-solution of LAP (θ = 5)
(m,n) MPLFP VN

(1024, 1024) 265.2 8763.6
(2048, 2048) 283.4 12352.4
(4096, 4096) 291.6 16353.8
(8192, 8192) 297.1 22838.1

(16384, 16384) 293.5 31894.3

Table 6. Number of iteration of all methods for LAP. Iteration lim-
it is 106 and runtime limit is 5× 104s.

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Iterations Per Classifier

T
ra

in
in

g 
E

rr
or

 R
at

e

 

 

MPKFP
ISNKPVN
KPCT
KVN

Figure 6. Iteration v.s. training error.

θ 5 10 102 103 104

MPLFP 10.4 10.7 14.2 13.7 13.5
VN 123.0 121.3 149.9 148.4 143.7

Table 7. Runtime (second) of MPLFP for LAP as θ varies.

θ 5 10 102 103 104

MPLFP 284.1 285.2 296.3 288.2 286.9
VN 12341 12149 11946 11800 11712

Table 8. Number of iterations of MPLFP for LAP as θ varies.

of CIFAR-10 Image Classification data set, e.g., Figure 2,
with the corresponding comparison of their training errors
on the training data set, e.g., Figure 6. Figure 6 indicates
that within roughly 300 iterations, MPKFP achieves a train-
ing error of almost 0, and therefore supports the exceptional
performance of MPKFP that we have observed in Figure 2.




