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A. Proof of Lemma 1

We consider the following general optimization problem
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Before we proceed, we need the following lemma.

Lemma 6. The solution to the optimization problem
1 2
min —(z — )~ + ylz|
z 2
is given by

_ 0, lf|y| <
Py(y) = { sign(y)(ly| — ), otherwise.
where P.(-) is the soft-thresholding operator defined in

(7) (Donoho, 1995).

The proof of Lemma 6 can be found in (Duchi & Singer,
2009). Based on the above lemma, it is easy to verify that
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if [y[ <7;
otherwise.
(16)

First, we consider the case ||y||cc < 7. Then, it is easy to
verify that

0 € argmin —x "y + /x| 1.
X

Since ||0||]2 < 1, 0 is also an optimal solution to (15).

Next, we consider the case |y/lcc > ~.  Fol-
lowing the standard analysis of convex optimiza-
tion (Boyd & Vandenberghe, 2004), the Lagrange dual

function g(p) of (15) is given by
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So, the Lagrange dual problem is

P 2
Pl
n>0 4/1,

and the optimal dual solution is
_ 1Rl
Following the standard analysis (Boyd & Vandenberghe,

2004, Section 5.5.5), the optimal primal solution is
2
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B. Proof of Lemma 2

We first consider the case sign(x,—';u) =1,ie.,

T u
Xj —— > Ok.
" lul2

Then, we have

—|—u —|—ll
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“Tallz = Tl
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+ (X* — Xk

(10)
> 0 — ||%e — Xk|l2 > 0.

Thus,
. T . T u 4 T
sign(x, u) =sign | x, —— | = 1 = sign(x; u).
[[ul2
The case that sign(x; u¥) = —1 can be proved in a similar
way.
C. Proof of Lemma 4

First, we have

xE [wyi] = B [y w] © B[00 w)xw] £ A,

where we use the fact that for a fixed x.., XIui can be
treated as a standard Gaussian random variable.

Consider any vector x | x,. Since x u; and x " u; are two

independent Gaussian random variable, y; is independent
from x " u;. Thus, we have

XTE [u,»y,»] =E [inTui] =0.

Then, it is easy to prove Lemma 4 by contradiction.

D. Proof of Theorem 3

The proof of Theorem 3 is almost identical to that of The-
orem 2. The only difference is that in this case, we have

1
Ok = o(k—1)/4"

and the total number of calls to the Oracle is upper bounded
by

K
my + 2(K — 1)t +2v/n Y Spmy
k=2
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<2(K — 1)t 4 (3v/n225/4 4 1)my.

E. Proof of Corollary 1

We first consider the case that
m < 2(K — 1)t + (5¢/n2"/% 4+ 1)my,
which implies
m = 0252 \/nm,) = 0(2K/%s\/nlogn).

Thus,

L, <s\/ﬁlogn> |

Ixg41 —X||2 = 9K /2 "
In the case that

m§m12K,

we have

m = 0(2%m;) = 0(2K slogn),

slogn
- .

The proof is the same as that for Corollary 1.

and thus,

. 1
[xK+1 — X2 = 9K/2 0O <

F. Proof of Corollary 2

G. Multiplicative Chernoff Bound

Theorem 4. Let X1, Xo,...,X,, be independent bina-
ry random variables with Pr[X;, = 1] = p;. Denote
S =", X,and p = E[S] = > pi. We have
(Angluin & Valiant, 1979)

2
Pr[S <(1—e€)u] <exp <—€2,u) , for0 <e <1,
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Pr[S > (14 ¢€)u] <exp <— u) , fore > 0.

24 ¢

For the second bound, let t = ;—je,u, which implies € =

t++/t2+8ut
2

. Then, with a probability at least e~¢, we have

t 4+ /12 + 8ut
S < <1++2+“>u<2u+2t.
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