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Abstract
Infinite hidden Markov models (iHMMs) are
nonparametric Bayesian extensions of hidden
Markov models (HMMs) with an infinite number
of states. Though flexible in describing sequen-
tial data, the generative formulation of iHMMs
could limit their discriminative ability in sequen-
tial prediction tasks. Our paper introduces max-
margin infinite HMMs (M2iHMMs), new infinite
HMMs that explore the max-margin principle for
discriminative learning. By using the theory of
Gibbs classifiers and data augmentation, we de-
velop efficient beam sampling algorithms with-
out making restricting mean-field assumptions or
truncated approximation. For single variate clas-
sification, M2iHMMs reduce to a new formula-
tion of DP mixtures of max-margin machines.
Empirical results on synthetic and real data sets
show that our methods obtain superior perfor-
mance than other competitors in both single vari-
ate classification and sequential prediction tasks.

1. Introduction
Hidden Markov models (HMMs) (Rabiner, 1989) are one
of the most well-known methods for modeling sequential
data, such as speech and videos, by using a Markov chain
to capture the dynamic dependencies among data. Statis-
tics of the latent states can be inferred by either a maximum
likelihood treatment or Bayesian formulation with efficient
forward-backward algorithms. Recently, by using the the-
ory of (hierarchical) Dirichlet processes (DPs) (Ferguson,
1973; Antoniak, 1974), extensions have been made to de-
rive infinite HMMs (iHMMs) (Beal et al., 2001), which al-
low the models to have an unbounded number of hidden
states. The posterior distribution of iHMMs can be inferred
with a Gibbs sampler (Beal et al., 2001; Teh et al., 2006) or
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a more efficient beam sampler (Gael et al., 2008).

Although HMMs and iHMMs are flexible in capturing in-
terdependencies in sequential data, their generative for-
mulations could limit the discriminative ability in sequen-
tial prediction tasks, e.g., speech recognition and object
tracking in videos. Successful attempts have been made
to perform discriminative training for HMMs, including
max-margin Gaussian mixture HMMs for speech recog-
nition (Sha & Saul, 2006) and large-margin Markov mod-
els for structured output prediction (Altun et al., 2004;
Taskar et al., 2003). But these approaches learn a sin-
gle large-margin model, which can be insufficient to cap-
ture the underlying structures (e.g., sequential clusters)
when data have complex dynamics. Furthermore, the non-
Bayesian formulations make these approaches not obvi-
ously generalizable to nonparametric Bayesian iHMMs.

To discover underlying descriptive patterns (e.g., clusters)
and/or improve efficiency, much progress has been made
in single variate classification. For example, mixture-
of-experts (Collobert et al., 2002; Fu et al., 2010) models
have been developed to partition the observation space into
subregions and learn a SVM classifier within each subre-
gion. Recently, inspired by the success of DP mixtures
of generalized linear models (Shahbaba & Neal, 2009;
Hannah et al., 2010), Zhu et al. (2011) proposed infinite
SVMs (iSVMs), DP mixtures of large-margin machines,
which inherit the advantages of Bayesian nonparametrics to
resolve the unknown number of components and the large-
margin principle to learn discriminative classifiers.

Though not considering interdependencies among data,
iSVMs offer a promising direction to incorporate a po-
tentially infinite mixture-of-experts in HMMs for sequen-
tial prediction tasks. Recent work on infinite Markov-
switching maximum entropy discrimination machines
(iM2EDMs) (Chatzis, 2013) extend iSVMs to capture the
sequential dependencies by connecting the latent cluster as-
signment variables via a Markov chain. iM2EDMs follow
the suggestions of iSVMs and build large-margin models
by using expected/averaging discriminant functions. Since
it is intractable to deal with an infinite number of la-
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tent states as well as the non-smooth hinge loss function,
iM2EDMs adopt truncated variational inference with a fac-
torized mean-field assumption, which could be a poor ap-
proximation to the true posterior.

This paper presents max-margin infinite hidden Markov
models (M2iHMMs), new max-margin extensions of the
nonparametric Bayesian iHMMs for sequential predic-
tion, which admit efficient Markov chain Monte Carlo
(MCMC) inference algorithms without making truncated
approximation or mean-field assumptions. Technically,
we build M2iHMMs as regularized Bayesian exten-
sions to iHMMs by using the ideas of Gibbs clas-
sifiers (Langford & Shawe-Taylor, 2003; Germain et al.,
2009; Zhu et al., 2014) to derive a max-margin poste-
rior regularization term, which is a good surrogate (in
fact, an upper bound) of the training error. By explor-
ing data augmentation techniques (Tanner & Wong, 1987;
Polson & Scott, 2011), we are able to develop efficient
MCMC algorithms with a beam sampler to efficiently deal
with the Markov chain dynamics. For the special case of
single variate classification, M2iHMMs reduce to Gibbs
infinite SVMs (GiSVMs), new formulations of DP mix-
tures of large-margin machines, with a truncation-free and
assumption-free Gibbs sampling algorithm. Moreover, the
expected hinge loss in GiSVMs is an upper bound of the
hinge loss of an expected/averaging classifier in iSVMs. Fi-
nally, experimental results on both synthetic and real data
sets demonstrate superior performance of our approaches
in both single variate classification and sequential predic-
tion tasks, compared to various competitors.

2. Infinite Hidden Markov Models
We start with a brief overview of HMMs and infinite
HMMs. Let X = {x1,x2, · · · ,xT } denote an observed se-
quence of length T , and each single observation xt ∈ RM

is a feature vector. An HMM model defines a joint distri-
bution over X by invoking another sequence of hidden dis-
crete state variables Z = {z0 = 1, z1, z2, · · · , zT }1, and
each zt takes values from a finite set with K values, e.g.,
{1, · · · ,K}. For the common first-order Markov models,
the basic assumption is that given zt, zi is independent of
zj for all i < t < j. This Markov dynamics is formally
characterized by a transition probability distribution

p(zt = j|zt−1 = i,π) = πij , t = 1, 2, · · · , T, (1)

where π is a K × K transition matrix. Given the hidden
states, the observations X are modeled by an emission dis-
tribution, e.g., a normal distribution for real-valued inputs

p(xt|zt,γ) =
1

(2π|Σzt |)M/2
exp

(
−Dzt(xt|γ)

)
, (2)

1z0 is an initial state.

where Dzt(xt|γ) = 1
2 (xt − µzt)

⊤Σ−1
zt (xt − µzt), and

γk = (µk,Σk) are the mean and covariance parameters
of the likelihood model in component k. Then the joint
probability distribution induced by HMM is

p(X,Z) =
T∏

t=1

p(zt|zt−1)p(xt|zt). (3)

The dependencies among observations are captured via the
Markov chain on Z, whose statistics can then be inferred
by an efficient forward-backward message passing scheme
within an EM algorithm for maximum likelihood estima-
tion (Rabiner, 1989). To make inference and prediction
more robust, Bayesian HMMs have been examined by in-
troducing priors p0(π|β) and p0(γ|Γ) (Scott, 2002).

One limitation of HMMs is that the number of hidden states
needs to be pre-specified. Infinite HMMs (iHMMs) were
proposed (Beal et al., 2001), in which a hierarchical Dirich-
let process (HDP) (Teh et al., 2006) is used as a nonpara-
metric prior for the transition matrix π to allow a count-
ably infinite number of coupling rows2. Formally, HDP
combines an infinite number of Dirichlet processes (DP)
where each row of the transition matrix πk is drawn from
a Dirichlet process with a shared base measure β, which
follows a stick-breaking construction (Pitman, 2002), i.e.,

πk|β ∼ DP(α0,β), β ∼ GEM(γ0). (4)

The hyper-parameters α0 and γ0 can be either set a pri-
ori or inferred via a fully Bayesian treatment by introduc-
ing hyper-priors (e.g., Gamma priors). For posterior infer-
ence, we can use the theory of HDP to perform Gibbs sam-
pling (Teh et al., 2006), or we can apply a more efficient
beam sampler (Gael et al., 2008) by using an augmented
representation of the Markov chain.

Though iHMMs are flexible in modeling sequential data
with an unbounded number of hidden states, the generative
nature could make them less than sufficient in learning dis-
criminative models for sequential prediction tasks. To im-
prove the discriminative ability, successful attempts have
been made on developing discriminative HMMs, e.g., by
exploring max-margin learning in an optimization frame-
work for finding a single large-margin model (Sha & Saul,
2006; Altun et al., 2004; Taskar et al., 2003). But these ap-
proaches are not easy to generalize to the nonparametric
Bayesian iHMMs. The recent work (Chatzis, 2013) pro-
vides one solution, but as stated above, its inference al-
gorithm relies on truncation and strict mean-field assump-
tions. Below, we present a new formulation of max-margin
infinite HMMs and provide an efficient MCMC algorithm
without truncation or mean-field assumptions.

2The rows are coupled to allow dependencies over transitions,
which is essential to provide non-trivial solutions through infer-
ence when the number of hidden states goes to infinity.
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Figure 1. Graphical model representation of (a) M2iHMM and (b)
GiSVM. Note that M2iHMM reduces to GiSVM when we do not
assume the sequential dependencies among the latent variables for
single variate classification.

3. Max-Margin Infinite HMMs
A max-margin iHMM is a nonparametric Bayesian HMM
for sequential prediction (see Fig. 1(a)), in which the max-
margin principle is explored to regularize posterior infer-
ence for better discriminative ability. For the ease of un-
derstanding, we start with single variate classification (see
Fig. 1(b)), where observations are modeled separately by
using DP mixtures. We then extend max-margin DP mix-
tures to model sequential data by building a Markov chain
process with the HDP theory.

3.1. Gibbs iSVM for Single Variate Classification

For single variate classification, the training set consists of
D i.i.d samples (xd, yd), where xd ∈ RM is an input fea-
ture vector and yd ∈ Y = {1, · · · , L} is a discrete response
variable for multi-way classification. Gibbs iSVM is a DP
mixture model for describing both input features and re-
sponse variables, as illustrated in Fig. 1(b). It consists of
two parts — a DP mixture for input features and a Gibbs
classifier for response variables, as explained below.

3.1.1. DP MIXTURES

Let zd denote the component assignment for data point d.
A DP mixture consists of a likelihood model p(xd|zd,γ)
similar as Eq. (2) for describing the observed data in each
cluster, a Chinese Restaurant Process (CRP) prior (Pitman,
1995) over the latent variables Z, and some priors over pa-
rameters γ. Given a set of data X, we can apply Bayes’
rule to infer the posterior distribution, p(Z,γ|X). From
the variational point of view, the posterior distribution via
Bayes’ rule is equivalent to the solution of a convex opti-
mization problem

min
q(Z,γ)∈P

KL(q(Z,γ)∥p0(Z,γ))− Eq[log p(X|Z,γ)], (5)

where P is a probability simplex. We should note that the
variational re-formulation doesn’t reduce the complexity of
doing posterior inference, and we still need to perform vari-
ational approximation or Monte Carlo methods in practice.
But the significance is that it provides a nice starting point
to augment DP mixtures for the discriminative max-margin
learning, as detailed below.

3.1.2. REGULARIZED DP MIXTURES

To augment the DP mixtures for prediction tasks, we de-
fine a classifier over y within each cluster. Previous work
has either built a likelihood model (e.g., logistic regression)
for y (Shahbaba & Neal, 2009) or a large-margin classifier
with an expected discriminant function (Zhu et al., 2011)
to account for the uncertainty of Z. We present a new for-
mulation and discuss its relations to iSVM.

Let ηk be the classifier weights in cluster k. If we have
known the component assignment zd and the classifier ηzd

,
we can define some prediction rule to classify data d. We
consider the simple linear discriminant function

f(y,xd; zd,η) = η⊤
zd
g(y,xd) =

∞∑
k=1

δzd,kη
⊤
k g(y,xd), (6)

where g(y,xd) is a long vector consisting of L subvectors
with the y-th being xd and all others being zero, and make
predictions using the rule ŷd = argmaxy f(y,xd; zd,η).
Following the approach by Crammer & Singer (2001), we
define the multi-class hinge loss

R(Z,η) =
∑
d

max
y

(∆y
d −∆f(y, yd,xd; zd,η)), (7)

where ∆y
d equals to 0 if y = yd and ℓ (≥ 1) other-

wise; ℓ is the cost of making a wrong prediction; and
∆f(y, yd,xd; zd,η) = f(yd,xd; zd,η) − f(y,xd; zd,η)
is the margin favored by the ground truth yd over any other
label y. This hinge loss is convex with respect to η and
also an upper bound of the training cost,

∑
d ℓ(1− δyd,ŷd

).
To account for the uncertainty of Z and η, we adopt
the approach of Gibbs classifiers (Germain et al., 2009;
Zhu et al., 2013; 2014) and take expectation over the tar-
get posterior q(Z,η) to define the expected hinge loss

R(q) = Eq [R(Z,η)] , (8)

which is an upper bound of the expected training cost,∑
d ℓEq [1− δyd,ŷd

].

With the above Gibbs classifier, we can regularize the pos-
terior inference of DP mixtures by solving the following
hybrid optimization problem

min
q(Z,η,γ)∈P

L(q(Z,η,γ)) + 2cR(q(Z,η,γ)), (9)

where L(q) = KL(q∥p0(Z,η,γ)) − Eq[log p(X|Z,γ)] is
the objective function for doing standard Bayesian infer-
ence, and c is a positive regularization constant.

Remark 1 Unlike GiSVM, iSVM builds a max-margin
DP mixture model based on averaging classifiers, which
define the expected discriminant function f(y,xd; q) =
Eq[f(y,xd; zd,η)], and make predictions using the argmax
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rule ŷd = argmaxy f(y,xd; q). Let ∆f(y,xd; q) =
f(yd,xd; q) − f(y,xd; q) be the margin and R′ =∑

d maxy(∆
y
d−∆f(y,xd; q)) be the multi-class hinge loss

of this classifier. Then, iSVM solves a hybrid optimization
problem similar to (9), simply replacing R with R′. In fact,
we can prove that the expected hinge loss is an upper bound
of the hinge loss of the expected classifier by exploring the
convexity of the hinge loss, i.e., R(q) ≥ R′(q).

One merit for using Gibbs classifiers in GiSVM is that
we can reformulate the problem with data augmentation
and perform truncation-free sampling (shown in Sec. 4),
which is more accurate than solving the constrained SVM
subproblems in iSVM with variational approximation as
in (Zhu et al., 2011).

3.2. Max-margin iHMMs for Sequential Prediction

With the above theory of max-margin DP mixtures for sin-
gle variate classification, we now present the generalization
of max-margin iHMMs for sequential prediction, where an
instance is a pair of an observed sequence X and the cor-
responding label sequence y. The dynamic dependency is
captured by invoking another sequence of hidden states Z,
which follow a Markov chain. Similar as in iHMMs, the
generative process of the latent state sequence, the obser-
vation sequence, and parameters are

β ∼ GEM(γ0), πk|α0,β ∼ DP(α0,β),

γk = {µk,Σk}|Γ ∼ NIW(Γ), ηk|H ∼ N (0,H),

zt|zt−1,π ∼ πzt−1 , xt|zt ∼ p(xt|zt,γ),

where Γ stands for a set of Normal-Inverse-Wishart
hyper-parameters, and H is a covariance matrix, e.g., ν2I
for isotropic Gaussian. If the cluster assignments Z are
given, we postulate that the class labels are independently
determined by the associated classifiers, and define the
linear discriminant function as

f(y,X;Z,η) =

T∑
t=1

f(yt,xt; zt,η), (10)

where f(yt,xt; zt,η) is the same as in (6). Then, we can
make predictions using the joint argmax rule

ŷ(z,η) = argmax
y

f(y,X;Z,η) (11)

Following max-margin Markov networks (Taskar et al.,
2003; Altun et al., 2004), we define the structured hinge
loss for multiple sequences, each of length T , as

R(Z,η) =
∑
d

max
y

(∆d(y)−∆f(y,Xd;Zd,η)) , (12)

where ∆d(y) is a cost function measuring how much
y differs from the truth y∗

d for sequence d; and

∆f(y,Xd;Zd,η) = f(y∗
d,Xd;Zd,η) − f(y,Xd;Zd,η)

is the margin favored by the ground truth y∗
d for sequence

d. We choose the commonly used Hamming loss, that is,
∆d(y) =

∑T
t=1 ∆

yt

dt, where ∆yt

dt = 1 − δyt,y∗
dt

. Due
to the separability of the cost function and the discrim-
inant function, we have the hinge loss as R(Z,η) =∑

d

∑T
t=1 maxyt(∆

yt

dt −∆f(yt, y
∗
dt,xdt; zdt,η)).

To resolve the uncertainty of Z and η, we take the expec-
tation and define the expected margin loss R(q(Z,η)) =
Eq[R(Z,η)]. Then, the regularized inference problem is

min
q(Z,η,γ,β,π)

L(q(Z,η,γ,β,π)) + 2cR(q(Z,η,β,π)),(13)

an extension of (9) with a HDP process to capture the in-
terdependencies among Z, where L(q(Z,η,γ,β,π)) =
KL(q∥p0(Z,η,γ,β,π)) − Eq[log p(X|Z,γ)] is the ob-
jective of Bayesian inference for HDP mixtures. We call
this model M2iHMM-1 (see Fig. 1(a)). We can also use
a framework similar as maximum entropy discrimination
(MED) (Jaakkola et al., 1999) by omitting the likelihood
model and the regularized Bayesian inference problem is

min
q(Z,η,β,π)∈P

L(q(Z,η,β,π)) + 2cR(q(Z,η,β,π)), (14)

where L(q(Z,η,β,π)) = KL(q∥p0(Z,η,β,π)) and we
call this model M2iHMM-2.

4. Inference Algorithms
Now, we present truncation-free MCMC algorithms for
max-margin infinite HMMs. We again start with the sin-
gle variate classification for the ease of understanding.

4.1. Gibbs iSVM for Single Variate Classification

Let ϕ(yd|zd,η)=exp(−2cmaxy(∆
y
d−∆f(y, yd,xd; zd,η)))

be the unnormalized likelihood of the label yd and
ϕ(y|Z,η) =

∏
d ϕ(yd|zd,ηd). Solving problem (9), we

get the normalized posterior distribution

q(Z,η,γ) =
p0(η,γ,Z)p(X|Z,γ)ϕ(y|Z,η)

ψ(X,y)
, (15)

where ψ(X,y) is the normalization constant. Due to the
conjugacy, we can integrate out the parameters γ for col-
lapsed sampling, which may improve the mixing rate3.
However, it would be hard to develop a MCMC algorithm
for q(Z,η) directly, due to the complicated form of ϕ.
Fortunately, we can develop a simple and truncation-free
Gibbs sampler by exploring data augmentation techniques.

For Z: given η, the conditional distribution is

q(Z|η) ∝ p0(Z)p(X|Z)ϕ(y|Z,η), (16)

3γk can be estimated using the samples assigned to cluster k
once we have Z.
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where p(X|Z) =
∫
p0(γ)p(X|Z,γ)dγ is the marginal

likelihood and p0(Z) is a CRP prior. We consider two cases
to derive the conditional distribution from which a cluster
assignment is drawn for data point d: 1) For the component
k with the number of data points except d assigned to it
n−d,k > 0, the conditional distribution is

q(zd = k|Z−d,η) ∝ n−d,kϕ(yd|zd = k,ηk)

×p(xd|Z−d,X
k
−d), (17)

where p(xd|Z−d,X
k
−d) is the marginal likelihood of data

d being in cluster k; and 2) The probability of generating a
new component k+ is

q(zd = k+|Z−d) ∝ α0p(xd)

∫
ϕ(yd|η′)p0(η

′)dη′, (18)

where p(xd) =
∫
p(xd|γ)p0(γ)dγ is the likelihood of data

d, ϕ(yd|η) = exp(−2cmax(0, ρyd

d −f(yd,xd; zd,η)), and
ρyd = maxy′ ̸=y(∆

y′

d +f(y′,xd; zd,η)−∆y
d). Again, using

the conjugate property, the integral p(xd) can be computed
in closed-form. For the second integral, we can apply im-
portance sampling to approximate it. Then, normalizing
the above terms will lead to the posterior distribution of
component assignments for observation d.

For η: given Z, we know the number of active clusters
and we can alternately sample ηk from the following con-
ditional distribution by fixing other component weights

q(ηk|Z,η−k) ∝ p0(ηk)
∏

d:zd=k

ϕ(yd|zd,η). (19)

But it is still difficult to sample ηk from this distribution
directly. Here, we develop an inner sampler to alternately
sample each subvector ηy

k with the others fixed. Specifi-
cally, let ζyd = maxy′ ̸=y(∆

y′

d + f(y′,xd; zd,η))−∆y
d and

κyd = +1 if yd = y; −1 otherwise. We can show that

q(ηy
k|Z,η

−y
k ) ∝ p0(η

y
k)

∏
d:zd=k

ϕ′(y|zd,η), (20)

where ϕ′(y|zd,η)=exp(−2c(κydζ
y
d−κ

y
df(y,xd; zd,η))+)

is an unnormalized likelihood and (x)+ = max(0, x).
Then, using the idea of data augmentation (Polson & Scott,
2011), we can show the equality

ϕ′(y|zd,η) =
∫ ∞

0

1√
2πωy

d

exp

(
−
(ωy

d + cζ̃yd )
2

2ωy
d

)
dωy

d ,

where ζ̃yd = κydζ
y
d − κydf(y,xd; zd,η). Therefore, the con-

ditional distribution q(ηy
k|Z,η

−y
k ) can be expressed as the

marginal of the following complete distribution with aug-
mented variables ωy = {ωy

d}

q(ηy
k,ω

y|Z,η−y
k ) ∝ p0(η

y
k)

∏
d:zd=k

ϕ′(y, ωy
d |zd,η), (21)

where ϕ′(y, ωy
d |zd,η) =

1√
2πωy

d

exp
(
− (ωy

d+cζ̃y
d )

2

2ωy
d

)
. Then

we can sample ηy
k by iterating over the following two steps

and finally dropping ωy:

1) For ωy: we only need to consider ωy
d where zd = k.

Due to the conditional independence, we can sample
each ωy

d separately from the conditional distribution

q(ωy
d |Z,η) ∝ GIG

(
ωy
d ;

1

2
, 1, (cζ̃yd )

2

)
,

where GIG(x; p, a, b) = C(p, a, b)xp−1 exp(−1
2 (

b
x +

ax)) is a generalized inverse Gaussian distribu-
tion (Devroye, 1986) and C(p, a, b) is a normalization
constant. Therefore, (ωy

d)
−1 follows an inverse Gaus-

sian distribution

q((ωy
d)

−1|Z,η) = IG

(
(ωy

d)
−1;

1

c|ζ̃yd |
, 1

)
, (22)

where IG(x; a, b) =
√

b
2πx3 exp(− b(x−a)2

2a2x ) for a, b >
0. We can efficiently draw samples from an IG distribu-
tion (Michael et al., 1976), with O(1) time complexity.

2) For ηy
k: this step is to draw the classifier parameter for

each active cluster. For the commonly used Gaussian
prior, p0(η

y
k) = N (0, ν2I), we have the conditional

distribution

q(ηy
k|Z,ω,γ)∝ p0(η

y
k)

∏
d:zd=k

ϕ′(y, ωy
d |zd,η)

=N (λy
k,Λ

y
k), (23)

where mean λy
k = Λy

k(c
∑

d δzd,k
ρy
d+cωy

dκ
y
d

ωy
d

xd) and co-

variance Λy
k = ( 1

ν2 I + c2
∑

k δzd,k
xdx

⊤
d

ωy
d

)−1.

With the above conditional distributions, we set the initial
number of statesK0 to a relatively large value and then ran-
domly initialize η. Then we construct a Markov chain to
iteratively draw samples of Z using Eq. (17,18) and draw
ηy
k using the above two-step inner sampler, with an initial

condition. In our experiments, we initially set ω = 1 and
randomly draw Z from a K0 dimensional uniform distri-
bution. In training, we run this Markov chain until conver-
gence (i.e., finished the burn-in stage with M iterations).
Then, we draw a sample η̂ for each component as the final
Gibbs classifier to make predictions on testing data.

4.2. Sequential Models using Beam Sampler

Since we can apply a similar method for multiple se-
quences, here we consider the general problem (14) for one
sequence, whose solution is

q(Z,η,γ,β,π) =
p0(Z,η,γ,β,π)p(X|Z,γ)ϕ(y|Z,η)

ψ(X,y)
,
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where ϕ(y|Z,η) = exp(−2cR(Z,η)) is an unnormalized
likelihood corresponding to the structured hinge loss (12).
Similarly, we can integrate out γ by conjugacy and perform
collapsed inference on q(Z,η,β,π). We can develop an
efficient sampler by leveraging the advances in the Beam
sampler for iHMMs (Gael et al., 2008)4. Specifically, we
introduce a set of auxiliary variables µ. Then, we perform
the following steps:

For µ: for each time t we draw an auxiliary variable µt ∼
U(0, πzt−1,zt).

For Z: since the sequences are conditionally independent
given the global variables (β,π,η), we can sample the tra-
jectory of each sequence separately. This can be efficiently
done with a forward filtering-backward sampling proce-
dure. For the forward filtering, we compute q(zt|y1:t, µ1:t)
using the iterative rule:

q(zt|y1:t, µ1:t) ∝ q(zt, µt, yt|y1:t−1, µ1:t−1)

= ϕ(yt|zt)
∑

zt−1:µt<πzt−1,zt

q(zt−1|y1:t−1, µ1:t−1), (24)

where ϕ(yt|zt) = exp(−2cmaxy(∆
y
t + f(y∗t ,xt; zt,η)−

f(y,xt; zt,η))) is the unnormalized likelihood for each
data point. Then, the backward sampling performs a back-
ward pass where we sample zt given the sample for zt+1:

q(zt|zt+1,y,µ) ∝ q(zt|y1:t, µ1:t)q(st+1|st, µt+1), (25)

where q(st+1|st, µt+1) = πst,st+1I(µt+1 < πst,st+1).

For η: due to the separability of the discrimi-
nant function, the posterior of each classifier weight
is q(ηk|Z,y) ∝ p0(ηk)

∏
t:zt=k exp(−2cmaxy(∆

y
t +

η⊤
k (g(y

∗
t ,xt) − g(y,xt)))), where xt is the t-th segment

of the sequence. This step can be done with data augmen-
tation, similar as in the single variable case.

For π,β: these follow from the theory of HDPs. Details
can be found in (Teh et al., 2006). We omit for space.

4.3. Prediction

We can apply an iterative algorithm to make predictions
for M2iHMM-1. That is, to minimize the latent discrimi-
nant function (10) by first sampling the state indicator vari-
able Z from q(Z|X,π) and then make predictions by (11).
Then we can infer q(Z|X, ŷ,π) and make predictions ŷ
for the next iteration using the latent discriminant func-
tion (10) where we sample Z from q(Z|X, ŷ,π) instead
of q(Z|X,π). In our experiments, we find that doing about
50 iterations is enough for convergence. For M2iHMM-
2 we do prediction in a same framework, using q(Z|π),
q(Z|ŷ,π) instead of q(Z|X,π), q(Z|X, ŷ,π) separately.
For single variable classification the procedure is similar.

4For problem (13), a similar sampler applies.

The Gibbs classifiers only apply a single sample to make
predictions, which can be unstable. In our experiments we
draw several samples (e.g. 100 samples) and do majority
voting to achieve a more stable prediction.

5. Experiments
We now provide empirical studies for both single vari-
able classification and sequential prediction on several syn-
thetic and real data sets. For single variate classification,
DP mixtures of Multinomial Logit Model (DPMNL) and
iSVM can serve as strong baselines. For dynamic models,
since iM2EDM is the most similar model as ours and it
has shown superior prediction performance on several data
sets (Chatzis, 2013), we use it as a strong baseline. We
implemented our models and re-implemented DPMNL and
iM2EDM using C++. All the experiments were conducted
on an Intel Core i5 3.10GHZ computer with 4.0GB RAM.

Table 1. Classification accuracy (%) and F1 scores (%) on the
Parkinsons and Protein data sets.

PARKINSONS PROTEIN
MODEL ACCURACY F1 SCORE ACCURACY F1 SCORE
MNL 85.6 ± 2.2 79.1± 2.8 50.1 ± 0.0 43.5 ± 0.0

LINEAR-SVM 85.3 ± 0.4 78.9 ± 1.5 48.3 ± 0.0 43.2 ± 0.0
RBF-SVM 87.2 ± 2.7 79.9 ± 3.2 53.1 ± 0.0 49.5 ± 0.0

DPMNL 87.7 ± 3.3 82.6 ± 2.5 56.3 ± 0.0 49.5 ± 0.0
ISVM 88.0 ± 1.5 83.5 ± 2.8 54.3 ± 0.0 49.4 ± 0.0

GISVM 88.9 ± 1.5 85.1 ± 1.3 55.8 ± 0.0 50.1 ± 0.0

5.1. Single Variable classification

5.1.1. DATA DESCRIPTION

Parkinsons data: The Parkinsons data set contains 195 in-
stances with 147 positive instances and 48 negative ones.
The original data set has 23 features detecting the Parkin-
sons disease and we extract 10 principal components us-
ing PCA, following (Shahbaba & Neal, 2009). We adopt
5-fold cross-validation and report the average performance
as well as standard deviations.

Protein data: To recognize structures of Protein, peo-
ple utilized informative features (i.e., the length of the
protein sequence) to predict the folding classes of a pro-
tein, which is closely related to its 3D structure. We fol-
low (Ding & Dubchak, 2001) to split the data set into a
training set containing 313 instances and a test set consist-
ing of 385 instances. Each instance belongs to one of the
27 folding classes, and is characterized by 21 features.

5.1.2. RESULTS

We compare the average prediction accuracy and F1 scores
over linear classifiers such as Multinomial Logit Model
(MNL) and SVM using linear kernels (linear-SVM) to-
gether with non-linear models such as SVM with RBF
kernels (RBF-SVM), DPMNL, iSVM, and GiSVM on the
above data sets. For iSVM we set the truncation level K =
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Figure 2. (L) Training data with length 500 in one-dimensional space (markers). The labels (denoted by color/style of markers) are
generated by the classifiers w.r.t. the according hidden states. (R) The ground truth states (denoted by different colors on the bar) for the
training data and the states recovered by M2iHMM-1 and M2iHMM-2 after 25, 50, 100 iterations separately.

20, and use cross-validation to choose hyper-parameters.

We can see that non-linear models are superior in pre-
diction. Large-margin methods with a mixture-of-experts
(i.e., iSVM and GiSVM) can further improve prediction
performance in the Parkinsons data set. In both data sets
GiSVM shows superior performance than iSVM, and this
performance gap may due to the inaccuracy of the trun-
cated mean-field approximation in iSVM. For Parkinsons
data we inferred 3 ∼ 4 clusters using GiSVM, which was
similar to DPMNL that can detect some structures in data
(e.g., heterogeneity of subjects (Shahbaba & Neal, 2009)).

5.2. Sequential Models

5.2.1. SYNTHETIC DATA

Training Behavior We generate an observation chain with
length 500 from a Gaussian mixture model consisting of
three components, whose means are 2.5, 1.5 and -1.5 re-
spectively, while having the same covariance as one. For
each observation we set its label by a ground-truth classifier
w.r.t. the component it belongs to (i.e., a decision boundary
that goes across the mean of the Gaussian component), as
shown in Fig. 2(L). The component indicators (or hidden
states) are drawn from a Markov chain with a transition
matrix 0.01E3 + 0.98I3.5. Given the observations and la-
bels, we use M2iHMM-1 and M2iHMM-2 to estimate the
classifiers η and the hidden states Z. We also estimate the
Gaussian components γ in M2iHMM-1. In this experiment
we set the initial number of states K0 = 10, the HDP con-
centration hyper-parameters α0 =2, γ0 =2, and the large-
margin classifier hyper-parameters c=1, ℓ=1.6 The recov-
ered states are shown in Fig. 2(R), where colors in the bars
represent the inferred states for the according observations.

We find that samples drawn from M2iHMM-1 and
M2iHMM-2 are stable after about 100 iterations (as illus-
trated in Appendix). The results of the inferred states show
some interesting points. First, M2iHMM-2 performs pretty
bad in the first 25 iterations while it quickly converges to
the ground truth with minor errors (an analysis of conver-

5E3 stands for a three-dimensional matrix with all elements
equal to one, and I3 is a three-dimensional identity matrix.

6We set a moderate value for c to let the observation likelihood
play a relatively strong part in our model.

Table 2. Classification accuracies (%) and time cost for different
models in three different synthetic situations.

MODEL SET.1(POS.) SET.2(NEG.) SET.3(VAGUE) TRN.TIME TST.TIME
SVM 61.9 ± 13.6 64.0 ± 14.5 63.2 ± 14.5 3 ± 0.2S 0.4 ± 0.05S
IM2EDM 67.2 ± 14.2 67.6 ± 13.9 66.7 ± 14.8 164 ± 37S 110 ± 24S
M2IHMM-2 69.4 ± 12.6 70.4 ± 12.3 70.2 ± 12.8 45 ± 7S 19 ± 3S
GISVM 79.6 ± 16.6 79.1 ± 15.3 82.2 ± 13.9 24 ± 2S 3.6 ± 0.7S
M2IHMM-1 91.2 ± 5.9 85.0 ± 9.9 84.8 ± 10.6 53 ± 10S 15 ± 4S

gence is illustrated in the Appendix). Second, by applying a
likelihood model, M2iHMM-1 performs fairly good in the
first 25 iterations with the information in the observation
space. However, because the observations generated by the
three states overlap, M2iHMM-1 cannot perfectly recover-
ing all the hidden states with a likelihood model using a
moderate weight for the observation likelihood.

Testing Behavior Now we show the prediction perfor-
mance and time cost for different models. Considering the
random effect of data, for training we randomly sample 10
data sets in one-dimensional space, and each with an ob-
servation chain and corresponding labels with length 500.
Similar as above, each observation is drawn from one of
three Gaussian components. The mean for each Gaussian
component is drawn from [−3, 3], and we set the covari-
ance to one for all the components. Therefore, there is a
high probability that some components may largely over-
lap in the observation space, and it is hard to decide the true
number of components barely from the observation space.
For each observation we draw its label from a ground-truth
classifier w.r.t its component.

For each data set we try three transition matrices when gen-
erating the state chains, namely a positive correlated tran-
sition matrix 0.05E3+0.85I3, a negative correlated transi-
tion matrix 0.45E3 − 0.35I3, and a vague transition matrix
0.3E3 + 0.1I3. For testing we generate a latent state chain
with length 5,000 for each data set using the same transition
matrix. Then we draw the observations and the ground-
truth labels. Our task is to predict the labels for each ob-
servation. The hyper-parameter settings are the same as the
above training behavior experiment. We draw 100 samples
from GiSVM, M2iHMM-1 and M2iHMM-2 after 100 iter-
ations and do voting as we stated in Sec. 4.3. For iM2EDM
we run 100 variational iterations and use the model in the
last iteration for prediction.

The prediction results are shown in Table 2. We com-
pare over linear SVM, GiSVM, iM2EDM, M2iHMM-1,
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and M2iHMM-2. Since the data generated is highly non-
linear, the linear classifiers (e.g., SVM) are very ineffctive
in prediction. For sequential models, M2iHMM-2 do bet-
ter both in prediction accuracy and time cost than iM2EDM
by capturing the sequential dependencies among data more
accurately. By exploring the observation space with a like-
lihood model, GiSVM could mitigate the over-fitting ef-
fect, and partly discover the local linearity in the data. But
it still can not capture the sequential dependencies. Over
all settings, M2iHMM-1 performs the best, especially on
the positive-correlated data. This is rooted from a clearer
sequential dependency in the data.

We also compare training time and testing time for different
models. Through an efficient sampling scheme, M2iHMM-
2 achieves much less time cost than iM2EDM. Also, mod-
eling the likelihood part does not suffer from much addi-
tional cost when comparing M2iHMM-1 with M2iHMM-
2. Using an efficient beam sampler, M2iHMM-1 samples
the latent variable chain by adopting a fast forward-filtering
backward-sampling method given the auxiliary variables so
the first order Markov dependencies does not bring about a
bottleneck in time efficiency comparing with GiSVM, the
single variate prediction model.

5.2.2. HUMAN-ACTIVITY RECOGNITION

Human-activity recognition in videos with a stationary
background was motivated by several applications such as
monitoring patients for health care. Recently, the emer-
gence of various devices based on multi-modal sensors has
brought about new research topics for combining various
source of video streams (e.g., color-depth video streams)
to boost the performance of activity recognition (Ni et al.,
2011). RGBD-HuDaAct is a home-monitoring human ac-
tivity recognition data set containing both color and depth
video streams (Ni et al., 2011).

In our experiments, we only use the depth video streams.
Different from the experiments proposed by Chatzis
(2013), which used a subset of data containing five cat-
egories of human activities, we use the whole data set
containing 12 categories of human activities in 35 video
sequences, from which over five million frames summa-
rized in 1,189 samples was extracted. Following (Ni et al.,
2011), we sub-sample 702 samples (each contains a se-
quence of frames for one activity) and discard samples for
background activities. For features, we extract the 162-
dimension spatio-temporal interest points (STIPS)7 and
generate a code of size J = 128, followed by Locality-
constrainted linear coding (LLC) (Wang et al., 2011). Fi-
nally we do max-pooling w.r.t. a small time step, resulting

7Each STIPS feature contains the 3D coordinates (x, y, z), the
temporal index t, the scale of the feature point σ, and the HOG,
HOF features. (Ni et al., 2011)

Table 3. Classification accuracies (%) and train time for different
models in RGBD-HuDaAct data set.

MODEL ACCURACY F1 SCORE TRAIN TIME
SVM 47.9 ± 5.8 45.2 ± 6.0 0.1H
GISVM 48.6 ± 4.5 46.1 ± 7.0 4.5H
IM2EDM 51.2 ± 5.0 48.2 ± 5.2 6.1H
M2IHMM-1 52.0 ± 5.3 48.5 ± 6.1 8.9H
M2IHMM-2 54.0 ± 5.5 51.1 ± 6.8 2.3H

in 10,624 128-dimension “super-frames” in total, with an
average of 15.6 sequential super-frames for each sample.
We perform 5-fold cross-validation and report the average
performance as well as standard deviations.

We compare over linear SVM, GiSVM, iM2EDM, and
M2iHMMs. For models based on Gibbs classifiers we set
K0=20 and run 300 iterations. Then we do prediction with
the final Gibbs classifier, as mentioned in Sec. 4.3. While
for iM2EDM we set the truncation levelK=20 and run 100
iterations for training. All the models converge in our ex-
periments. The prediction and time cost results was demon-
strated in Table 3. The sequential models perform signif-
icantly better than the single variable models, due to their
ability to capture the sequential dependencies among data.
Applying a likelihood model does not help in prediction
because the observation space does not provide informa-
tive sequential correlations. M2iHMM-2 performs the best
both in prediction accuracy and in time efficiency. Finally,
M2iHMMs inferred 6 ∼ 8 clusters, which can reflect the
complex structures in the data.

6. Conclusions and Future Work
We present max-margin infinite HMMs that explore max-
margin discriminative learning on iHMMs for sequential
prediction. By introducing Gibbs classifiers and data aug-
mentation representations, we develop truncation-free and
assumption-free MCMC algorithms with efficient beam
samplers. Empirical results have justified superior perfor-
mance of our models on both sequential prediction and sin-
gle variate classification tasks than other competitors.

For future work, we can explore more complicated struc-
tures among data (e.g., tree structures) by models that scale
potentially to an infinite extent (Blei et al., 2010). Another
exciting direction is to develop small-variance asymptotics
for our models that admit very fast k-means like estimation
algorithms (Campbell et al., 2013).
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